recurrent_op.cc 7.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/operators/recurrent_op.h"
Y
Yan Chunwei 已提交
16 17 18 19 20

#include <cstring>
#include <sstream>

#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
21
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
22 23 24 25

namespace paddle {
namespace operators {

D
dongzhihong 已提交
26 27 28
using Scope = framework::Scope;
using Variable = framework::Variable;
using Tensor = framework::Tensor;
29
using LoDTensor = framework::LoDTensor;
D
dongzhihong 已提交
30

Y
Yu Yang 已提交
31
void RecurrentAlgorithm::Run(const Scope& scope,
Y
Yan Chunwei 已提交
32 33
                             const platform::DeviceContext& dev_ctx) const {
  auto step_scopes = GetStepScopes(scope);
34 35
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     false /*infer_shape_mode*/);
D
dangqingqing 已提交
36
  InitMemories(step_scopes[0], false /*infer_shape_mode*/);
D
dangqingqing 已提交
37

Y
Yan Chunwei 已提交
38
  for (size_t step_id = 0; step_id < seq_len_; step_id++) {
Y
Yan Chunwei 已提交
39
    // create output alias variables
Y
Yan Chunwei 已提交
40
    if (step_id > 0) {
41 42
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, -1,
                        false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
43
    }
Y
Yan Chunwei 已提交
44
    (*stepnet_)->Run(*step_scopes[step_id], dev_ctx);
Y
Yan Chunwei 已提交
45
  }
46 47
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
48 49
}

Y
Yu Yang 已提交
50
void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
Y
Yan Chunwei 已提交
51
  // TODO(superjom) Only two scopes are needed for inference, this case will be
Y
Yan Chunwei 已提交
52
  // supported later.
Y
Yan Chunwei 已提交
53 54 55 56 57
  auto step_scopes_var = scope.FindVar(arg_->step_scopes);
  PADDLE_ENFORCE(step_scopes_var != nullptr, "");
  auto step_scopes = step_scopes_var->GetMutable<std::vector<Scope*>>();

  // Now all variables in scope must be created outside of op.
Y
Yan Chunwei 已提交
58 59
  PADDLE_ENFORCE_NOT_NULL(stepnet_);
  PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "stepnet_ op has no outputs");
Y
Yan Chunwei 已提交
60 61 62

  if (seq_len_ > step_scopes->size()) {
    for (size_t i = step_scopes->size(); i < seq_len_; ++i) {
Y
Yu Yang 已提交
63
      auto& step_scope = scope.NewScope();
Y
Yan Chunwei 已提交
64

Y
Yan Chunwei 已提交
65
      // create step net's temp inputs
Y
Yan Chunwei 已提交
66
      for (auto& input : (*stepnet_)->Inputs()) {
67
        // the weight are located in parent scope
Y
Yu Yang 已提交
68 69
        for (auto& var_name : input.second) {
          if (!step_scope.FindVar(var_name)) {
70
            step_scope.NewVar(var_name)->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
71 72
          }
        }
Y
Yan Chunwei 已提交
73
      }
Y
Yan Chunwei 已提交
74
      // create stepnet's outputs
Y
Yan Chunwei 已提交
75
      for (const auto& output : (*stepnet_)->Outputs()) {
Y
Yu Yang 已提交
76 77 78
        for (auto& var_name : output.second) {
          step_scope.NewVar(var_name);
        }
Y
Yan Chunwei 已提交
79
      }
Y
Yu Yang 已提交
80
      step_scopes->emplace_back(&step_scope);
Y
Yan Chunwei 已提交
81 82 83 84
    }
  }
}

D
dangqingqing 已提交
85
void RecurrentAlgorithm::InitMemories(Scope* step_scope,
D
dangqingqing 已提交
86
                                      bool infer_shape_mode) const {
Y
Yan Chunwei 已提交
87
  for (auto& attr : arg_->memories) {
88
    auto* pre_mem = step_scope->NewVar(attr.pre_var)->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
89
    PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
90
                   "memory [%s]'s boot variable [%s] not exists", attr.var,
Y
Yan Chunwei 已提交
91
                   attr.boot_var);
92 93
    auto* boot_mem =
        step_scope->FindVar(attr.boot_var)->GetMutable<LoDTensor>();
D
dangqingqing 已提交
94
    if (infer_shape_mode) {
95
      pre_mem->Resize(boot_mem->dims());
Y
Yan Chunwei 已提交
96
      PADDLE_ENFORCE_EQ(pre_mem->dims().size(), 2);
97 98 99
    } else {
      pre_mem->ShareDataWith<float>(*boot_mem);
    }
Y
Yan Chunwei 已提交
100 101 102
  }
}

103
const rnn::ArgumentName RecurrentOp::kArgName{
S
superjom 已提交
104
    "step_net", "step_scopes",  "inlinks",      "outlinks",
105 106 107
    "memories", "pre_memories", "boot_memories"};

const rnn::ArgumentName RecurrentGradientOp::kArgName{
S
superjom 已提交
108 109
    "step_net", "step_scopes@GRAD", "outlinks@GRAD",     "inlinks@GRAD",
    "memories", "pre_memories",     "boot_memories@GRAD"};
Y
Yan Chunwei 已提交
110

Y
Yu Yang 已提交
111
RecurrentOp::RecurrentOp(const std::string& type,
Y
Yu Yang 已提交
112 113
                         const framework::VariableNameMap& inputs,
                         const framework::VariableNameMap& outputs,
Y
Yu Yang 已提交
114 115
                         const framework::AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {
Y
Yan Chunwei 已提交
116 117
  rnn::InitArgument(kArgName, &arg_, *this);
  alg_.Init(&arg_, &stepnet_);
Y
Yan Chunwei 已提交
118 119
}

D
dongzhihong 已提交
120 121
class RecurrentAlgorithmProtoAndCheckerMaker
    : public framework::OpProtoAndCheckerMaker {
122
 public:
D
dongzhihong 已提交
123 124
  RecurrentAlgorithmProtoAndCheckerMaker(framework::OpProto* proto,
                                         framework::OpAttrChecker* op_checker)
Y
Yan Chunwei 已提交
125 126 127
      : OpProtoAndCheckerMaker(proto, op_checker) {
    const auto& name = RecurrentOp::kArgName;
    // inputs and outputs stored in proto
D
dangqingqing 已提交
128 129
    AddInput(name.inlinks,
             "the inputs that need to be segmented for each step.")
Y
Yu Yang 已提交
130
        .AsDuplicable();
Y
Yu Yang 已提交
131
    AddInput(name.boot_memories, "variables to initialize memories.")
Y
Yu Yang 已提交
132
        .AsDuplicable();
Y
Yan Chunwei 已提交
133

D
dangqingqing 已提交
134
    AddOutput(name.outlinks, "the outputs that need to concated for all steps.")
Y
Yu Yang 已提交
135
        .AsDuplicable();
Y
Yan Chunwei 已提交
136 137 138 139 140 141 142 143 144 145 146 147
    AddOutput(name.step_scopes, "step scopes");

    // Attributes stored in AttributeMap
    AddAttr<std::vector<std::string>>(name.pre_memories,
                                      "names of pre-memories");
    AddAttr<std::vector<std::string>>(name.memories, "names of memories");

    AddComment("This is a recurrent group operator.");
  }
};

void RecurrentGradientAlgorithm::Run(
Y
Yu Yang 已提交
148
    const Scope& scope, const platform::DeviceContext& dev_ctx) const {
Y
Yan Chunwei 已提交
149
  auto step_scopes = GetStepScopes(scope);
150 151
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
152 153
  for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
    if (static_cast<size_t>(step_id) != seq_len_ - 1) {
154 155
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1,
                        false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
156
    }
Y
Yan Chunwei 已提交
157
    (*stepnet_)->Run(*step_scopes[step_id], dev_ctx);
Y
Yan Chunwei 已提交
158
  }
159
  LinkBootMemoryGradients(step_scopes[0], false);
160 161
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
162 163 164
}

void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
D
dangqingqing 已提交
165
    Scope* step_scope, bool infer_shape_mode) const {
Y
Yan Chunwei 已提交
166
  for (auto& attr : arg_->memories) {
D
dangqingqing 已提交
167
    PADDLE_ENFORCE(step_scope->FindVar(attr.var) != nullptr,
168
                   "memory variable [%s] does not exists", attr.var);
Y
Yu Yang 已提交
169
    PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
170
                   "boot variable [%s] does not exists", attr.boot_var);
171 172 173
    auto* mem_grad = step_scope->NewVar(attr.var)->GetMutable<LoDTensor>();
    auto* boot_mem_grad =
        step_scope->NewVar(attr.boot_var)->GetMutable<LoDTensor>();
D
dangqingqing 已提交
174
    if (infer_shape_mode) {
175 176 177 178
      boot_mem_grad->Resize(mem_grad->dims());
    } else {
      boot_mem_grad->ShareDataWith<float>(*mem_grad);
    }
Y
Yan Chunwei 已提交
179 180 181
  }
}

Y
Yu Yang 已提交
182
RecurrentGradientOp::RecurrentGradientOp(
Y
Yu Yang 已提交
183 184
    const std::string& type, const framework::VariableNameMap& inputs,
    const framework::VariableNameMap& outputs,
Y
Yu Yang 已提交
185 186
    const framework::AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {
S
superjom 已提交
187
  rnn::InitArgument(kArgName, &arg_, *this, true /*is grad*/);
Y
Yan Chunwei 已提交
188
  alg_.Init(&arg_, &stepnet_);
Y
Yan Chunwei 已提交
189 190 191 192 193
}

}  // namespace operators
}  // namespace paddle

S
superjom 已提交
194 195 196
REGISTER_OP(recurrent, paddle::operators::RecurrentOp,
            paddle::operators::RecurrentAlgorithmProtoAndCheckerMaker,
            recurrent_grad, paddle::operators::RecurrentGradientOp);