kernel_factory.cc 19.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/phi/core/kernel_factory.h"
16

17
#include "glog/logging.h"
18
#include "paddle/phi/core/enforce.h"
19
#include "paddle/utils/flags.h"
20
#if defined(PADDLE_WITH_XPU)
21
#include "paddle/phi/backends/xpu/xpu_op_list.h"
22
#include "paddle/phi/common/data_type.h"
23 24
#include "paddle/phi/core/compat/convert_utils.h"
#endif
25 26 27
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
#include "paddle/phi/backends/custom/custom_device_op_list.h"
#endif
28
#include "paddle/phi/core/compat/op_utils.h"
29
#include "paddle/phi/core/flags.h"
30
#include "paddle/utils/string/string_helper.h"
31

32 33 34
PHI_DEFINE_EXPORTED_bool(use_stride_kernel,
                         true,
                         "Whether to use strdie kernel if op support stride.");
W
wanghuancoder 已提交
35

36 37 38
PD_DECLARE_int32(low_precision_op_list);
PD_DECLARE_bool(enable_api_kernel_fallback);
PD_DECLARE_bool(run_kp_kernel);
39
namespace phi {
40

41 42
const static Kernel empty_kernel;  // NOLINT

43 44
std::string KernelSelectionErrorMessage(const std::string& kernel_name,
                                        const KernelKey& target_key);
45

46 47 48 49 50 51 52 53 54
uint32_t KernelKey::Hash::operator()(const KernelKey& key) const {
  uint32_t hash_value = 0;
  // |----31-20------|---19-12---|---11-8----|---7-0---|
  // | For extension | DataType | DataLayout | Backend |
  hash_value |= static_cast<uint8_t>(key.backend());
  hash_value |=
      (static_cast<uint8_t>(key.layout()) << KernelKey::kBackendBitLength);
  hash_value |=
      (static_cast<uint16_t>(key.dtype())
55
       << (KernelKey::kBackendBitLength + KernelKey::kDataLayoutBitLength));
56 57 58 59 60 61 62 63
  return hash_value;
}

KernelFactory& KernelFactory::Instance() {
  static KernelFactory g_op_kernel_factory;
  return g_op_kernel_factory;
}

64 65 66 67 68 69 70 71 72 73 74
bool KernelFactory::HasCompatiblePhiKernel(const std::string& op_type) const {
  if (deprecated_op_names.find(op_type) == deprecated_op_names.end()) {
    if (phi::OpUtilsMap::Instance().Contains(op_type)) {
      return true;
    } else if (kernels_.find(op_type) != kernels_.end()) {
      return true;
    }
  }
  return false;
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
bool KernelFactory::HasStructuredKernel(const std::string& op_type) const {
  auto phi_kernel_name = phi::OpUtilsMap::Instance().GetBaseKernelName(op_type);
  auto kernel_iter = kernels_.find(phi_kernel_name);
  if (deprecated_op_names.find(op_type) == deprecated_op_names.end() &&
      kernel_iter != kernels_.end()) {
    return std::any_of(kernel_iter->second.begin(),
                       kernel_iter->second.end(),
                       [](phi::KernelKeyMap::const_reference kernel_pair) {
                         return kernel_pair.second.GetKernelRegisteredType() ==
                                KernelRegisteredType::STRUCTURE;
                       });
  }
  return false;
}

90 91
const Kernel& KernelFactory::SelectKernel(const std::string& kernel_name,
                                          const KernelKey& kernel_key) const {
92 93
  auto iter = kernels_.find(kernel_name);
  if (iter == kernels_.end()) {
94
    return empty_kernel;
95
  }
H
hong 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

  auto kernel_iter = iter->second.find(kernel_key);
  if (kernel_iter == iter->second.end() &&
      kernel_key.layout() != phi::DataLayout::ALL_LAYOUT) {
    phi::KernelKey any_layout_kernel_key(
        kernel_key.backend(), phi::DataLayout::ALL_LAYOUT, kernel_key.dtype());
    kernel_iter = iter->second.find(any_layout_kernel_key);
  }

#if defined(PADDLE_WITH_CUSTOM_DEVICE)
  if (kernel_iter == iter->second.end() &&
      kernel_key.backend() > phi::Backend::NUM_BACKENDS) {
    kernel_iter = iter->second.find({phi::Backend::CUSTOM,
                                     phi::DataLayout::ALL_LAYOUT,
                                     kernel_key.dtype()});
  }
#endif

  if (kernel_iter == iter->second.end()) {
    return empty_kernel;
  }

  return kernel_iter->second;
}

const Kernel& KernelFactory::SelectKernelWithGPUDNN(
    const std::string& kernel_name, const KernelKey& const_kernel_key) const {
  auto iter = kernels_.find(kernel_name);
  if (iter == kernels_.end()) {
    return empty_kernel;
  }
  KernelKey kernel_key = KernelKey(const_kernel_key);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (kernel_key.backend() == Backend::GPUDNN) {
    auto kernel_iter = iter->second.find(
        {Backend::GPUDNN, phi::DataLayout::ALL_LAYOUT, kernel_key.dtype()});
    if (kernel_iter != iter->second.end()) {
      return kernel_iter->second;
    }
    kernel_key =
        KernelKey(Backend::GPU, kernel_key.layout(), kernel_key.dtype());
  }
#endif

140
  auto kernel_iter = iter->second.find(kernel_key);
141 142 143 144 145 146
  if (kernel_iter == iter->second.end() &&
      kernel_key.layout() != phi::DataLayout::ALL_LAYOUT) {
    phi::KernelKey any_layout_kernel_key(
        kernel_key.backend(), phi::DataLayout::ALL_LAYOUT, kernel_key.dtype());
    kernel_iter = iter->second.find(any_layout_kernel_key);
  }
H
hong 已提交
147

148 149 150 151 152 153 154 155
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
  if (kernel_iter == iter->second.end() &&
      kernel_key.backend() > phi::Backend::NUM_BACKENDS) {
    kernel_iter = iter->second.find({phi::Backend::CUSTOM,
                                     phi::DataLayout::ALL_LAYOUT,
                                     kernel_key.dtype()});
  }
#endif
156

157
  if (kernel_iter == iter->second.end()) {
158
    return empty_kernel;
159
  }
160

161 162 163
  return kernel_iter->second;
}

164 165
KernelKeyMap KernelFactory::SelectKernelMap(
    const std::string& kernel_name) const {
166 167
  auto iter = kernels_.find(kernel_name);
  if (iter == kernels_.end()) {
168
    return KernelKeyMap();
169 170 171 172
  }
  return iter->second;
}

173 174
bool KernelFactory::HasKernel(const std::string& kernel_name,
                              const KernelKey& kernel_key) const {
175 176 177 178 179 180 181 182 183 184 185 186 187
  auto iter = kernels_.find(kernel_name);
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));

  auto kernel_iter = iter->second.find(kernel_key);
  if (kernel_iter == iter->second.end()) {
    return false;
  }
  return true;
}

188
void KernelFactory::AddToLowPrecisionKernelList(
189
    const std::string& name, const phi::DataType& kernel_key_type) {
190 191 192 193 194
  if (FLAGS_low_precision_op_list >= 1) {
    auto op_name = phi::TransToFluidOpName(name);
    if (op_name.find("_grad") != std::string::npos) {
      return;  // only record forward api
    }
195 196 197 198 199

    if (low_precision_kernels_.find(op_name) == low_precision_kernels_.end()) {
      auto count = OpCount();
      low_precision_kernels_[op_name] = count;
    }
200
    if (kernel_key_type == phi::DataType::FLOAT16) {
201
      low_precision_kernels_[op_name].fp16_called_ += 1;
202
    } else if (kernel_key_type == phi::DataType::BFLOAT16) {
203
      low_precision_kernels_[op_name].bf16_called_ += 1;
204
    } else if (kernel_key_type == phi::DataType::FLOAT32) {
205 206 207
      low_precision_kernels_[op_name].fp32_called_ += 1;
    } else {
      low_precision_kernels_[op_name].other_called_ += 1;
208 209 210 211
    }
  }
}

212 213
std::map<const std::string, OpCount>
KernelFactory::GetLowPrecisionKernelList() {
214 215 216
  return low_precision_kernels_;
}

217
KernelResult KernelFactory::SelectKernelOrThrowError(
W
wanghuancoder 已提交
218 219 220
    const std::string& kernel_name,
    const KernelKey& const_kernel_key,
    bool use_strided_kernel) const {
221
  auto iter = kernels_.find(kernel_name);
222

223 224 225 226
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));
227

W
wanghuancoder 已提交
228
  if (FLAGS_use_stride_kernel && use_strided_kernel) {
W
wanghuancoder 已提交
229 230 231 232 233 234 235 236 237 238 239
    auto stride_kernel_iter = iter->second.find(
        {const_kernel_key.backend() == paddle::experimental::Backend::GPUDNN
             ? paddle::experimental::Backend::GPU
             : const_kernel_key.backend(),
         phi::DataLayout::STRIDED,
         const_kernel_key.dtype()});
    if (stride_kernel_iter != iter->second.end()) {
      return {stride_kernel_iter->second, false, true};
    }
  }

240 241 242
  KernelKey kernel_key = KernelKey(const_kernel_key.backend(),
                                   phi::DataLayout::ALL_LAYOUT,
                                   const_kernel_key.dtype());
Z
zyfncg 已提交
243
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
244
  if (kernel_key.backend() == Backend::GPUDNN) {
Z
zyfncg 已提交
245
    auto kernel_iter = iter->second.find(
246
        {Backend::GPUDNN, phi::DataLayout::ALL_LAYOUT, kernel_key.dtype()});
Z
zyfncg 已提交
247
    if (kernel_iter != iter->second.end()) {
W
wanghuancoder 已提交
248
      return {kernel_iter->second, false, false};
Z
zyfncg 已提交
249
    }
250 251
    kernel_key =
        KernelKey(Backend::GPU, kernel_key.layout(), kernel_key.dtype());
Z
zyfncg 已提交
252 253
  }
#endif
254
  auto kernel_iter = iter->second.find(kernel_key);
255

256 257 258 259
  PADDLE_ENFORCE_NE(
      kernel_iter == iter->second.end() && kernel_key.backend() == Backend::CPU,
      true,
      phi::errors::NotFound(
260
          "The kernel with key %s of kernel `%s` is not registered. %s",
261
          kernel_key,
262
          kernel_name,
263
          KernelSelectionErrorMessage(kernel_name, kernel_key)));
264

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
#if defined(PADDLE_WITH_XPU_KP)
  auto fluid_op_name = TransToFluidOpName(kernel_name);
  bool has_kp_kernel = false;
  VLOG(6) << "fluid_op_name: " << TransToFluidOpName(kernel_name);
  bool is_xpu_kp_supported = phi::backends::xpu::is_xpu_kp_support_op(
      fluid_op_name, kernel_key.dtype());
  // Check in xpu_kp
  if (is_xpu_kp_supported && FLAGS_run_kp_kernel) {
    auto kernel_key_kp =
        KernelKey(Backend::KPS, kernel_key.layout(), kernel_key.dtype());
    auto kernel_iter_kp = iter->second.find(kernel_key_kp);
    has_kp_kernel = (kernel_iter_kp != iter->second.end());
    if (has_kp_kernel) {
      kernel_key = kernel_key_kp;
      kernel_iter = kernel_iter_kp;
    }
  }
  // check in xpu
  bool xpu_unsupport =
      !phi::backends::xpu::is_xpu_support_op(fluid_op_name, kernel_key.dtype());
  VLOG(6) << "Current KernelKey is " << kernel_key;
  // Fall back to CPU, when FLAGS_enable_api_kernel_fallback is true and op
  // was unregistered in xpu and kp
  if (FLAGS_enable_api_kernel_fallback &&
      (kernel_iter == iter->second.end() || (xpu_unsupport && !has_kp_kernel))
#elif defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
291 292
  VLOG(6) << "fluid_op_name: " << TransToFluidOpName(kernel_name);
  if ((FLAGS_enable_api_kernel_fallback && kernel_iter == iter->second.end()) ||
Q
QingshuChen 已提交
293 294
      !phi::backends::xpu::is_xpu_support_op(TransToFluidOpName(kernel_name),
                                             kernel_key.dtype())
295
#elif defined(PADDLE_WITH_CUSTOM_DEVICE)
296 297 298 299 300 301
  if (kernel_iter == iter->second.end() &&
      kernel_key.backend() > phi::Backend::NUM_BACKENDS) {
    kernel_iter = iter->second.find({phi::Backend::CUSTOM,
                                     phi::DataLayout::ALL_LAYOUT,
                                     kernel_key.dtype()});
  }
302 303 304 305
  if (FLAGS_enable_api_kernel_fallback &&
      (kernel_iter == iter->second.end() ||
       phi::backends::custom_device::is_in_custom_black_list(
           TransToFluidOpName(kernel_name)))
306 307
#else
  if ((FLAGS_enable_api_kernel_fallback && kernel_iter == iter->second.end())
308 309
#endif
  ) {
310 311 312 313
    // Fallback CPU backend
    phi::KernelKey cpu_kernel_key(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
    kernel_iter = iter->second.find(cpu_kernel_key);
314 315 316 317 318

    PADDLE_ENFORCE_NE(
        kernel_iter,
        iter->second.end(),
        phi::errors::NotFound(
319 320
            "The kernel with key %s of kernel `%s` is not registered and "
            "fail to fallback to CPU one. %s",
321
            kernel_key,
322
            kernel_name,
323
            KernelSelectionErrorMessage(kernel_name, kernel_key)));
324 325 326 327 328

    VLOG(3) << "missing " << kernel_key.backend() << " kernel: " << kernel_name
            << ", expected_kernel_key:" << kernel_key
            << ", fallbacking to CPU one!";

W
wanghuancoder 已提交
329
    return {kernel_iter->second, true, false};
330 331
  }

332 333 334
  PADDLE_ENFORCE_NE(
      kernel_iter,
      iter->second.end(),
335
      phi::errors::NotFound(
336 337
          "The kernel with key %s of kernel `%s` is not registered. %s "
          "The current value of FLAGS_enable_api_kernel_fallback(bool,"
338 339
          " default true) is false. If you want to fallback this kernel"
          " to CPU one, please set the flag true before run again.",
340
          kernel_key,
341
          kernel_name,
342
          KernelSelectionErrorMessage(kernel_name, kernel_key)));
343

W
wanghuancoder 已提交
344
  return {kernel_iter->second, false, false};
345 346
}

347 348 349 350 351 352 353 354 355 356
const KernelArgsDef& KernelFactory::GetFirstKernelArgsDef(
    const std::string& kernel_name) const {
  auto iter = kernels_.find(kernel_name);
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));
  return iter->second.cbegin()->second.args_def();
}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
std::ostream& operator<<(std::ostream& os, AttributeType attr_type) {
  switch (attr_type) {
    case AttributeType::BOOL:
      os << "bool";
      break;
    case AttributeType::INT32:
      os << "int";
      break;
    case AttributeType::INT64:
      os << "int64_t";
      break;
    case AttributeType::FLOAT32:
      os << "float";
      break;
    case AttributeType::FLOAT64:
      os << "double";
      break;
    case AttributeType::STRING:
      os << "string";
      break;
    case AttributeType::BOOLS:
      os << "vector<bool>";
      break;
    case AttributeType::INT32S:
      os << "vector<int>";
      break;
    case AttributeType::INT64S:
      os << "vector<int64_t>";
      break;
    case AttributeType::FLOAT32S:
      os << "vector<float>";
      break;
    case AttributeType::FLOAT64S:
      os << "vector<double>";
      break;
    case AttributeType::STRINGS:
      os << "vector<string>";
      break;
    case AttributeType::SCALAR:
      os << "Scalar";
      break;
    case AttributeType::SCALARS:
      os << "vector<Scalar>";
      break;
    case AttributeType::INT_ARRAY:
      os << "IntArray";
      break;
    case AttributeType::DATA_TYPE:
      os << "DataType";
      break;
    case AttributeType::DATA_LAYOUT:
      os << "DataLayout";
      break;
    case AttributeType::PLACE:
      os << "Place";
      break;
    default:
      os << "Undefined";
  }
  return os;
}

419 420 421 422 423 424 425
// print kernel info with json format:
// {
//   "(CPU, Undefined(AnyLayout), complex64)": {
//   "input": ["CPU, NCHW, complex64", "CPU, NCHW, complex64"],
//   "output": ["CPU, NCHW, complex64"],
//   "attribute": ["i"]
// }
426
std::ostream& operator<<(std::ostream& os, const Kernel& kernel) {
427 428 429
  // input
  os << "{\"input\":[";
  bool need_comma = false;
430
  for (auto& in_def : kernel.args_def().input_defs()) {
431 432 433 434
    if (need_comma) os << ",";
    os << "\"" << in_def.backend << ", " << in_def.layout << ", "
       << in_def.dtype << "\"";
    need_comma = true;
435
  }
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
  os << "],";

  // output
  os << "\"output\":[";
  need_comma = false;
  for (auto& out_def : kernel.args_def().output_defs()) {
    if (need_comma) os << ",";
    os << "\"" << out_def.backend << ", " << out_def.layout << ", "
       << out_def.dtype << "\"";
    need_comma = true;
  }
  os << "],";

  // attr
  os << "\"attribute\":[";
  need_comma = false;
  for (auto& arg_def : kernel.args_def().attribute_defs()) {
    if (need_comma) os << ",";
454
    os << "\"" << arg_def.type_index << "\"";
455 456 457 458
    need_comma = true;
  }
  os << "]}";

459 460 461
  return os;
}

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
// print all kernels info with json format:
// {
//  "kernel_name1":
//      [
//        {
//          "(CPU, Undefined(AnyLayout), complex64)": {
//          "input": ["CPU, NCHW, complex64", "CPU, NCHW, complex64"],
//          "output": ["CPU, NCHW, complex64"],
//          "attribute": ["i"]
//        },
//        ...
//      ],
//    "kernel_name2": []
//    ...
// }
477
std::ostream& operator<<(std::ostream& os, KernelFactory& kernel_factory) {
478 479
  os << "{";
  bool need_comma_kernels = false;
480
  for (const auto& op_kernel_pair : kernel_factory.kernels()) {
481 482 483 484 485
    if (need_comma_kernels) {
      os << ",";
      os << std::endl;
    }
    os << "\"" << op_kernel_pair.first << " \":[" << std::endl;
486
    bool need_comma_per_kernel = false;
487
    for (const auto& kernel_pair : op_kernel_pair.second) {
488 489 490 491
      if (need_comma_per_kernel) {
        os << ",";
        os << std::endl;
      }
492 493
      os << "{\"" << kernel_pair.first << "\":" << kernel_pair.second << "}";
      need_comma_per_kernel = true;
494
    }
495 496
    os << "]";
    need_comma_kernels = true;
497
  }
498 499
  os << "}";

500 501 502
  return os;
}

503 504 505 506 507 508 509 510 511 512 513 514
// return all kernel selection error message of specific kernel_name:
// 1. If target_key not supports target backend, output "Selected wrong Backend
// ..."
// 2. If target_key not supports target datatype, output "Selected wrong
// DataType ..."
// 3. `target_key` is still not supported, output all kernel keys of
// corresponding kernel_name:
// {
//   (CPU, NCHW, [int8, int16, ...]);
//   (GPU, Undefined(AnyLayout), [float32, float64, ...]);
//   ...
// }
515 516
std::string KernelSelectionErrorMessage(const std::string& kernel_name,
                                        const KernelKey& target_key) {
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
  PADDLE_ENFORCE_NE(
      KernelFactory::Instance().kernels().find(kernel_name),
      KernelFactory::Instance().kernels().end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));

  // Init data structure
  bool support_backend = false;
  bool support_dtype = false;
  std::unordered_map<std::string, std::vector<std::string>> all_kernel_key;
  std::unordered_set<std::string> backend_set;
  std::unordered_set<std::string> dtype_set;

  // Record all kernel information of kernel_name
  for (auto iter : KernelFactory::Instance().kernels()[kernel_name]) {
    KernelKey kernel_key = iter.first;
    if (kernel_key.backend() == target_key.backend()) {
      support_backend = true;
      if (kernel_key.dtype() == target_key.dtype()) {
        support_dtype = true;
      }
537
      dtype_set.insert(DataTypeToString(kernel_key.dtype()));
538 539 540 541 542
    }
    backend_set.insert(
        paddle::experimental::BackendToString(kernel_key.backend()));
    all_kernel_key[paddle::experimental::BackendToString(kernel_key.backend()) +
                   ", " + phi::DataLayoutToString(kernel_key.layout())]
543
        .push_back(DataTypeToString(kernel_key.dtype()));
544 545 546 547
  }
  // 1. If target_key not supports target backend, output "Selected wrong
  // Backend ..."
  if (!support_backend) {
548
    std::string error_message = paddle::string::join_strings(backend_set, ", ");
549 550 551 552 553 554 555
    return "Selected wrong Backend `" +
           paddle::experimental::BackendToString(target_key.backend()) +
           "`. Paddle support following Backends: " + error_message + ".";
  }
  // 2. If target_key not supports target datatype, output "Selected wrong
  // DataType ..."
  if (!support_dtype) {
556
    std::string error_message = paddle::string::join_strings(dtype_set, ", ");
557
    return "Selected wrong DataType `" + DataTypeToString(target_key.dtype()) +
558 559 560 561 562 563
           "`. Paddle support following DataTypes: " + error_message + ".";
  }
  // 3. `target_key` is still not supported, output all kernel keys of
  // corresponding kernel_name
  std::string message = "Currently, paddle support following kernel keys of `" +
                        kernel_name + "`: { ";
564 565 566
  for (auto& item : all_kernel_key) {
    std::vector<std::string>& dtype_vec = item.second;
    message += "(" + item.first + ", [";
567
    message += paddle::string::join_strings(dtype_vec, ", ");
568 569 570 571 572 573
    message += "]); ";
  }
  message += "}.";
  return message;
}

574
}  // namespace phi