kernel_factory.cc 18.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/phi/core/kernel_factory.h"
16

17
#include "gflags/gflags.h"
18
#include "glog/logging.h"
19
#include "paddle/phi/core/enforce.h"
20
#if defined(PADDLE_WITH_XPU)
21
#include "paddle/phi/backends/xpu/xpu_op_list.h"
22
#include "paddle/phi/common/data_type.h"
23 24
#include "paddle/phi/core/compat/convert_utils.h"
#endif
25 26 27
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
#include "paddle/phi/backends/custom/custom_device_op_list.h"
#endif
28
#include "paddle/phi/core/compat/op_utils.h"
29
#include "paddle/utils/string/string_helper.h"
30

31
DECLARE_int32(low_precision_op_list);
32
DECLARE_bool(enable_api_kernel_fallback);
33
DECLARE_bool(run_kp_kernel);
34
namespace phi {
35

36 37
const static Kernel empty_kernel;  // NOLINT

38 39
std::string KernelSelectionErrorMessage(const std::string& kernel_name,
                                        const KernelKey& target_key);
40

41 42 43 44 45 46 47 48 49
uint32_t KernelKey::Hash::operator()(const KernelKey& key) const {
  uint32_t hash_value = 0;
  // |----31-20------|---19-12---|---11-8----|---7-0---|
  // | For extension | DataType | DataLayout | Backend |
  hash_value |= static_cast<uint8_t>(key.backend());
  hash_value |=
      (static_cast<uint8_t>(key.layout()) << KernelKey::kBackendBitLength);
  hash_value |=
      (static_cast<uint16_t>(key.dtype())
50
       << (KernelKey::kBackendBitLength + KernelKey::kDataLayoutBitLength));
51 52 53 54 55 56 57 58
  return hash_value;
}

KernelFactory& KernelFactory::Instance() {
  static KernelFactory g_op_kernel_factory;
  return g_op_kernel_factory;
}

59 60 61 62 63 64 65 66 67 68 69
bool KernelFactory::HasCompatiblePhiKernel(const std::string& op_type) const {
  if (deprecated_op_names.find(op_type) == deprecated_op_names.end()) {
    if (phi::OpUtilsMap::Instance().Contains(op_type)) {
      return true;
    } else if (kernels_.find(op_type) != kernels_.end()) {
      return true;
    }
  }
  return false;
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
bool KernelFactory::HasStructuredKernel(const std::string& op_type) const {
  auto phi_kernel_name = phi::OpUtilsMap::Instance().GetBaseKernelName(op_type);
  auto kernel_iter = kernels_.find(phi_kernel_name);
  if (deprecated_op_names.find(op_type) == deprecated_op_names.end() &&
      kernel_iter != kernels_.end()) {
    return std::any_of(kernel_iter->second.begin(),
                       kernel_iter->second.end(),
                       [](phi::KernelKeyMap::const_reference kernel_pair) {
                         return kernel_pair.second.GetKernelRegisteredType() ==
                                KernelRegisteredType::STRUCTURE;
                       });
  }
  return false;
}

85 86
const Kernel& KernelFactory::SelectKernel(const std::string& kernel_name,
                                          const KernelKey& kernel_key) const {
87 88
  auto iter = kernels_.find(kernel_name);
  if (iter == kernels_.end()) {
89
    return empty_kernel;
90
  }
H
hong 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

  auto kernel_iter = iter->second.find(kernel_key);
  if (kernel_iter == iter->second.end() &&
      kernel_key.layout() != phi::DataLayout::ALL_LAYOUT) {
    phi::KernelKey any_layout_kernel_key(
        kernel_key.backend(), phi::DataLayout::ALL_LAYOUT, kernel_key.dtype());
    kernel_iter = iter->second.find(any_layout_kernel_key);
  }

#if defined(PADDLE_WITH_CUSTOM_DEVICE)
  if (kernel_iter == iter->second.end() &&
      kernel_key.backend() > phi::Backend::NUM_BACKENDS) {
    kernel_iter = iter->second.find({phi::Backend::CUSTOM,
                                     phi::DataLayout::ALL_LAYOUT,
                                     kernel_key.dtype()});
  }
#endif

  if (kernel_iter == iter->second.end()) {
    return empty_kernel;
  }

  return kernel_iter->second;
}

const Kernel& KernelFactory::SelectKernelWithGPUDNN(
    const std::string& kernel_name, const KernelKey& const_kernel_key) const {
  auto iter = kernels_.find(kernel_name);
  if (iter == kernels_.end()) {
    return empty_kernel;
  }
  KernelKey kernel_key = KernelKey(const_kernel_key);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (kernel_key.backend() == Backend::GPUDNN) {
    auto kernel_iter = iter->second.find(
        {Backend::GPUDNN, phi::DataLayout::ALL_LAYOUT, kernel_key.dtype()});
    if (kernel_iter != iter->second.end()) {
      return kernel_iter->second;
    }
    kernel_key =
        KernelKey(Backend::GPU, kernel_key.layout(), kernel_key.dtype());
  }
#endif

135
  auto kernel_iter = iter->second.find(kernel_key);
136 137 138 139 140 141
  if (kernel_iter == iter->second.end() &&
      kernel_key.layout() != phi::DataLayout::ALL_LAYOUT) {
    phi::KernelKey any_layout_kernel_key(
        kernel_key.backend(), phi::DataLayout::ALL_LAYOUT, kernel_key.dtype());
    kernel_iter = iter->second.find(any_layout_kernel_key);
  }
H
hong 已提交
142

143 144 145 146 147 148 149 150
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
  if (kernel_iter == iter->second.end() &&
      kernel_key.backend() > phi::Backend::NUM_BACKENDS) {
    kernel_iter = iter->second.find({phi::Backend::CUSTOM,
                                     phi::DataLayout::ALL_LAYOUT,
                                     kernel_key.dtype()});
  }
#endif
151

152
  if (kernel_iter == iter->second.end()) {
153
    return empty_kernel;
154
  }
155

156 157 158
  return kernel_iter->second;
}

159 160
KernelKeyMap KernelFactory::SelectKernelMap(
    const std::string& kernel_name) const {
161 162
  auto iter = kernels_.find(kernel_name);
  if (iter == kernels_.end()) {
163
    return KernelKeyMap();
164 165 166 167
  }
  return iter->second;
}

168 169
bool KernelFactory::HasKernel(const std::string& kernel_name,
                              const KernelKey& kernel_key) const {
170 171 172 173 174 175 176 177 178 179 180 181 182
  auto iter = kernels_.find(kernel_name);
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));

  auto kernel_iter = iter->second.find(kernel_key);
  if (kernel_iter == iter->second.end()) {
    return false;
  }
  return true;
}

183
void KernelFactory::AddToLowPrecisionKernelList(
184
    const std::string& name, const phi::DataType& kernel_key_type) {
185 186 187 188 189
  if (FLAGS_low_precision_op_list >= 1) {
    auto op_name = phi::TransToFluidOpName(name);
    if (op_name.find("_grad") != std::string::npos) {
      return;  // only record forward api
    }
190 191 192 193 194

    if (low_precision_kernels_.find(op_name) == low_precision_kernels_.end()) {
      auto count = OpCount();
      low_precision_kernels_[op_name] = count;
    }
195
    if (kernel_key_type == phi::DataType::FLOAT16) {
196
      low_precision_kernels_[op_name].fp16_called_ += 1;
197
    } else if (kernel_key_type == phi::DataType::BFLOAT16) {
198
      low_precision_kernels_[op_name].bf16_called_ += 1;
199
    } else if (kernel_key_type == phi::DataType::FLOAT32) {
200 201 202
      low_precision_kernels_[op_name].fp32_called_ += 1;
    } else {
      low_precision_kernels_[op_name].other_called_ += 1;
203 204 205 206
    }
  }
}

207 208
std::map<const std::string, OpCount>
KernelFactory::GetLowPrecisionKernelList() {
209 210 211
  return low_precision_kernels_;
}

212
KernelResult KernelFactory::SelectKernelOrThrowError(
213
    const std::string& kernel_name, const KernelKey& const_kernel_key) const {
214
  auto iter = kernels_.find(kernel_name);
215

216 217 218 219
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));
220

221 222 223
  KernelKey kernel_key = KernelKey(const_kernel_key.backend(),
                                   phi::DataLayout::ALL_LAYOUT,
                                   const_kernel_key.dtype());
Z
zyfncg 已提交
224
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
225
  if (kernel_key.backend() == Backend::GPUDNN) {
Z
zyfncg 已提交
226
    auto kernel_iter = iter->second.find(
227
        {Backend::GPUDNN, phi::DataLayout::ALL_LAYOUT, kernel_key.dtype()});
Z
zyfncg 已提交
228
    if (kernel_iter != iter->second.end()) {
229
      return {kernel_iter->second, false};
Z
zyfncg 已提交
230
    }
231 232
    kernel_key =
        KernelKey(Backend::GPU, kernel_key.layout(), kernel_key.dtype());
Z
zyfncg 已提交
233 234
  }
#endif
235
  auto kernel_iter = iter->second.find(kernel_key);
236

237 238 239 240
  PADDLE_ENFORCE_NE(
      kernel_iter == iter->second.end() && kernel_key.backend() == Backend::CPU,
      true,
      phi::errors::NotFound(
241
          "The kernel with key %s of kernel `%s` is not registered. %s",
242
          kernel_key,
243
          kernel_name,
244
          KernelSelectionErrorMessage(kernel_name, kernel_key)));
245

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
#if defined(PADDLE_WITH_XPU_KP)
  auto fluid_op_name = TransToFluidOpName(kernel_name);
  bool has_kp_kernel = false;
  VLOG(6) << "fluid_op_name: " << TransToFluidOpName(kernel_name);
  bool is_xpu_kp_supported = phi::backends::xpu::is_xpu_kp_support_op(
      fluid_op_name, kernel_key.dtype());
  // Check in xpu_kp
  if (is_xpu_kp_supported && FLAGS_run_kp_kernel) {
    auto kernel_key_kp =
        KernelKey(Backend::KPS, kernel_key.layout(), kernel_key.dtype());
    auto kernel_iter_kp = iter->second.find(kernel_key_kp);
    has_kp_kernel = (kernel_iter_kp != iter->second.end());
    if (has_kp_kernel) {
      kernel_key = kernel_key_kp;
      kernel_iter = kernel_iter_kp;
    }
  }
  // check in xpu
  bool xpu_unsupport =
      !phi::backends::xpu::is_xpu_support_op(fluid_op_name, kernel_key.dtype());
  VLOG(6) << "Current KernelKey is " << kernel_key;
  // Fall back to CPU, when FLAGS_enable_api_kernel_fallback is true and op
  // was unregistered in xpu and kp
  if (FLAGS_enable_api_kernel_fallback &&
      (kernel_iter == iter->second.end() || (xpu_unsupport && !has_kp_kernel))
#elif defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
272 273
  VLOG(6) << "fluid_op_name: " << TransToFluidOpName(kernel_name);
  if ((FLAGS_enable_api_kernel_fallback && kernel_iter == iter->second.end()) ||
Q
QingshuChen 已提交
274 275
      !phi::backends::xpu::is_xpu_support_op(TransToFluidOpName(kernel_name),
                                             kernel_key.dtype())
276
#elif defined(PADDLE_WITH_CUSTOM_DEVICE)
277 278 279 280 281 282
  if (kernel_iter == iter->second.end() &&
      kernel_key.backend() > phi::Backend::NUM_BACKENDS) {
    kernel_iter = iter->second.find({phi::Backend::CUSTOM,
                                     phi::DataLayout::ALL_LAYOUT,
                                     kernel_key.dtype()});
  }
283 284 285 286
  if (FLAGS_enable_api_kernel_fallback &&
      (kernel_iter == iter->second.end() ||
       phi::backends::custom_device::is_in_custom_black_list(
           TransToFluidOpName(kernel_name)))
287 288
#else
  if ((FLAGS_enable_api_kernel_fallback && kernel_iter == iter->second.end())
289 290
#endif
  ) {
291 292 293 294
    // Fallback CPU backend
    phi::KernelKey cpu_kernel_key(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
    kernel_iter = iter->second.find(cpu_kernel_key);
295 296 297 298 299

    PADDLE_ENFORCE_NE(
        kernel_iter,
        iter->second.end(),
        phi::errors::NotFound(
300 301
            "The kernel with key %s of kernel `%s` is not registered and "
            "fail to fallback to CPU one. %s",
302
            kernel_key,
303
            kernel_name,
304
            KernelSelectionErrorMessage(kernel_name, kernel_key)));
305 306 307 308 309 310

    VLOG(3) << "missing " << kernel_key.backend() << " kernel: " << kernel_name
            << ", expected_kernel_key:" << kernel_key
            << ", fallbacking to CPU one!";

    return {kernel_iter->second, true};
311 312
  }

313 314 315
  PADDLE_ENFORCE_NE(
      kernel_iter,
      iter->second.end(),
316
      phi::errors::NotFound(
317 318
          "The kernel with key %s of kernel `%s` is not registered. %s "
          "The current value of FLAGS_enable_api_kernel_fallback(bool,"
319 320
          " default true) is false. If you want to fallback this kernel"
          " to CPU one, please set the flag true before run again.",
321
          kernel_key,
322
          kernel_name,
323
          KernelSelectionErrorMessage(kernel_name, kernel_key)));
324

325
  return {kernel_iter->second, false};
326 327
}

328 329 330 331 332 333 334 335 336 337
const KernelArgsDef& KernelFactory::GetFirstKernelArgsDef(
    const std::string& kernel_name) const {
  auto iter = kernels_.find(kernel_name);
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));
  return iter->second.cbegin()->second.args_def();
}

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
std::ostream& operator<<(std::ostream& os, AttributeType attr_type) {
  switch (attr_type) {
    case AttributeType::BOOL:
      os << "bool";
      break;
    case AttributeType::INT32:
      os << "int";
      break;
    case AttributeType::INT64:
      os << "int64_t";
      break;
    case AttributeType::FLOAT32:
      os << "float";
      break;
    case AttributeType::FLOAT64:
      os << "double";
      break;
    case AttributeType::STRING:
      os << "string";
      break;
    case AttributeType::BOOLS:
      os << "vector<bool>";
      break;
    case AttributeType::INT32S:
      os << "vector<int>";
      break;
    case AttributeType::INT64S:
      os << "vector<int64_t>";
      break;
    case AttributeType::FLOAT32S:
      os << "vector<float>";
      break;
    case AttributeType::FLOAT64S:
      os << "vector<double>";
      break;
    case AttributeType::STRINGS:
      os << "vector<string>";
      break;
    case AttributeType::SCALAR:
      os << "Scalar";
      break;
    case AttributeType::SCALARS:
      os << "vector<Scalar>";
      break;
    case AttributeType::INT_ARRAY:
      os << "IntArray";
      break;
    case AttributeType::DATA_TYPE:
      os << "DataType";
      break;
    case AttributeType::DATA_LAYOUT:
      os << "DataLayout";
      break;
    case AttributeType::PLACE:
      os << "Place";
      break;
    default:
      os << "Undefined";
  }
  return os;
}

400 401 402 403 404 405 406
// print kernel info with json format:
// {
//   "(CPU, Undefined(AnyLayout), complex64)": {
//   "input": ["CPU, NCHW, complex64", "CPU, NCHW, complex64"],
//   "output": ["CPU, NCHW, complex64"],
//   "attribute": ["i"]
// }
407
std::ostream& operator<<(std::ostream& os, const Kernel& kernel) {
408 409 410
  // input
  os << "{\"input\":[";
  bool need_comma = false;
411
  for (auto& in_def : kernel.args_def().input_defs()) {
412 413 414 415
    if (need_comma) os << ",";
    os << "\"" << in_def.backend << ", " << in_def.layout << ", "
       << in_def.dtype << "\"";
    need_comma = true;
416
  }
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
  os << "],";

  // output
  os << "\"output\":[";
  need_comma = false;
  for (auto& out_def : kernel.args_def().output_defs()) {
    if (need_comma) os << ",";
    os << "\"" << out_def.backend << ", " << out_def.layout << ", "
       << out_def.dtype << "\"";
    need_comma = true;
  }
  os << "],";

  // attr
  os << "\"attribute\":[";
  need_comma = false;
  for (auto& arg_def : kernel.args_def().attribute_defs()) {
    if (need_comma) os << ",";
435
    os << "\"" << arg_def.type_index << "\"";
436 437 438 439
    need_comma = true;
  }
  os << "]}";

440 441 442
  return os;
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
// print all kernels info with json format:
// {
//  "kernel_name1":
//      [
//        {
//          "(CPU, Undefined(AnyLayout), complex64)": {
//          "input": ["CPU, NCHW, complex64", "CPU, NCHW, complex64"],
//          "output": ["CPU, NCHW, complex64"],
//          "attribute": ["i"]
//        },
//        ...
//      ],
//    "kernel_name2": []
//    ...
// }
458
std::ostream& operator<<(std::ostream& os, KernelFactory& kernel_factory) {
459 460
  os << "{";
  bool need_comma_kernels = false;
461
  for (const auto& op_kernel_pair : kernel_factory.kernels()) {
462 463 464 465 466
    if (need_comma_kernels) {
      os << ",";
      os << std::endl;
    }
    os << "\"" << op_kernel_pair.first << " \":[" << std::endl;
467
    bool need_comma_per_kernel = false;
468
    for (const auto& kernel_pair : op_kernel_pair.second) {
469 470 471 472
      if (need_comma_per_kernel) {
        os << ",";
        os << std::endl;
      }
473 474
      os << "{\"" << kernel_pair.first << "\":" << kernel_pair.second << "}";
      need_comma_per_kernel = true;
475
    }
476 477
    os << "]";
    need_comma_kernels = true;
478
  }
479 480
  os << "}";

481 482 483
  return os;
}

484 485 486 487 488 489 490 491 492 493 494 495
// return all kernel selection error message of specific kernel_name:
// 1. If target_key not supports target backend, output "Selected wrong Backend
// ..."
// 2. If target_key not supports target datatype, output "Selected wrong
// DataType ..."
// 3. `target_key` is still not supported, output all kernel keys of
// corresponding kernel_name:
// {
//   (CPU, NCHW, [int8, int16, ...]);
//   (GPU, Undefined(AnyLayout), [float32, float64, ...]);
//   ...
// }
496 497
std::string KernelSelectionErrorMessage(const std::string& kernel_name,
                                        const KernelKey& target_key) {
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
  PADDLE_ENFORCE_NE(
      KernelFactory::Instance().kernels().find(kernel_name),
      KernelFactory::Instance().kernels().end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));

  // Init data structure
  bool support_backend = false;
  bool support_dtype = false;
  std::unordered_map<std::string, std::vector<std::string>> all_kernel_key;
  std::unordered_set<std::string> backend_set;
  std::unordered_set<std::string> dtype_set;

  // Record all kernel information of kernel_name
  for (auto iter : KernelFactory::Instance().kernels()[kernel_name]) {
    KernelKey kernel_key = iter.first;
    if (kernel_key.backend() == target_key.backend()) {
      support_backend = true;
      if (kernel_key.dtype() == target_key.dtype()) {
        support_dtype = true;
      }
518
      dtype_set.insert(DataTypeToString(kernel_key.dtype()));
519 520 521 522 523
    }
    backend_set.insert(
        paddle::experimental::BackendToString(kernel_key.backend()));
    all_kernel_key[paddle::experimental::BackendToString(kernel_key.backend()) +
                   ", " + phi::DataLayoutToString(kernel_key.layout())]
524
        .push_back(DataTypeToString(kernel_key.dtype()));
525 526 527 528
  }
  // 1. If target_key not supports target backend, output "Selected wrong
  // Backend ..."
  if (!support_backend) {
529
    std::string error_message = paddle::string::join_strings(backend_set, ", ");
530 531 532 533 534 535 536
    return "Selected wrong Backend `" +
           paddle::experimental::BackendToString(target_key.backend()) +
           "`. Paddle support following Backends: " + error_message + ".";
  }
  // 2. If target_key not supports target datatype, output "Selected wrong
  // DataType ..."
  if (!support_dtype) {
537
    std::string error_message = paddle::string::join_strings(dtype_set, ", ");
538
    return "Selected wrong DataType `" + DataTypeToString(target_key.dtype()) +
539 540 541 542 543 544 545 546 547
           "`. Paddle support following DataTypes: " + error_message + ".";
  }
  // 3. `target_key` is still not supported, output all kernel keys of
  // corresponding kernel_name
  std::string message = "Currently, paddle support following kernel keys of `" +
                        kernel_name + "`: { ";
  for (auto iter = all_kernel_key.begin(); iter != all_kernel_key.end();
       ++iter) {
    std::vector<std::string>& dtype_vec = iter->second;
548 549
    message += "(" + iter->first + ", [";
    message += paddle::string::join_strings(dtype_vec, ", ");
550 551 552 553 554 555
    message += "]); ";
  }
  message += "}.";
  return message;
}

556
}  // namespace phi