kernel_factory.cc 19.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/phi/core/kernel_factory.h"
16

17
#include "glog/logging.h"
18
#include "paddle/phi/core/enforce.h"
19
#include "paddle/utils/flags.h"
20
#if defined(PADDLE_WITH_XPU)
21
#include "paddle/phi/backends/xpu/xpu_op_list.h"
22
#include "paddle/phi/common/data_type.h"
23 24
#include "paddle/phi/core/compat/convert_utils.h"
#endif
25 26 27
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
#include "paddle/phi/backends/custom/custom_device_op_list.h"
#endif
W
wanghuancoder 已提交
28
#include "paddle/fluid/platform/flags.h"
29
#include "paddle/phi/core/compat/op_utils.h"
30
#include "paddle/utils/string/string_helper.h"
31

W
wanghuancoder 已提交
32 33
PADDLE_DEFINE_EXPORTED_bool(
    use_stride_kernel,
W
wanghuancoder 已提交
34
    true,
W
wanghuancoder 已提交
35 36
    "Whether to use strdie kernel if op support stride.");

37 38 39
PD_DECLARE_int32(low_precision_op_list);
PD_DECLARE_bool(enable_api_kernel_fallback);
PD_DECLARE_bool(run_kp_kernel);
40
namespace phi {
41

42 43
const static Kernel empty_kernel;  // NOLINT

44 45
std::string KernelSelectionErrorMessage(const std::string& kernel_name,
                                        const KernelKey& target_key);
46

47 48 49 50 51 52 53 54 55
uint32_t KernelKey::Hash::operator()(const KernelKey& key) const {
  uint32_t hash_value = 0;
  // |----31-20------|---19-12---|---11-8----|---7-0---|
  // | For extension | DataType | DataLayout | Backend |
  hash_value |= static_cast<uint8_t>(key.backend());
  hash_value |=
      (static_cast<uint8_t>(key.layout()) << KernelKey::kBackendBitLength);
  hash_value |=
      (static_cast<uint16_t>(key.dtype())
56
       << (KernelKey::kBackendBitLength + KernelKey::kDataLayoutBitLength));
57 58 59 60 61 62 63 64
  return hash_value;
}

KernelFactory& KernelFactory::Instance() {
  static KernelFactory g_op_kernel_factory;
  return g_op_kernel_factory;
}

65 66 67 68 69 70 71 72 73 74 75
bool KernelFactory::HasCompatiblePhiKernel(const std::string& op_type) const {
  if (deprecated_op_names.find(op_type) == deprecated_op_names.end()) {
    if (phi::OpUtilsMap::Instance().Contains(op_type)) {
      return true;
    } else if (kernels_.find(op_type) != kernels_.end()) {
      return true;
    }
  }
  return false;
}

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
bool KernelFactory::HasStructuredKernel(const std::string& op_type) const {
  auto phi_kernel_name = phi::OpUtilsMap::Instance().GetBaseKernelName(op_type);
  auto kernel_iter = kernels_.find(phi_kernel_name);
  if (deprecated_op_names.find(op_type) == deprecated_op_names.end() &&
      kernel_iter != kernels_.end()) {
    return std::any_of(kernel_iter->second.begin(),
                       kernel_iter->second.end(),
                       [](phi::KernelKeyMap::const_reference kernel_pair) {
                         return kernel_pair.second.GetKernelRegisteredType() ==
                                KernelRegisteredType::STRUCTURE;
                       });
  }
  return false;
}

91 92
const Kernel& KernelFactory::SelectKernel(const std::string& kernel_name,
                                          const KernelKey& kernel_key) const {
93 94
  auto iter = kernels_.find(kernel_name);
  if (iter == kernels_.end()) {
95
    return empty_kernel;
96
  }
H
hong 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

  auto kernel_iter = iter->second.find(kernel_key);
  if (kernel_iter == iter->second.end() &&
      kernel_key.layout() != phi::DataLayout::ALL_LAYOUT) {
    phi::KernelKey any_layout_kernel_key(
        kernel_key.backend(), phi::DataLayout::ALL_LAYOUT, kernel_key.dtype());
    kernel_iter = iter->second.find(any_layout_kernel_key);
  }

#if defined(PADDLE_WITH_CUSTOM_DEVICE)
  if (kernel_iter == iter->second.end() &&
      kernel_key.backend() > phi::Backend::NUM_BACKENDS) {
    kernel_iter = iter->second.find({phi::Backend::CUSTOM,
                                     phi::DataLayout::ALL_LAYOUT,
                                     kernel_key.dtype()});
  }
#endif

  if (kernel_iter == iter->second.end()) {
    return empty_kernel;
  }

  return kernel_iter->second;
}

const Kernel& KernelFactory::SelectKernelWithGPUDNN(
    const std::string& kernel_name, const KernelKey& const_kernel_key) const {
  auto iter = kernels_.find(kernel_name);
  if (iter == kernels_.end()) {
    return empty_kernel;
  }
  KernelKey kernel_key = KernelKey(const_kernel_key);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (kernel_key.backend() == Backend::GPUDNN) {
    auto kernel_iter = iter->second.find(
        {Backend::GPUDNN, phi::DataLayout::ALL_LAYOUT, kernel_key.dtype()});
    if (kernel_iter != iter->second.end()) {
      return kernel_iter->second;
    }
    kernel_key =
        KernelKey(Backend::GPU, kernel_key.layout(), kernel_key.dtype());
  }
#endif

141
  auto kernel_iter = iter->second.find(kernel_key);
142 143 144 145 146 147
  if (kernel_iter == iter->second.end() &&
      kernel_key.layout() != phi::DataLayout::ALL_LAYOUT) {
    phi::KernelKey any_layout_kernel_key(
        kernel_key.backend(), phi::DataLayout::ALL_LAYOUT, kernel_key.dtype());
    kernel_iter = iter->second.find(any_layout_kernel_key);
  }
H
hong 已提交
148

149 150 151 152 153 154 155 156
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
  if (kernel_iter == iter->second.end() &&
      kernel_key.backend() > phi::Backend::NUM_BACKENDS) {
    kernel_iter = iter->second.find({phi::Backend::CUSTOM,
                                     phi::DataLayout::ALL_LAYOUT,
                                     kernel_key.dtype()});
  }
#endif
157

158
  if (kernel_iter == iter->second.end()) {
159
    return empty_kernel;
160
  }
161

162 163 164
  return kernel_iter->second;
}

165 166
KernelKeyMap KernelFactory::SelectKernelMap(
    const std::string& kernel_name) const {
167 168
  auto iter = kernels_.find(kernel_name);
  if (iter == kernels_.end()) {
169
    return KernelKeyMap();
170 171 172 173
  }
  return iter->second;
}

174 175
bool KernelFactory::HasKernel(const std::string& kernel_name,
                              const KernelKey& kernel_key) const {
176 177 178 179 180 181 182 183 184 185 186 187 188
  auto iter = kernels_.find(kernel_name);
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));

  auto kernel_iter = iter->second.find(kernel_key);
  if (kernel_iter == iter->second.end()) {
    return false;
  }
  return true;
}

189
void KernelFactory::AddToLowPrecisionKernelList(
190
    const std::string& name, const phi::DataType& kernel_key_type) {
191 192 193 194 195
  if (FLAGS_low_precision_op_list >= 1) {
    auto op_name = phi::TransToFluidOpName(name);
    if (op_name.find("_grad") != std::string::npos) {
      return;  // only record forward api
    }
196 197 198 199 200

    if (low_precision_kernels_.find(op_name) == low_precision_kernels_.end()) {
      auto count = OpCount();
      low_precision_kernels_[op_name] = count;
    }
201
    if (kernel_key_type == phi::DataType::FLOAT16) {
202
      low_precision_kernels_[op_name].fp16_called_ += 1;
203
    } else if (kernel_key_type == phi::DataType::BFLOAT16) {
204
      low_precision_kernels_[op_name].bf16_called_ += 1;
205
    } else if (kernel_key_type == phi::DataType::FLOAT32) {
206 207 208
      low_precision_kernels_[op_name].fp32_called_ += 1;
    } else {
      low_precision_kernels_[op_name].other_called_ += 1;
209 210 211 212
    }
  }
}

213 214
std::map<const std::string, OpCount>
KernelFactory::GetLowPrecisionKernelList() {
215 216 217
  return low_precision_kernels_;
}

218
KernelResult KernelFactory::SelectKernelOrThrowError(
W
wanghuancoder 已提交
219 220 221
    const std::string& kernel_name,
    const KernelKey& const_kernel_key,
    bool use_strided_kernel) const {
222
  auto iter = kernels_.find(kernel_name);
223

224 225 226 227
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));
228

W
wanghuancoder 已提交
229
  if (FLAGS_use_stride_kernel && use_strided_kernel) {
W
wanghuancoder 已提交
230 231 232 233 234 235 236 237 238 239 240
    auto stride_kernel_iter = iter->second.find(
        {const_kernel_key.backend() == paddle::experimental::Backend::GPUDNN
             ? paddle::experimental::Backend::GPU
             : const_kernel_key.backend(),
         phi::DataLayout::STRIDED,
         const_kernel_key.dtype()});
    if (stride_kernel_iter != iter->second.end()) {
      return {stride_kernel_iter->second, false, true};
    }
  }

241 242 243
  KernelKey kernel_key = KernelKey(const_kernel_key.backend(),
                                   phi::DataLayout::ALL_LAYOUT,
                                   const_kernel_key.dtype());
Z
zyfncg 已提交
244
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
245
  if (kernel_key.backend() == Backend::GPUDNN) {
Z
zyfncg 已提交
246
    auto kernel_iter = iter->second.find(
247
        {Backend::GPUDNN, phi::DataLayout::ALL_LAYOUT, kernel_key.dtype()});
Z
zyfncg 已提交
248
    if (kernel_iter != iter->second.end()) {
W
wanghuancoder 已提交
249
      return {kernel_iter->second, false, false};
Z
zyfncg 已提交
250
    }
251 252
    kernel_key =
        KernelKey(Backend::GPU, kernel_key.layout(), kernel_key.dtype());
Z
zyfncg 已提交
253 254
  }
#endif
255
  auto kernel_iter = iter->second.find(kernel_key);
256

257 258 259 260
  PADDLE_ENFORCE_NE(
      kernel_iter == iter->second.end() && kernel_key.backend() == Backend::CPU,
      true,
      phi::errors::NotFound(
261
          "The kernel with key %s of kernel `%s` is not registered. %s",
262
          kernel_key,
263
          kernel_name,
264
          KernelSelectionErrorMessage(kernel_name, kernel_key)));
265

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
#if defined(PADDLE_WITH_XPU_KP)
  auto fluid_op_name = TransToFluidOpName(kernel_name);
  bool has_kp_kernel = false;
  VLOG(6) << "fluid_op_name: " << TransToFluidOpName(kernel_name);
  bool is_xpu_kp_supported = phi::backends::xpu::is_xpu_kp_support_op(
      fluid_op_name, kernel_key.dtype());
  // Check in xpu_kp
  if (is_xpu_kp_supported && FLAGS_run_kp_kernel) {
    auto kernel_key_kp =
        KernelKey(Backend::KPS, kernel_key.layout(), kernel_key.dtype());
    auto kernel_iter_kp = iter->second.find(kernel_key_kp);
    has_kp_kernel = (kernel_iter_kp != iter->second.end());
    if (has_kp_kernel) {
      kernel_key = kernel_key_kp;
      kernel_iter = kernel_iter_kp;
    }
  }
  // check in xpu
  bool xpu_unsupport =
      !phi::backends::xpu::is_xpu_support_op(fluid_op_name, kernel_key.dtype());
  VLOG(6) << "Current KernelKey is " << kernel_key;
  // Fall back to CPU, when FLAGS_enable_api_kernel_fallback is true and op
  // was unregistered in xpu and kp
  if (FLAGS_enable_api_kernel_fallback &&
      (kernel_iter == iter->second.end() || (xpu_unsupport && !has_kp_kernel))
#elif defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
292 293
  VLOG(6) << "fluid_op_name: " << TransToFluidOpName(kernel_name);
  if ((FLAGS_enable_api_kernel_fallback && kernel_iter == iter->second.end()) ||
Q
QingshuChen 已提交
294 295
      !phi::backends::xpu::is_xpu_support_op(TransToFluidOpName(kernel_name),
                                             kernel_key.dtype())
296
#elif defined(PADDLE_WITH_CUSTOM_DEVICE)
297 298 299 300 301 302
  if (kernel_iter == iter->second.end() &&
      kernel_key.backend() > phi::Backend::NUM_BACKENDS) {
    kernel_iter = iter->second.find({phi::Backend::CUSTOM,
                                     phi::DataLayout::ALL_LAYOUT,
                                     kernel_key.dtype()});
  }
303 304 305 306
  if (FLAGS_enable_api_kernel_fallback &&
      (kernel_iter == iter->second.end() ||
       phi::backends::custom_device::is_in_custom_black_list(
           TransToFluidOpName(kernel_name)))
307 308
#else
  if ((FLAGS_enable_api_kernel_fallback && kernel_iter == iter->second.end())
309 310
#endif
  ) {
311 312 313 314
    // Fallback CPU backend
    phi::KernelKey cpu_kernel_key(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
    kernel_iter = iter->second.find(cpu_kernel_key);
315 316 317 318 319

    PADDLE_ENFORCE_NE(
        kernel_iter,
        iter->second.end(),
        phi::errors::NotFound(
320 321
            "The kernel with key %s of kernel `%s` is not registered and "
            "fail to fallback to CPU one. %s",
322
            kernel_key,
323
            kernel_name,
324
            KernelSelectionErrorMessage(kernel_name, kernel_key)));
325 326 327 328 329

    VLOG(3) << "missing " << kernel_key.backend() << " kernel: " << kernel_name
            << ", expected_kernel_key:" << kernel_key
            << ", fallbacking to CPU one!";

W
wanghuancoder 已提交
330
    return {kernel_iter->second, true, false};
331 332
  }

333 334 335
  PADDLE_ENFORCE_NE(
      kernel_iter,
      iter->second.end(),
336
      phi::errors::NotFound(
337 338
          "The kernel with key %s of kernel `%s` is not registered. %s "
          "The current value of FLAGS_enable_api_kernel_fallback(bool,"
339 340
          " default true) is false. If you want to fallback this kernel"
          " to CPU one, please set the flag true before run again.",
341
          kernel_key,
342
          kernel_name,
343
          KernelSelectionErrorMessage(kernel_name, kernel_key)));
344

W
wanghuancoder 已提交
345
  return {kernel_iter->second, false, false};
346 347
}

348 349 350 351 352 353 354 355 356 357
const KernelArgsDef& KernelFactory::GetFirstKernelArgsDef(
    const std::string& kernel_name) const {
  auto iter = kernels_.find(kernel_name);
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));
  return iter->second.cbegin()->second.args_def();
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
std::ostream& operator<<(std::ostream& os, AttributeType attr_type) {
  switch (attr_type) {
    case AttributeType::BOOL:
      os << "bool";
      break;
    case AttributeType::INT32:
      os << "int";
      break;
    case AttributeType::INT64:
      os << "int64_t";
      break;
    case AttributeType::FLOAT32:
      os << "float";
      break;
    case AttributeType::FLOAT64:
      os << "double";
      break;
    case AttributeType::STRING:
      os << "string";
      break;
    case AttributeType::BOOLS:
      os << "vector<bool>";
      break;
    case AttributeType::INT32S:
      os << "vector<int>";
      break;
    case AttributeType::INT64S:
      os << "vector<int64_t>";
      break;
    case AttributeType::FLOAT32S:
      os << "vector<float>";
      break;
    case AttributeType::FLOAT64S:
      os << "vector<double>";
      break;
    case AttributeType::STRINGS:
      os << "vector<string>";
      break;
    case AttributeType::SCALAR:
      os << "Scalar";
      break;
    case AttributeType::SCALARS:
      os << "vector<Scalar>";
      break;
    case AttributeType::INT_ARRAY:
      os << "IntArray";
      break;
    case AttributeType::DATA_TYPE:
      os << "DataType";
      break;
    case AttributeType::DATA_LAYOUT:
      os << "DataLayout";
      break;
    case AttributeType::PLACE:
      os << "Place";
      break;
    default:
      os << "Undefined";
  }
  return os;
}

420 421 422 423 424 425 426
// print kernel info with json format:
// {
//   "(CPU, Undefined(AnyLayout), complex64)": {
//   "input": ["CPU, NCHW, complex64", "CPU, NCHW, complex64"],
//   "output": ["CPU, NCHW, complex64"],
//   "attribute": ["i"]
// }
427
std::ostream& operator<<(std::ostream& os, const Kernel& kernel) {
428 429 430
  // input
  os << "{\"input\":[";
  bool need_comma = false;
431
  for (auto& in_def : kernel.args_def().input_defs()) {
432 433 434 435
    if (need_comma) os << ",";
    os << "\"" << in_def.backend << ", " << in_def.layout << ", "
       << in_def.dtype << "\"";
    need_comma = true;
436
  }
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
  os << "],";

  // output
  os << "\"output\":[";
  need_comma = false;
  for (auto& out_def : kernel.args_def().output_defs()) {
    if (need_comma) os << ",";
    os << "\"" << out_def.backend << ", " << out_def.layout << ", "
       << out_def.dtype << "\"";
    need_comma = true;
  }
  os << "],";

  // attr
  os << "\"attribute\":[";
  need_comma = false;
  for (auto& arg_def : kernel.args_def().attribute_defs()) {
    if (need_comma) os << ",";
455
    os << "\"" << arg_def.type_index << "\"";
456 457 458 459
    need_comma = true;
  }
  os << "]}";

460 461 462
  return os;
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
// print all kernels info with json format:
// {
//  "kernel_name1":
//      [
//        {
//          "(CPU, Undefined(AnyLayout), complex64)": {
//          "input": ["CPU, NCHW, complex64", "CPU, NCHW, complex64"],
//          "output": ["CPU, NCHW, complex64"],
//          "attribute": ["i"]
//        },
//        ...
//      ],
//    "kernel_name2": []
//    ...
// }
478
std::ostream& operator<<(std::ostream& os, KernelFactory& kernel_factory) {
479 480
  os << "{";
  bool need_comma_kernels = false;
481
  for (const auto& op_kernel_pair : kernel_factory.kernels()) {
482 483 484 485 486
    if (need_comma_kernels) {
      os << ",";
      os << std::endl;
    }
    os << "\"" << op_kernel_pair.first << " \":[" << std::endl;
487
    bool need_comma_per_kernel = false;
488
    for (const auto& kernel_pair : op_kernel_pair.second) {
489 490 491 492
      if (need_comma_per_kernel) {
        os << ",";
        os << std::endl;
      }
493 494
      os << "{\"" << kernel_pair.first << "\":" << kernel_pair.second << "}";
      need_comma_per_kernel = true;
495
    }
496 497
    os << "]";
    need_comma_kernels = true;
498
  }
499 500
  os << "}";

501 502 503
  return os;
}

504 505 506 507 508 509 510 511 512 513 514 515
// return all kernel selection error message of specific kernel_name:
// 1. If target_key not supports target backend, output "Selected wrong Backend
// ..."
// 2. If target_key not supports target datatype, output "Selected wrong
// DataType ..."
// 3. `target_key` is still not supported, output all kernel keys of
// corresponding kernel_name:
// {
//   (CPU, NCHW, [int8, int16, ...]);
//   (GPU, Undefined(AnyLayout), [float32, float64, ...]);
//   ...
// }
516 517
std::string KernelSelectionErrorMessage(const std::string& kernel_name,
                                        const KernelKey& target_key) {
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
  PADDLE_ENFORCE_NE(
      KernelFactory::Instance().kernels().find(kernel_name),
      KernelFactory::Instance().kernels().end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));

  // Init data structure
  bool support_backend = false;
  bool support_dtype = false;
  std::unordered_map<std::string, std::vector<std::string>> all_kernel_key;
  std::unordered_set<std::string> backend_set;
  std::unordered_set<std::string> dtype_set;

  // Record all kernel information of kernel_name
  for (auto iter : KernelFactory::Instance().kernels()[kernel_name]) {
    KernelKey kernel_key = iter.first;
    if (kernel_key.backend() == target_key.backend()) {
      support_backend = true;
      if (kernel_key.dtype() == target_key.dtype()) {
        support_dtype = true;
      }
538
      dtype_set.insert(DataTypeToString(kernel_key.dtype()));
539 540 541 542 543
    }
    backend_set.insert(
        paddle::experimental::BackendToString(kernel_key.backend()));
    all_kernel_key[paddle::experimental::BackendToString(kernel_key.backend()) +
                   ", " + phi::DataLayoutToString(kernel_key.layout())]
544
        .push_back(DataTypeToString(kernel_key.dtype()));
545 546 547 548
  }
  // 1. If target_key not supports target backend, output "Selected wrong
  // Backend ..."
  if (!support_backend) {
549
    std::string error_message = paddle::string::join_strings(backend_set, ", ");
550 551 552 553 554 555 556
    return "Selected wrong Backend `" +
           paddle::experimental::BackendToString(target_key.backend()) +
           "`. Paddle support following Backends: " + error_message + ".";
  }
  // 2. If target_key not supports target datatype, output "Selected wrong
  // DataType ..."
  if (!support_dtype) {
557
    std::string error_message = paddle::string::join_strings(dtype_set, ", ");
558
    return "Selected wrong DataType `" + DataTypeToString(target_key.dtype()) +
559 560 561 562 563 564
           "`. Paddle support following DataTypes: " + error_message + ".";
  }
  // 3. `target_key` is still not supported, output all kernel keys of
  // corresponding kernel_name
  std::string message = "Currently, paddle support following kernel keys of `" +
                        kernel_name + "`: { ";
565 566 567
  for (auto& item : all_kernel_key) {
    std::vector<std::string>& dtype_vec = item.second;
    message += "(" + item.first + ", [";
568
    message += paddle::string::join_strings(dtype_vec, ", ");
569 570 571 572 573 574
    message += "]); ";
  }
  message += "}.";
  return message;
}

575
}  // namespace phi