kernel_factory.cc 17.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/phi/core/kernel_factory.h"
16

17
#include "gflags/gflags.h"
18
#include "glog/logging.h"
19
#include "paddle/phi/core/enforce.h"
20
#if defined(PADDLE_WITH_XPU)
21
#include "paddle/phi/backends/xpu/xpu_op_list.h"
22
#include "paddle/phi/common/data_type.h"
23 24
#include "paddle/phi/core/compat/convert_utils.h"
#endif
25 26 27
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
#include "paddle/phi/backends/custom/custom_device_op_list.h"
#endif
28
#include "paddle/phi/core/compat/op_utils.h"
29
#include "paddle/utils/string/string_helper.h"
30

31
DECLARE_int32(low_precision_op_list);
32
DECLARE_bool(enable_api_kernel_fallback);
33
DECLARE_bool(run_kp_kernel);
34
namespace phi {
35

36 37
const static Kernel empty_kernel;  // NOLINT

38 39
std::string KernelSelectionErrorMessage(const std::string& kernel_name,
                                        const KernelKey& target_key);
40

41 42 43 44 45 46 47 48 49
uint32_t KernelKey::Hash::operator()(const KernelKey& key) const {
  uint32_t hash_value = 0;
  // |----31-20------|---19-12---|---11-8----|---7-0---|
  // | For extension | DataType | DataLayout | Backend |
  hash_value |= static_cast<uint8_t>(key.backend());
  hash_value |=
      (static_cast<uint8_t>(key.layout()) << KernelKey::kBackendBitLength);
  hash_value |=
      (static_cast<uint16_t>(key.dtype())
50
       << (KernelKey::kBackendBitLength + KernelKey::kDataLayoutBitLength));
51 52 53 54 55 56 57 58
  return hash_value;
}

KernelFactory& KernelFactory::Instance() {
  static KernelFactory g_op_kernel_factory;
  return g_op_kernel_factory;
}

59 60 61 62 63 64 65 66 67 68 69
bool KernelFactory::HasCompatiblePhiKernel(const std::string& op_type) const {
  if (deprecated_op_names.find(op_type) == deprecated_op_names.end()) {
    if (phi::OpUtilsMap::Instance().Contains(op_type)) {
      return true;
    } else if (kernels_.find(op_type) != kernels_.end()) {
      return true;
    }
  }
  return false;
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
bool KernelFactory::HasStructuredKernel(const std::string& op_type) const {
  auto phi_kernel_name = phi::OpUtilsMap::Instance().GetBaseKernelName(op_type);
  auto kernel_iter = kernels_.find(phi_kernel_name);
  if (deprecated_op_names.find(op_type) == deprecated_op_names.end() &&
      kernel_iter != kernels_.end()) {
    return std::any_of(kernel_iter->second.begin(),
                       kernel_iter->second.end(),
                       [](phi::KernelKeyMap::const_reference kernel_pair) {
                         return kernel_pair.second.GetKernelRegisteredType() ==
                                KernelRegisteredType::STRUCTURE;
                       });
  }
  return false;
}

85 86
const Kernel& KernelFactory::SelectKernel(const std::string& kernel_name,
                                          const KernelKey& kernel_key) const {
87 88
  auto iter = kernels_.find(kernel_name);
  if (iter == kernels_.end()) {
89
    return empty_kernel;
90 91
  }
  auto kernel_iter = iter->second.find(kernel_key);
92 93 94 95 96 97
  if (kernel_iter == iter->second.end() &&
      kernel_key.layout() != phi::DataLayout::ALL_LAYOUT) {
    phi::KernelKey any_layout_kernel_key(
        kernel_key.backend(), phi::DataLayout::ALL_LAYOUT, kernel_key.dtype());
    kernel_iter = iter->second.find(any_layout_kernel_key);
  }
98 99 100 101 102 103 104 105
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
  if (kernel_iter == iter->second.end() &&
      kernel_key.backend() > phi::Backend::NUM_BACKENDS) {
    kernel_iter = iter->second.find({phi::Backend::CUSTOM,
                                     phi::DataLayout::ALL_LAYOUT,
                                     kernel_key.dtype()});
  }
#endif
106

107
  if (kernel_iter == iter->second.end()) {
108
    return empty_kernel;
109
  }
110

111 112 113
  return kernel_iter->second;
}

114 115
KernelKeyMap KernelFactory::SelectKernelMap(
    const std::string& kernel_name) const {
116 117
  auto iter = kernels_.find(kernel_name);
  if (iter == kernels_.end()) {
118
    return KernelKeyMap();
119 120 121 122
  }
  return iter->second;
}

123 124
bool KernelFactory::HasKernel(const std::string& kernel_name,
                              const KernelKey& kernel_key) const {
125 126 127 128 129 130 131 132 133 134 135 136 137
  auto iter = kernels_.find(kernel_name);
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));

  auto kernel_iter = iter->second.find(kernel_key);
  if (kernel_iter == iter->second.end()) {
    return false;
  }
  return true;
}

138
void KernelFactory::AddToLowPrecisionKernelList(
139
    const std::string& name, const phi::DataType& kernel_key_type) {
140 141 142 143 144
  if (FLAGS_low_precision_op_list >= 1) {
    auto op_name = phi::TransToFluidOpName(name);
    if (op_name.find("_grad") != std::string::npos) {
      return;  // only record forward api
    }
145 146 147 148 149

    if (low_precision_kernels_.find(op_name) == low_precision_kernels_.end()) {
      auto count = OpCount();
      low_precision_kernels_[op_name] = count;
    }
150
    if (kernel_key_type == phi::DataType::FLOAT16) {
151
      low_precision_kernels_[op_name].fp16_called_ += 1;
152
    } else if (kernel_key_type == phi::DataType::BFLOAT16) {
153
      low_precision_kernels_[op_name].bf16_called_ += 1;
154
    } else if (kernel_key_type == phi::DataType::FLOAT32) {
155 156 157
      low_precision_kernels_[op_name].fp32_called_ += 1;
    } else {
      low_precision_kernels_[op_name].other_called_ += 1;
158 159 160 161
    }
  }
}

162 163
std::map<const std::string, OpCount>
KernelFactory::GetLowPrecisionKernelList() {
164 165 166
  return low_precision_kernels_;
}

167
KernelResult KernelFactory::SelectKernelOrThrowError(
168
    const std::string& kernel_name, const KernelKey& const_kernel_key) const {
169
  auto iter = kernels_.find(kernel_name);
170

171 172 173 174
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));
175

176 177 178
  KernelKey kernel_key = KernelKey(const_kernel_key.backend(),
                                   phi::DataLayout::ALL_LAYOUT,
                                   const_kernel_key.dtype());
Z
zyfncg 已提交
179
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
180
  if (kernel_key.backend() == Backend::GPUDNN) {
Z
zyfncg 已提交
181
    auto kernel_iter = iter->second.find(
182
        {Backend::GPUDNN, phi::DataLayout::ALL_LAYOUT, kernel_key.dtype()});
Z
zyfncg 已提交
183
    if (kernel_iter != iter->second.end()) {
184
      return {kernel_iter->second, false};
Z
zyfncg 已提交
185
    }
186 187
    kernel_key =
        KernelKey(Backend::GPU, kernel_key.layout(), kernel_key.dtype());
Z
zyfncg 已提交
188 189
  }
#endif
190
  auto kernel_iter = iter->second.find(kernel_key);
191

192 193 194 195
  PADDLE_ENFORCE_NE(
      kernel_iter == iter->second.end() && kernel_key.backend() == Backend::CPU,
      true,
      phi::errors::NotFound(
196
          "The kernel with key %s of kernel `%s` is not registered. %s",
197
          kernel_key,
198
          kernel_name,
199
          KernelSelectionErrorMessage(kernel_name, kernel_key)));
200

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
#if defined(PADDLE_WITH_XPU_KP)
  auto fluid_op_name = TransToFluidOpName(kernel_name);
  bool has_kp_kernel = false;
  VLOG(6) << "fluid_op_name: " << TransToFluidOpName(kernel_name);
  bool is_xpu_kp_supported = phi::backends::xpu::is_xpu_kp_support_op(
      fluid_op_name, kernel_key.dtype());
  // Check in xpu_kp
  if (is_xpu_kp_supported && FLAGS_run_kp_kernel) {
    auto kernel_key_kp =
        KernelKey(Backend::KPS, kernel_key.layout(), kernel_key.dtype());
    auto kernel_iter_kp = iter->second.find(kernel_key_kp);
    has_kp_kernel = (kernel_iter_kp != iter->second.end());
    if (has_kp_kernel) {
      kernel_key = kernel_key_kp;
      kernel_iter = kernel_iter_kp;
    }
  }
  // check in xpu
  bool xpu_unsupport =
      !phi::backends::xpu::is_xpu_support_op(fluid_op_name, kernel_key.dtype());
  VLOG(6) << "Current KernelKey is " << kernel_key;
  // Fall back to CPU, when FLAGS_enable_api_kernel_fallback is true and op
  // was unregistered in xpu and kp
  if (FLAGS_enable_api_kernel_fallback &&
      (kernel_iter == iter->second.end() || (xpu_unsupport && !has_kp_kernel))
#elif defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
227 228
  VLOG(6) << "fluid_op_name: " << TransToFluidOpName(kernel_name);
  if ((FLAGS_enable_api_kernel_fallback && kernel_iter == iter->second.end()) ||
Q
QingshuChen 已提交
229 230
      !phi::backends::xpu::is_xpu_support_op(TransToFluidOpName(kernel_name),
                                             kernel_key.dtype())
231
#elif defined(PADDLE_WITH_CUSTOM_DEVICE)
232 233 234 235 236 237
  if (kernel_iter == iter->second.end() &&
      kernel_key.backend() > phi::Backend::NUM_BACKENDS) {
    kernel_iter = iter->second.find({phi::Backend::CUSTOM,
                                     phi::DataLayout::ALL_LAYOUT,
                                     kernel_key.dtype()});
  }
238 239 240 241
  if (FLAGS_enable_api_kernel_fallback &&
      (kernel_iter == iter->second.end() ||
       phi::backends::custom_device::is_in_custom_black_list(
           TransToFluidOpName(kernel_name)))
242 243
#else
  if ((FLAGS_enable_api_kernel_fallback && kernel_iter == iter->second.end())
244 245
#endif
  ) {
246 247 248 249
    // Fallback CPU backend
    phi::KernelKey cpu_kernel_key(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
    kernel_iter = iter->second.find(cpu_kernel_key);
250 251 252 253 254

    PADDLE_ENFORCE_NE(
        kernel_iter,
        iter->second.end(),
        phi::errors::NotFound(
255 256
            "The kernel with key %s of kernel `%s` is not registered and "
            "fail to fallback to CPU one. %s",
257
            kernel_key,
258
            kernel_name,
259
            KernelSelectionErrorMessage(kernel_name, kernel_key)));
260 261 262 263 264 265

    VLOG(3) << "missing " << kernel_key.backend() << " kernel: " << kernel_name
            << ", expected_kernel_key:" << kernel_key
            << ", fallbacking to CPU one!";

    return {kernel_iter->second, true};
266 267
  }

268 269 270
  PADDLE_ENFORCE_NE(
      kernel_iter,
      iter->second.end(),
271
      phi::errors::NotFound(
272 273
          "The kernel with key %s of kernel `%s` is not registered. %s "
          "The current value of FLAGS_enable_api_kernel_fallback(bool,"
274 275
          " default true) is false. If you want to fallback this kernel"
          " to CPU one, please set the flag true before run again.",
276
          kernel_key,
277
          kernel_name,
278
          KernelSelectionErrorMessage(kernel_name, kernel_key)));
279

280
  return {kernel_iter->second, false};
281 282
}

283 284 285 286 287 288 289 290 291 292
const KernelArgsDef& KernelFactory::GetFirstKernelArgsDef(
    const std::string& kernel_name) const {
  auto iter = kernels_.find(kernel_name);
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));
  return iter->second.cbegin()->second.args_def();
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
std::ostream& operator<<(std::ostream& os, AttributeType attr_type) {
  switch (attr_type) {
    case AttributeType::BOOL:
      os << "bool";
      break;
    case AttributeType::INT32:
      os << "int";
      break;
    case AttributeType::INT64:
      os << "int64_t";
      break;
    case AttributeType::FLOAT32:
      os << "float";
      break;
    case AttributeType::FLOAT64:
      os << "double";
      break;
    case AttributeType::STRING:
      os << "string";
      break;
    case AttributeType::BOOLS:
      os << "vector<bool>";
      break;
    case AttributeType::INT32S:
      os << "vector<int>";
      break;
    case AttributeType::INT64S:
      os << "vector<int64_t>";
      break;
    case AttributeType::FLOAT32S:
      os << "vector<float>";
      break;
    case AttributeType::FLOAT64S:
      os << "vector<double>";
      break;
    case AttributeType::STRINGS:
      os << "vector<string>";
      break;
    case AttributeType::SCALAR:
      os << "Scalar";
      break;
    case AttributeType::SCALARS:
      os << "vector<Scalar>";
      break;
    case AttributeType::INT_ARRAY:
      os << "IntArray";
      break;
    case AttributeType::DATA_TYPE:
      os << "DataType";
      break;
    case AttributeType::DATA_LAYOUT:
      os << "DataLayout";
      break;
    case AttributeType::PLACE:
      os << "Place";
      break;
    default:
      os << "Undefined";
  }
  return os;
}

355 356 357 358 359 360 361
// print kernel info with json format:
// {
//   "(CPU, Undefined(AnyLayout), complex64)": {
//   "input": ["CPU, NCHW, complex64", "CPU, NCHW, complex64"],
//   "output": ["CPU, NCHW, complex64"],
//   "attribute": ["i"]
// }
362
std::ostream& operator<<(std::ostream& os, const Kernel& kernel) {
363 364 365
  // input
  os << "{\"input\":[";
  bool need_comma = false;
366
  for (auto& in_def : kernel.args_def().input_defs()) {
367 368 369 370
    if (need_comma) os << ",";
    os << "\"" << in_def.backend << ", " << in_def.layout << ", "
       << in_def.dtype << "\"";
    need_comma = true;
371
  }
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
  os << "],";

  // output
  os << "\"output\":[";
  need_comma = false;
  for (auto& out_def : kernel.args_def().output_defs()) {
    if (need_comma) os << ",";
    os << "\"" << out_def.backend << ", " << out_def.layout << ", "
       << out_def.dtype << "\"";
    need_comma = true;
  }
  os << "],";

  // attr
  os << "\"attribute\":[";
  need_comma = false;
  for (auto& arg_def : kernel.args_def().attribute_defs()) {
    if (need_comma) os << ",";
390
    os << "\"" << arg_def.type_index << "\"";
391 392 393 394
    need_comma = true;
  }
  os << "]}";

395 396 397
  return os;
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
// print all kernels info with json format:
// {
//  "kernel_name1":
//      [
//        {
//          "(CPU, Undefined(AnyLayout), complex64)": {
//          "input": ["CPU, NCHW, complex64", "CPU, NCHW, complex64"],
//          "output": ["CPU, NCHW, complex64"],
//          "attribute": ["i"]
//        },
//        ...
//      ],
//    "kernel_name2": []
//    ...
// }
413
std::ostream& operator<<(std::ostream& os, KernelFactory& kernel_factory) {
414 415
  os << "{";
  bool need_comma_kernels = false;
416
  for (const auto& op_kernel_pair : kernel_factory.kernels()) {
417 418 419 420 421
    if (need_comma_kernels) {
      os << ",";
      os << std::endl;
    }
    os << "\"" << op_kernel_pair.first << " \":[" << std::endl;
422
    bool need_comma_per_kernel = false;
423
    for (const auto& kernel_pair : op_kernel_pair.second) {
424 425 426 427
      if (need_comma_per_kernel) {
        os << ",";
        os << std::endl;
      }
428 429
      os << "{\"" << kernel_pair.first << "\":" << kernel_pair.second << "}";
      need_comma_per_kernel = true;
430
    }
431 432
    os << "]";
    need_comma_kernels = true;
433
  }
434 435
  os << "}";

436 437 438
  return os;
}

439 440 441 442 443 444 445 446 447 448 449 450
// return all kernel selection error message of specific kernel_name:
// 1. If target_key not supports target backend, output "Selected wrong Backend
// ..."
// 2. If target_key not supports target datatype, output "Selected wrong
// DataType ..."
// 3. `target_key` is still not supported, output all kernel keys of
// corresponding kernel_name:
// {
//   (CPU, NCHW, [int8, int16, ...]);
//   (GPU, Undefined(AnyLayout), [float32, float64, ...]);
//   ...
// }
451 452
std::string KernelSelectionErrorMessage(const std::string& kernel_name,
                                        const KernelKey& target_key) {
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
  PADDLE_ENFORCE_NE(
      KernelFactory::Instance().kernels().find(kernel_name),
      KernelFactory::Instance().kernels().end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));

  // Init data structure
  bool support_backend = false;
  bool support_dtype = false;
  std::unordered_map<std::string, std::vector<std::string>> all_kernel_key;
  std::unordered_set<std::string> backend_set;
  std::unordered_set<std::string> dtype_set;

  // Record all kernel information of kernel_name
  for (auto iter : KernelFactory::Instance().kernels()[kernel_name]) {
    KernelKey kernel_key = iter.first;
    if (kernel_key.backend() == target_key.backend()) {
      support_backend = true;
      if (kernel_key.dtype() == target_key.dtype()) {
        support_dtype = true;
      }
473
      dtype_set.insert(DataTypeToString(kernel_key.dtype()));
474 475 476 477 478
    }
    backend_set.insert(
        paddle::experimental::BackendToString(kernel_key.backend()));
    all_kernel_key[paddle::experimental::BackendToString(kernel_key.backend()) +
                   ", " + phi::DataLayoutToString(kernel_key.layout())]
479
        .push_back(DataTypeToString(kernel_key.dtype()));
480 481 482 483
  }
  // 1. If target_key not supports target backend, output "Selected wrong
  // Backend ..."
  if (!support_backend) {
484
    std::string error_message = paddle::string::join_strings(backend_set, ", ");
485 486 487 488 489 490 491
    return "Selected wrong Backend `" +
           paddle::experimental::BackendToString(target_key.backend()) +
           "`. Paddle support following Backends: " + error_message + ".";
  }
  // 2. If target_key not supports target datatype, output "Selected wrong
  // DataType ..."
  if (!support_dtype) {
492
    std::string error_message = paddle::string::join_strings(dtype_set, ", ");
493
    return "Selected wrong DataType `" + DataTypeToString(target_key.dtype()) +
494 495 496 497 498 499 500 501 502
           "`. Paddle support following DataTypes: " + error_message + ".";
  }
  // 3. `target_key` is still not supported, output all kernel keys of
  // corresponding kernel_name
  std::string message = "Currently, paddle support following kernel keys of `" +
                        kernel_name + "`: { ";
  for (auto iter = all_kernel_key.begin(); iter != all_kernel_key.end();
       ++iter) {
    std::vector<std::string>& dtype_vec = iter->second;
503 504
    message += "(" + iter->first + ", [";
    message += paddle::string::join_strings(dtype_vec, ", ");
505 506 507 508 509 510
    message += "]); ";
  }
  message += "}.";
  return message;
}

511
}  // namespace phi