kernel_factory.cc 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/phi/core/kernel_factory.h"
16

17
#include "glog/logging.h"
18
#include "paddle/phi/core/enforce.h"
19
#if defined(PADDLE_WITH_XPU)
20
#include "paddle/phi/backends/xpu/xpu_op_list.h"
21 22
#include "paddle/phi/core/compat/convert_utils.h"
#endif
23 24 25
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
#include "paddle/phi/backends/custom/custom_device_op_list.h"
#endif
26
#include "paddle/phi/core/compat/op_utils.h"
27
#include "paddle/utils/string/string_helper.h"
28

29
DECLARE_int32(low_precision_op_list);
30
DECLARE_bool(enable_api_kernel_fallback);
31
DECLARE_bool(run_kp_kernel);
32
namespace phi {
33

34 35
const static Kernel empty_kernel;  // NOLINT

36 37
std::string KernelSelectionErrorMessage(const std::string& kernel_name,
                                        const KernelKey& target_key);
38

39 40 41 42 43 44 45 46 47
uint32_t KernelKey::Hash::operator()(const KernelKey& key) const {
  uint32_t hash_value = 0;
  // |----31-20------|---19-12---|---11-8----|---7-0---|
  // | For extension | DataType | DataLayout | Backend |
  hash_value |= static_cast<uint8_t>(key.backend());
  hash_value |=
      (static_cast<uint8_t>(key.layout()) << KernelKey::kBackendBitLength);
  hash_value |=
      (static_cast<uint16_t>(key.dtype())
48
       << (KernelKey::kBackendBitLength + KernelKey::kDataLayoutBitLength));
49 50 51 52 53 54 55 56
  return hash_value;
}

KernelFactory& KernelFactory::Instance() {
  static KernelFactory g_op_kernel_factory;
  return g_op_kernel_factory;
}

57 58 59 60 61 62 63 64 65 66 67
bool KernelFactory::HasCompatiblePhiKernel(const std::string& op_type) const {
  if (deprecated_op_names.find(op_type) == deprecated_op_names.end()) {
    if (phi::OpUtilsMap::Instance().Contains(op_type)) {
      return true;
    } else if (kernels_.find(op_type) != kernels_.end()) {
      return true;
    }
  }
  return false;
}

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
bool KernelFactory::HasStructuredKernel(const std::string& op_type) const {
  auto phi_kernel_name = phi::OpUtilsMap::Instance().GetBaseKernelName(op_type);
  auto kernel_iter = kernels_.find(phi_kernel_name);
  if (deprecated_op_names.find(op_type) == deprecated_op_names.end() &&
      kernel_iter != kernels_.end()) {
    return std::any_of(kernel_iter->second.begin(),
                       kernel_iter->second.end(),
                       [](phi::KernelKeyMap::const_reference kernel_pair) {
                         return kernel_pair.second.GetKernelRegisteredType() ==
                                KernelRegisteredType::STRUCTURE;
                       });
  }
  return false;
}

83 84
const Kernel& KernelFactory::SelectKernel(const std::string& kernel_name,
                                          const KernelKey& kernel_key) const {
85 86
  auto iter = kernels_.find(kernel_name);
  if (iter == kernels_.end()) {
87
    return empty_kernel;
88 89
  }
  auto kernel_iter = iter->second.find(kernel_key);
90 91 92 93 94 95
  if (kernel_iter == iter->second.end() &&
      kernel_key.layout() != phi::DataLayout::ALL_LAYOUT) {
    phi::KernelKey any_layout_kernel_key(
        kernel_key.backend(), phi::DataLayout::ALL_LAYOUT, kernel_key.dtype());
    kernel_iter = iter->second.find(any_layout_kernel_key);
  }
96 97 98 99 100 101 102 103
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
  if (kernel_iter == iter->second.end() &&
      kernel_key.backend() > phi::Backend::NUM_BACKENDS) {
    kernel_iter = iter->second.find({phi::Backend::CUSTOM,
                                     phi::DataLayout::ALL_LAYOUT,
                                     kernel_key.dtype()});
  }
#endif
104

105
  if (kernel_iter == iter->second.end()) {
106
    return empty_kernel;
107
  }
108

109 110 111
  return kernel_iter->second;
}

112 113
KernelKeyMap KernelFactory::SelectKernelMap(
    const std::string& kernel_name) const {
114 115
  auto iter = kernels_.find(kernel_name);
  if (iter == kernels_.end()) {
116
    return KernelKeyMap();
117 118 119 120
  }
  return iter->second;
}

121 122
bool KernelFactory::HasKernel(const std::string& kernel_name,
                              const KernelKey& kernel_key) const {
123 124 125 126 127 128 129 130 131 132 133 134 135
  auto iter = kernels_.find(kernel_name);
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));

  auto kernel_iter = iter->second.find(kernel_key);
  if (kernel_iter == iter->second.end()) {
    return false;
  }
  return true;
}

136 137 138 139 140 141 142 143
void KernelFactory::AddToLowPrecisionKernelList(
    const std::string& name,
    const paddle::experimental::DataType& kernel_key_type) {
  if (FLAGS_low_precision_op_list >= 1) {
    auto op_name = phi::TransToFluidOpName(name);
    if (op_name.find("_grad") != std::string::npos) {
      return;  // only record forward api
    }
144 145 146 147 148 149 150 151 152 153 154 155 156

    if (low_precision_kernels_.find(op_name) == low_precision_kernels_.end()) {
      auto count = OpCount();
      low_precision_kernels_[op_name] = count;
    }
    if (kernel_key_type == paddle::experimental::DataType::FLOAT16) {
      low_precision_kernels_[op_name].fp16_called_ += 1;
    } else if (kernel_key_type == paddle::experimental::DataType::BFLOAT16) {
      low_precision_kernels_[op_name].bf16_called_ += 1;
    } else if (kernel_key_type == paddle::experimental::DataType::FLOAT32) {
      low_precision_kernels_[op_name].fp32_called_ += 1;
    } else {
      low_precision_kernels_[op_name].other_called_ += 1;
157 158 159 160
    }
  }
}

161 162
std::map<const std::string, OpCount>
KernelFactory::GetLowPrecisionKernelList() {
163 164 165
  return low_precision_kernels_;
}

166
KernelResult KernelFactory::SelectKernelOrThrowError(
167
    const std::string& kernel_name, const KernelKey& const_kernel_key) const {
168
  auto iter = kernels_.find(kernel_name);
169

170 171 172 173
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));
174

175 176 177
  KernelKey kernel_key = KernelKey(const_kernel_key.backend(),
                                   phi::DataLayout::ALL_LAYOUT,
                                   const_kernel_key.dtype());
Z
zyfncg 已提交
178
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
179
  if (kernel_key.backend() == Backend::GPUDNN) {
Z
zyfncg 已提交
180
    auto kernel_iter = iter->second.find(
181
        {Backend::GPUDNN, phi::DataLayout::ALL_LAYOUT, kernel_key.dtype()});
Z
zyfncg 已提交
182
    if (kernel_iter != iter->second.end()) {
183
      return {kernel_iter->second, false};
Z
zyfncg 已提交
184
    }
185 186
    kernel_key =
        KernelKey(Backend::GPU, kernel_key.layout(), kernel_key.dtype());
Z
zyfncg 已提交
187 188
  }
#endif
189
  auto kernel_iter = iter->second.find(kernel_key);
190

191 192 193 194
  PADDLE_ENFORCE_NE(
      kernel_iter == iter->second.end() && kernel_key.backend() == Backend::CPU,
      true,
      phi::errors::NotFound(
195
          "The kernel with key %s of kernel `%s` is not registered. %s",
196
          kernel_key,
197
          kernel_name,
198
          KernelSelectionErrorMessage(kernel_name, kernel_key)));
199

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
#if defined(PADDLE_WITH_XPU_KP)
  auto fluid_op_name = TransToFluidOpName(kernel_name);
  bool has_kp_kernel = false;
  VLOG(6) << "fluid_op_name: " << TransToFluidOpName(kernel_name);
  bool is_xpu_kp_supported = phi::backends::xpu::is_xpu_kp_support_op(
      fluid_op_name, kernel_key.dtype());
  // Check in xpu_kp
  if (is_xpu_kp_supported && FLAGS_run_kp_kernel) {
    auto kernel_key_kp =
        KernelKey(Backend::KPS, kernel_key.layout(), kernel_key.dtype());
    auto kernel_iter_kp = iter->second.find(kernel_key_kp);
    has_kp_kernel = (kernel_iter_kp != iter->second.end());
    if (has_kp_kernel) {
      kernel_key = kernel_key_kp;
      kernel_iter = kernel_iter_kp;
    }
  }
  // check in xpu
  bool xpu_unsupport =
      !phi::backends::xpu::is_xpu_support_op(fluid_op_name, kernel_key.dtype());
  VLOG(6) << "Current KernelKey is " << kernel_key;
  // Fall back to CPU, when FLAGS_enable_api_kernel_fallback is true and op
  // was unregistered in xpu and kp
  if (FLAGS_enable_api_kernel_fallback &&
      (kernel_iter == iter->second.end() || (xpu_unsupport && !has_kp_kernel))
#elif defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
226 227
  VLOG(6) << "fluid_op_name: " << TransToFluidOpName(kernel_name);
  if ((FLAGS_enable_api_kernel_fallback && kernel_iter == iter->second.end()) ||
Q
QingshuChen 已提交
228 229
      !phi::backends::xpu::is_xpu_support_op(TransToFluidOpName(kernel_name),
                                             kernel_key.dtype())
230
#elif defined(PADDLE_WITH_CUSTOM_DEVICE)
231 232 233 234 235 236
  if (kernel_iter == iter->second.end() &&
      kernel_key.backend() > phi::Backend::NUM_BACKENDS) {
    kernel_iter = iter->second.find({phi::Backend::CUSTOM,
                                     phi::DataLayout::ALL_LAYOUT,
                                     kernel_key.dtype()});
  }
237 238 239 240
  if (FLAGS_enable_api_kernel_fallback &&
      (kernel_iter == iter->second.end() ||
       phi::backends::custom_device::is_in_custom_black_list(
           TransToFluidOpName(kernel_name)))
241 242
#else
  if ((FLAGS_enable_api_kernel_fallback && kernel_iter == iter->second.end())
243 244
#endif
  ) {
245 246 247 248
    // Fallback CPU backend
    phi::KernelKey cpu_kernel_key(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
    kernel_iter = iter->second.find(cpu_kernel_key);
249 250 251 252 253

    PADDLE_ENFORCE_NE(
        kernel_iter,
        iter->second.end(),
        phi::errors::NotFound(
254 255
            "The kernel with key %s of kernel `%s` is not registered and "
            "fail to fallback to CPU one. %s",
256
            kernel_key,
257
            kernel_name,
258
            KernelSelectionErrorMessage(kernel_name, kernel_key)));
259 260 261 262 263 264

    VLOG(3) << "missing " << kernel_key.backend() << " kernel: " << kernel_name
            << ", expected_kernel_key:" << kernel_key
            << ", fallbacking to CPU one!";

    return {kernel_iter->second, true};
265 266
  }

267 268 269
  PADDLE_ENFORCE_NE(
      kernel_iter,
      iter->second.end(),
270
      phi::errors::NotFound(
271 272
          "The kernel with key %s of kernel `%s` is not registered. %s "
          "The current value of FLAGS_enable_api_kernel_fallback(bool,"
273 274
          " default true) is false. If you want to fallback this kernel"
          " to CPU one, please set the flag true before run again.",
275
          kernel_key,
276
          kernel_name,
277
          KernelSelectionErrorMessage(kernel_name, kernel_key)));
278

279
  return {kernel_iter->second, false};
280 281
}

282 283 284 285 286 287 288 289 290 291
const KernelArgsDef& KernelFactory::GetFirstKernelArgsDef(
    const std::string& kernel_name) const {
  auto iter = kernels_.find(kernel_name);
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));
  return iter->second.cbegin()->second.args_def();
}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
std::ostream& operator<<(std::ostream& os, AttributeType attr_type) {
  switch (attr_type) {
    case AttributeType::BOOL:
      os << "bool";
      break;
    case AttributeType::INT32:
      os << "int";
      break;
    case AttributeType::INT64:
      os << "int64_t";
      break;
    case AttributeType::FLOAT32:
      os << "float";
      break;
    case AttributeType::FLOAT64:
      os << "double";
      break;
    case AttributeType::STRING:
      os << "string";
      break;
    case AttributeType::BOOLS:
      os << "vector<bool>";
      break;
    case AttributeType::INT32S:
      os << "vector<int>";
      break;
    case AttributeType::INT64S:
      os << "vector<int64_t>";
      break;
    case AttributeType::FLOAT32S:
      os << "vector<float>";
      break;
    case AttributeType::FLOAT64S:
      os << "vector<double>";
      break;
    case AttributeType::STRINGS:
      os << "vector<string>";
      break;
    case AttributeType::SCALAR:
      os << "Scalar";
      break;
    case AttributeType::SCALARS:
      os << "vector<Scalar>";
      break;
    case AttributeType::INT_ARRAY:
      os << "IntArray";
      break;
    case AttributeType::DATA_TYPE:
      os << "DataType";
      break;
    case AttributeType::DATA_LAYOUT:
      os << "DataLayout";
      break;
    case AttributeType::PLACE:
      os << "Place";
      break;
    default:
      os << "Undefined";
  }
  return os;
}

354 355 356 357 358 359 360
// print kernel info with json format:
// {
//   "(CPU, Undefined(AnyLayout), complex64)": {
//   "input": ["CPU, NCHW, complex64", "CPU, NCHW, complex64"],
//   "output": ["CPU, NCHW, complex64"],
//   "attribute": ["i"]
// }
361
std::ostream& operator<<(std::ostream& os, const Kernel& kernel) {
362 363 364
  // input
  os << "{\"input\":[";
  bool need_comma = false;
365
  for (auto& in_def : kernel.args_def().input_defs()) {
366 367 368 369
    if (need_comma) os << ",";
    os << "\"" << in_def.backend << ", " << in_def.layout << ", "
       << in_def.dtype << "\"";
    need_comma = true;
370
  }
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
  os << "],";

  // output
  os << "\"output\":[";
  need_comma = false;
  for (auto& out_def : kernel.args_def().output_defs()) {
    if (need_comma) os << ",";
    os << "\"" << out_def.backend << ", " << out_def.layout << ", "
       << out_def.dtype << "\"";
    need_comma = true;
  }
  os << "],";

  // attr
  os << "\"attribute\":[";
  need_comma = false;
  for (auto& arg_def : kernel.args_def().attribute_defs()) {
    if (need_comma) os << ",";
389
    os << "\"" << arg_def.type_index << "\"";
390 391 392 393
    need_comma = true;
  }
  os << "]}";

394 395 396
  return os;
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
// print all kernels info with json format:
// {
//  "kernel_name1":
//      [
//        {
//          "(CPU, Undefined(AnyLayout), complex64)": {
//          "input": ["CPU, NCHW, complex64", "CPU, NCHW, complex64"],
//          "output": ["CPU, NCHW, complex64"],
//          "attribute": ["i"]
//        },
//        ...
//      ],
//    "kernel_name2": []
//    ...
// }
412
std::ostream& operator<<(std::ostream& os, KernelFactory& kernel_factory) {
413 414
  os << "{";
  bool need_comma_kernels = false;
415
  for (const auto& op_kernel_pair : kernel_factory.kernels()) {
416 417 418 419 420
    if (need_comma_kernels) {
      os << ",";
      os << std::endl;
    }
    os << "\"" << op_kernel_pair.first << " \":[" << std::endl;
421
    bool need_comma_per_kernel = false;
422
    for (const auto& kernel_pair : op_kernel_pair.second) {
423 424 425 426
      if (need_comma_per_kernel) {
        os << ",";
        os << std::endl;
      }
427 428
      os << "{\"" << kernel_pair.first << "\":" << kernel_pair.second << "}";
      need_comma_per_kernel = true;
429
    }
430 431
    os << "]";
    need_comma_kernels = true;
432
  }
433 434
  os << "}";

435 436 437
  return os;
}

438 439 440 441 442 443 444 445 446 447 448 449
// return all kernel selection error message of specific kernel_name:
// 1. If target_key not supports target backend, output "Selected wrong Backend
// ..."
// 2. If target_key not supports target datatype, output "Selected wrong
// DataType ..."
// 3. `target_key` is still not supported, output all kernel keys of
// corresponding kernel_name:
// {
//   (CPU, NCHW, [int8, int16, ...]);
//   (GPU, Undefined(AnyLayout), [float32, float64, ...]);
//   ...
// }
450 451
std::string KernelSelectionErrorMessage(const std::string& kernel_name,
                                        const KernelKey& target_key) {
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
  PADDLE_ENFORCE_NE(
      KernelFactory::Instance().kernels().find(kernel_name),
      KernelFactory::Instance().kernels().end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));

  // Init data structure
  bool support_backend = false;
  bool support_dtype = false;
  std::unordered_map<std::string, std::vector<std::string>> all_kernel_key;
  std::unordered_set<std::string> backend_set;
  std::unordered_set<std::string> dtype_set;

  // Record all kernel information of kernel_name
  for (auto iter : KernelFactory::Instance().kernels()[kernel_name]) {
    KernelKey kernel_key = iter.first;
    if (kernel_key.backend() == target_key.backend()) {
      support_backend = true;
      if (kernel_key.dtype() == target_key.dtype()) {
        support_dtype = true;
      }
      dtype_set.insert(
          paddle::experimental::DataTypeToString(kernel_key.dtype()));
    }
    backend_set.insert(
        paddle::experimental::BackendToString(kernel_key.backend()));
    all_kernel_key[paddle::experimental::BackendToString(kernel_key.backend()) +
                   ", " + phi::DataLayoutToString(kernel_key.layout())]
        .push_back(paddle::experimental::DataTypeToString(kernel_key.dtype()));
  }
  // 1. If target_key not supports target backend, output "Selected wrong
  // Backend ..."
  if (!support_backend) {
484
    std::string error_message = paddle::string::join_strings(backend_set, ", ");
485 486 487 488 489 490 491
    return "Selected wrong Backend `" +
           paddle::experimental::BackendToString(target_key.backend()) +
           "`. Paddle support following Backends: " + error_message + ".";
  }
  // 2. If target_key not supports target datatype, output "Selected wrong
  // DataType ..."
  if (!support_dtype) {
492
    std::string error_message = paddle::string::join_strings(dtype_set, ", ");
493 494 495 496 497 498 499 500 501 502 503
    return "Selected wrong DataType `" +
           paddle::experimental::DataTypeToString(target_key.dtype()) +
           "`. Paddle support following DataTypes: " + error_message + ".";
  }
  // 3. `target_key` is still not supported, output all kernel keys of
  // corresponding kernel_name
  std::string message = "Currently, paddle support following kernel keys of `" +
                        kernel_name + "`: { ";
  for (auto iter = all_kernel_key.begin(); iter != all_kernel_key.end();
       ++iter) {
    std::vector<std::string>& dtype_vec = iter->second;
504 505
    message += "(" + iter->first + ", [";
    message += paddle::string::join_strings(dtype_vec, ", ");
506 507 508 509 510 511
    message += "]); ";
  }
  message += "}.";
  return message;
}

512
}  // namespace phi