kernel_factory.cc 15.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/phi/core/kernel_factory.h"
16

17
#include "glog/logging.h"
18
#include "paddle/phi/core/enforce.h"
19
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
20
#include "paddle/phi/backends/xpu/xpu_op_list.h"
21 22
#include "paddle/phi/core/compat/convert_utils.h"
#endif
23 24 25
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
#include "paddle/phi/backends/custom/custom_device_op_list.h"
#endif
26
#include "paddle/phi/core/compat/op_utils.h"
27
#include "paddle/utils/string/string_helper.h"
28

29
DECLARE_int32(low_precision_op_list);
30 31
DECLARE_bool(enable_api_kernel_fallback);

32
namespace phi {
33

34 35
const static Kernel empty_kernel;  // NOLINT

36 37
std::string KernelSelectionErrorMessage(const std::string& kernel_name,
                                        const KernelKey& target_key);
38

39 40 41 42 43 44 45 46 47
uint32_t KernelKey::Hash::operator()(const KernelKey& key) const {
  uint32_t hash_value = 0;
  // |----31-20------|---19-12---|---11-8----|---7-0---|
  // | For extension | DataType | DataLayout | Backend |
  hash_value |= static_cast<uint8_t>(key.backend());
  hash_value |=
      (static_cast<uint8_t>(key.layout()) << KernelKey::kBackendBitLength);
  hash_value |=
      (static_cast<uint16_t>(key.dtype())
48
       << (KernelKey::kBackendBitLength + KernelKey::kDataLayoutBitLength));
49 50 51 52 53 54 55 56
  return hash_value;
}

KernelFactory& KernelFactory::Instance() {
  static KernelFactory g_op_kernel_factory;
  return g_op_kernel_factory;
}

57 58 59 60 61 62 63 64 65 66 67
bool KernelFactory::HasCompatiblePhiKernel(const std::string& op_type) const {
  if (deprecated_op_names.find(op_type) == deprecated_op_names.end()) {
    if (phi::OpUtilsMap::Instance().Contains(op_type)) {
      return true;
    } else if (kernels_.find(op_type) != kernels_.end()) {
      return true;
    }
  }
  return false;
}

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
bool KernelFactory::HasStructuredKernel(const std::string& op_type) const {
  auto phi_kernel_name = phi::OpUtilsMap::Instance().GetBaseKernelName(op_type);
  auto kernel_iter = kernels_.find(phi_kernel_name);
  if (deprecated_op_names.find(op_type) == deprecated_op_names.end() &&
      kernel_iter != kernels_.end()) {
    return std::any_of(kernel_iter->second.begin(),
                       kernel_iter->second.end(),
                       [](phi::KernelKeyMap::const_reference kernel_pair) {
                         return kernel_pair.second.GetKernelRegisteredType() ==
                                KernelRegisteredType::STRUCTURE;
                       });
  }
  return false;
}

83 84
const Kernel& KernelFactory::SelectKernel(const std::string& kernel_name,
                                          const KernelKey& kernel_key) const {
85 86
  auto iter = kernels_.find(kernel_name);
  if (iter == kernels_.end()) {
87
    return empty_kernel;
88 89
  }
  auto kernel_iter = iter->second.find(kernel_key);
90 91 92 93 94 95 96
  if (kernel_iter == iter->second.end() &&
      kernel_key.layout() != phi::DataLayout::ALL_LAYOUT) {
    phi::KernelKey any_layout_kernel_key(
        kernel_key.backend(), phi::DataLayout::ALL_LAYOUT, kernel_key.dtype());
    kernel_iter = iter->second.find(any_layout_kernel_key);
  }

97
  if (kernel_iter == iter->second.end()) {
98
    return empty_kernel;
99
  }
100

101 102 103
  return kernel_iter->second;
}

104 105
KernelKeyMap KernelFactory::SelectKernelMap(
    const std::string& kernel_name) const {
106 107
  auto iter = kernels_.find(kernel_name);
  if (iter == kernels_.end()) {
108
    return KernelKeyMap();
109 110 111 112
  }
  return iter->second;
}

113 114
bool KernelFactory::HasKernel(const std::string& kernel_name,
                              const KernelKey& kernel_key) const {
115 116 117 118 119 120 121 122 123 124 125 126 127
  auto iter = kernels_.find(kernel_name);
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));

  auto kernel_iter = iter->second.find(kernel_key);
  if (kernel_iter == iter->second.end()) {
    return false;
  }
  return true;
}

128 129 130 131 132 133 134 135
void KernelFactory::AddToLowPrecisionKernelList(
    const std::string& name,
    const paddle::experimental::DataType& kernel_key_type) {
  if (FLAGS_low_precision_op_list >= 1) {
    auto op_name = phi::TransToFluidOpName(name);
    if (op_name.find("_grad") != std::string::npos) {
      return;  // only record forward api
    }
136 137 138 139 140 141 142 143 144 145 146 147 148

    if (low_precision_kernels_.find(op_name) == low_precision_kernels_.end()) {
      auto count = OpCount();
      low_precision_kernels_[op_name] = count;
    }
    if (kernel_key_type == paddle::experimental::DataType::FLOAT16) {
      low_precision_kernels_[op_name].fp16_called_ += 1;
    } else if (kernel_key_type == paddle::experimental::DataType::BFLOAT16) {
      low_precision_kernels_[op_name].bf16_called_ += 1;
    } else if (kernel_key_type == paddle::experimental::DataType::FLOAT32) {
      low_precision_kernels_[op_name].fp32_called_ += 1;
    } else {
      low_precision_kernels_[op_name].other_called_ += 1;
149 150 151 152
    }
  }
}

153 154
std::map<const std::string, OpCount>
KernelFactory::GetLowPrecisionKernelList() {
155 156 157
  return low_precision_kernels_;
}

158
KernelResult KernelFactory::SelectKernelOrThrowError(
159
    const std::string& kernel_name, const KernelKey& const_kernel_key) const {
160
  auto iter = kernels_.find(kernel_name);
161

162 163 164 165
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));
166

167 168 169
  KernelKey kernel_key = KernelKey(const_kernel_key.backend(),
                                   phi::DataLayout::ALL_LAYOUT,
                                   const_kernel_key.dtype());
Z
zyfncg 已提交
170
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
171
  if (kernel_key.backend() == Backend::GPUDNN) {
Z
zyfncg 已提交
172
    auto kernel_iter = iter->second.find(
173
        {Backend::GPUDNN, phi::DataLayout::ALL_LAYOUT, kernel_key.dtype()});
Z
zyfncg 已提交
174
    if (kernel_iter != iter->second.end()) {
175
      return {kernel_iter->second, false};
Z
zyfncg 已提交
176
    }
177 178
    kernel_key =
        KernelKey(Backend::GPU, kernel_key.layout(), kernel_key.dtype());
Z
zyfncg 已提交
179 180
  }
#endif
181
  auto kernel_iter = iter->second.find(kernel_key);
182

183 184 185 186
  PADDLE_ENFORCE_NE(
      kernel_iter == iter->second.end() && kernel_key.backend() == Backend::CPU,
      true,
      phi::errors::NotFound(
187
          "The kernel with key %s of kernel `%s` is not registered. %s",
188
          kernel_key,
189
          kernel_name,
190
          KernelSelectionErrorMessage(kernel_name, kernel_key)));
191

192
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
193 194
  VLOG(6) << "fluid_op_name: " << TransToFluidOpName(kernel_name);
  if ((FLAGS_enable_api_kernel_fallback && kernel_iter == iter->second.end()) ||
Q
QingshuChen 已提交
195 196
      !phi::backends::xpu::is_xpu_support_op(TransToFluidOpName(kernel_name),
                                             kernel_key.dtype())
197 198 199 200 201
#elif defined(PADDLE_WITH_CUSTOM_DEVICE)
  if (FLAGS_enable_api_kernel_fallback &&
      (kernel_iter == iter->second.end() ||
       phi::backends::custom_device::is_in_custom_black_list(
           TransToFluidOpName(kernel_name)))
202 203
#else
  if ((FLAGS_enable_api_kernel_fallback && kernel_iter == iter->second.end())
204 205
#endif
  ) {
206 207 208 209
    // Fallback CPU backend
    phi::KernelKey cpu_kernel_key(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
    kernel_iter = iter->second.find(cpu_kernel_key);
210 211 212 213 214

    PADDLE_ENFORCE_NE(
        kernel_iter,
        iter->second.end(),
        phi::errors::NotFound(
215 216
            "The kernel with key %s of kernel `%s` is not registered and "
            "fail to fallback to CPU one. %s",
217
            kernel_key,
218
            kernel_name,
219
            KernelSelectionErrorMessage(kernel_name, kernel_key)));
220 221 222 223 224 225

    VLOG(3) << "missing " << kernel_key.backend() << " kernel: " << kernel_name
            << ", expected_kernel_key:" << kernel_key
            << ", fallbacking to CPU one!";

    return {kernel_iter->second, true};
226 227
  }

228 229 230
  PADDLE_ENFORCE_NE(
      kernel_iter,
      iter->second.end(),
231
      phi::errors::NotFound(
232 233
          "The kernel with key %s of kernel `%s` is not registered. %s "
          "The current value of FLAGS_enable_api_kernel_fallback(bool,"
234 235
          " default true) is false. If you want to fallback this kernel"
          " to CPU one, please set the flag true before run again.",
236
          kernel_key,
237
          kernel_name,
238
          KernelSelectionErrorMessage(kernel_name, kernel_key)));
239

240
  return {kernel_iter->second, false};
241 242
}

243 244 245 246 247 248 249 250 251 252
const KernelArgsDef& KernelFactory::GetFirstKernelArgsDef(
    const std::string& kernel_name) const {
  auto iter = kernels_.find(kernel_name);
  PADDLE_ENFORCE_NE(
      iter,
      kernels_.end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));
  return iter->second.cbegin()->second.args_def();
}

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
std::ostream& operator<<(std::ostream& os, AttributeType attr_type) {
  switch (attr_type) {
    case AttributeType::BOOL:
      os << "bool";
      break;
    case AttributeType::INT32:
      os << "int";
      break;
    case AttributeType::INT64:
      os << "int64_t";
      break;
    case AttributeType::FLOAT32:
      os << "float";
      break;
    case AttributeType::FLOAT64:
      os << "double";
      break;
    case AttributeType::STRING:
      os << "string";
      break;
    case AttributeType::BOOLS:
      os << "vector<bool>";
      break;
    case AttributeType::INT32S:
      os << "vector<int>";
      break;
    case AttributeType::INT64S:
      os << "vector<int64_t>";
      break;
    case AttributeType::FLOAT32S:
      os << "vector<float>";
      break;
    case AttributeType::FLOAT64S:
      os << "vector<double>";
      break;
    case AttributeType::STRINGS:
      os << "vector<string>";
      break;
    case AttributeType::SCALAR:
      os << "Scalar";
      break;
    case AttributeType::SCALARS:
      os << "vector<Scalar>";
      break;
    case AttributeType::INT_ARRAY:
      os << "IntArray";
      break;
    case AttributeType::DATA_TYPE:
      os << "DataType";
      break;
    case AttributeType::DATA_LAYOUT:
      os << "DataLayout";
      break;
    case AttributeType::PLACE:
      os << "Place";
      break;
    default:
      os << "Undefined";
  }
  return os;
}

315 316 317 318 319 320 321
// print kernel info with json format:
// {
//   "(CPU, Undefined(AnyLayout), complex64)": {
//   "input": ["CPU, NCHW, complex64", "CPU, NCHW, complex64"],
//   "output": ["CPU, NCHW, complex64"],
//   "attribute": ["i"]
// }
322
std::ostream& operator<<(std::ostream& os, const Kernel& kernel) {
323 324 325
  // input
  os << "{\"input\":[";
  bool need_comma = false;
326
  for (auto& in_def : kernel.args_def().input_defs()) {
327 328 329 330
    if (need_comma) os << ",";
    os << "\"" << in_def.backend << ", " << in_def.layout << ", "
       << in_def.dtype << "\"";
    need_comma = true;
331
  }
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
  os << "],";

  // output
  os << "\"output\":[";
  need_comma = false;
  for (auto& out_def : kernel.args_def().output_defs()) {
    if (need_comma) os << ",";
    os << "\"" << out_def.backend << ", " << out_def.layout << ", "
       << out_def.dtype << "\"";
    need_comma = true;
  }
  os << "],";

  // attr
  os << "\"attribute\":[";
  need_comma = false;
  for (auto& arg_def : kernel.args_def().attribute_defs()) {
    if (need_comma) os << ",";
350
    os << "\"" << arg_def.type_index << "\"";
351 352 353 354
    need_comma = true;
  }
  os << "]}";

355 356 357
  return os;
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
// print all kernels info with json format:
// {
//  "kernel_name1":
//      [
//        {
//          "(CPU, Undefined(AnyLayout), complex64)": {
//          "input": ["CPU, NCHW, complex64", "CPU, NCHW, complex64"],
//          "output": ["CPU, NCHW, complex64"],
//          "attribute": ["i"]
//        },
//        ...
//      ],
//    "kernel_name2": []
//    ...
// }
373
std::ostream& operator<<(std::ostream& os, KernelFactory& kernel_factory) {
374 375
  os << "{";
  bool need_comma_kernels = false;
376
  for (const auto& op_kernel_pair : kernel_factory.kernels()) {
377 378 379 380 381
    if (need_comma_kernels) {
      os << ",";
      os << std::endl;
    }
    os << "\"" << op_kernel_pair.first << " \":[" << std::endl;
382
    bool need_comma_per_kernel = false;
383
    for (const auto& kernel_pair : op_kernel_pair.second) {
384 385 386 387
      if (need_comma_per_kernel) {
        os << ",";
        os << std::endl;
      }
388 389
      os << "{\"" << kernel_pair.first << "\":" << kernel_pair.second << "}";
      need_comma_per_kernel = true;
390
    }
391 392
    os << "]";
    need_comma_kernels = true;
393
  }
394 395
  os << "}";

396 397 398
  return os;
}

399 400 401 402 403 404 405 406 407 408 409 410
// return all kernel selection error message of specific kernel_name:
// 1. If target_key not supports target backend, output "Selected wrong Backend
// ..."
// 2. If target_key not supports target datatype, output "Selected wrong
// DataType ..."
// 3. `target_key` is still not supported, output all kernel keys of
// corresponding kernel_name:
// {
//   (CPU, NCHW, [int8, int16, ...]);
//   (GPU, Undefined(AnyLayout), [float32, float64, ...]);
//   ...
// }
411 412
std::string KernelSelectionErrorMessage(const std::string& kernel_name,
                                        const KernelKey& target_key) {
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
  PADDLE_ENFORCE_NE(
      KernelFactory::Instance().kernels().find(kernel_name),
      KernelFactory::Instance().kernels().end(),
      phi::errors::NotFound("The kernel `%s` is not registered.", kernel_name));

  // Init data structure
  bool support_backend = false;
  bool support_dtype = false;
  std::unordered_map<std::string, std::vector<std::string>> all_kernel_key;
  std::unordered_set<std::string> backend_set;
  std::unordered_set<std::string> dtype_set;

  // Record all kernel information of kernel_name
  for (auto iter : KernelFactory::Instance().kernels()[kernel_name]) {
    KernelKey kernel_key = iter.first;
    if (kernel_key.backend() == target_key.backend()) {
      support_backend = true;
      if (kernel_key.dtype() == target_key.dtype()) {
        support_dtype = true;
      }
      dtype_set.insert(
          paddle::experimental::DataTypeToString(kernel_key.dtype()));
    }
    backend_set.insert(
        paddle::experimental::BackendToString(kernel_key.backend()));
    all_kernel_key[paddle::experimental::BackendToString(kernel_key.backend()) +
                   ", " + phi::DataLayoutToString(kernel_key.layout())]
        .push_back(paddle::experimental::DataTypeToString(kernel_key.dtype()));
  }
  // 1. If target_key not supports target backend, output "Selected wrong
  // Backend ..."
  if (!support_backend) {
445
    std::string error_message = paddle::string::join_strings(backend_set, ", ");
446 447 448 449 450 451 452
    return "Selected wrong Backend `" +
           paddle::experimental::BackendToString(target_key.backend()) +
           "`. Paddle support following Backends: " + error_message + ".";
  }
  // 2. If target_key not supports target datatype, output "Selected wrong
  // DataType ..."
  if (!support_dtype) {
453
    std::string error_message = paddle::string::join_strings(dtype_set, ", ");
454 455 456 457 458 459 460 461 462 463 464
    return "Selected wrong DataType `" +
           paddle::experimental::DataTypeToString(target_key.dtype()) +
           "`. Paddle support following DataTypes: " + error_message + ".";
  }
  // 3. `target_key` is still not supported, output all kernel keys of
  // corresponding kernel_name
  std::string message = "Currently, paddle support following kernel keys of `" +
                        kernel_name + "`: { ";
  for (auto iter = all_kernel_key.begin(); iter != all_kernel_key.end();
       ++iter) {
    std::vector<std::string>& dtype_vec = iter->second;
465 466
    message += "(" + iter->first + ", [";
    message += paddle::string::join_strings(dtype_vec, ", ");
467 468 469 470 471 472
    message += "]); ";
  }
  message += "}.";
  return message;
}

473
}  // namespace phi