# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci import paddle import paddle.fluid as fluid class TestElementwiseOp(OpTest): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"), 'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"), } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X', 'Y'], 'Out') def test_check_grad_ingore_x(self): self.check_grad( ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X") ) def test_check_grad_ingore_y(self): self.check_grad( ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y') ) class TestElementwiseSubOp_ZeroDim1(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.uniform(0.1, 1, []).astype("float64"), 'Y': np.random.uniform(0.1, 1, []).astype("float64"), } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} class TestElementwiseSubOp_ZeroDim2(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"), 'Y': np.random.uniform(0.1, 1, []).astype("float64"), } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} class TestElementwiseSubOp_ZeroDim3(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.uniform(0.1, 1, []).astype("float64"), 'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"), } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} class TestBF16ElementwiseOp(OpTest): def setUp(self): self.op_type = "elementwise_sub" self.dtype = np.uint16 x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32) y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32) out = x - y self.inputs = { 'X': convert_float_to_uint16(x), 'Y': convert_float_to_uint16(y), } self.outputs = {'Out': convert_float_to_uint16(out)} def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X', 'Y'], 'Out') def test_check_grad_ingore_x(self): self.check_grad(['Y'], 'Out', no_grad_set=set("X")) def test_check_grad_ingore_y(self): self.check_grad(['X'], 'Out', no_grad_set=set('Y')) @skip_check_grad_ci( reason="[skip shape check] Use y_shape(1) to test broadcast." ) class TestElementwiseSubOp_scalar(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(10, 3, 4).astype(np.float64), 'Y': np.random.rand(1).astype(np.float64), } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} class TestElementwiseSubOp_Vector(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.random((100,)).astype("float64"), 'Y': np.random.random((100,)).astype("float64"), } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} class TestElementwiseSubOp_broadcast_0(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(100, 3, 2).astype(np.float64), 'Y': np.random.rand(100).astype(np.float64), } self.attrs = {'axis': 0} self.outputs = { 'Out': self.inputs['X'] - self.inputs['Y'].reshape(100, 1, 1) } class TestElementwiseSubOp_broadcast_1(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(2, 100, 3).astype(np.float64), 'Y': np.random.rand(100).astype(np.float64), } self.attrs = {'axis': 1} self.outputs = { 'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 100, 1) } class TestElementwiseSubOp_broadcast_2(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(2, 3, 100).astype(np.float64), 'Y': np.random.rand(100).astype(np.float64), } self.outputs = { 'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 1, 100) } class TestElementwiseSubOp_broadcast_3(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(2, 10, 12, 3).astype(np.float64), 'Y': np.random.rand(10, 12).astype(np.float64), } self.attrs = {'axis': 1} self.outputs = { 'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 10, 12, 1) } class TestElementwiseSubOp_broadcast_4(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(2, 5, 3, 12).astype(np.float64), 'Y': np.random.rand(2, 5, 1, 12).astype(np.float64), } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} class TestElementwiseSubOp_commonuse_1(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(2, 3, 100).astype(np.float64), 'Y': np.random.rand(1, 1, 100).astype(np.float64), } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} class TestElementwiseSubOp_commonuse_2(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(10, 3, 1, 4).astype(np.float64), 'Y': np.random.rand(10, 1, 12, 1).astype(np.float64), } self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']} class TestElementwiseSubOp_xsize_lessthan_ysize(TestElementwiseOp): def setUp(self): self.op_type = "elementwise_sub" self.inputs = { 'X': np.random.rand(10, 12).astype(np.float64), 'Y': np.random.rand(2, 3, 10, 12).astype(np.float64), } self.attrs = {'axis': 2} self.outputs = { 'Out': self.inputs['X'].reshape(1, 1, 10, 12) - self.inputs['Y'] } class TestComplexElementwiseSubOp(OpTest): def setUp(self): self.op_type = "elementwise_sub" self.dtype = np.float64 self.shape = (2, 3, 4, 5) self.init_input_output() self.init_grad_input_output() self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(self.x), 'Y': OpTest.np_dtype_to_fluid_dtype(self.y), } self.attrs = {'axis': -1, 'use_mkldnn': False} self.outputs = {'Out': self.out} def init_base_dtype(self): self.dtype = np.float64 def init_input_output(self): self.x = np.random.random(self.shape).astype( self.dtype ) + 1j * np.random.random(self.shape).astype(self.dtype) self.y = np.random.random(self.shape).astype( self.dtype ) + 1j * np.random.random(self.shape).astype(self.dtype) self.out = self.x - self.y def init_grad_input_output(self): self.grad_out = np.ones(self.shape, self.dtype) + 1j * np.ones( self.shape, self.dtype ) self.grad_x = self.grad_out self.grad_y = -self.grad_out def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad( ['X', 'Y'], 'Out', user_defined_grads=[self.grad_x, self.grad_y], user_defined_grad_outputs=[self.grad_out], ) def test_check_grad_ingore_x(self): self.check_grad( ['Y'], 'Out', no_grad_set=set("X"), user_defined_grads=[self.grad_y], user_defined_grad_outputs=[self.grad_out], ) def test_check_grad_ingore_y(self): self.check_grad( ['X'], 'Out', no_grad_set=set('Y'), user_defined_grads=[self.grad_x], user_defined_grad_outputs=[self.grad_out], ) class TestRealComplexElementwiseSubOp(TestComplexElementwiseSubOp): def init_input_output(self): self.x = np.random.random(self.shape).astype(self.dtype) self.y = np.random.random(self.shape).astype( self.dtype ) + 1j * np.random.random(self.shape).astype(self.dtype) self.out = self.x - self.y def init_grad_input_output(self): self.grad_out = np.ones(self.shape, self.dtype) + 1j * np.ones( self.shape, self.dtype ) self.grad_x = np.real(self.grad_out) self.grad_y = -self.grad_out class TestSubtractApi(unittest.TestCase): def _executed_api(self, x, y, name=None): return paddle.subtract(x, y, name) def test_name(self): with fluid.program_guard(fluid.Program()): x = fluid.data(name="x", shape=[2, 3], dtype="float32") y = fluid.data(name='y', shape=[2, 3], dtype='float32') y_1 = self._executed_api(x, y, name='subtract_res') self.assertEqual(('subtract_res' in y_1.name), True) def test_declarative(self): with fluid.program_guard(fluid.Program()): def gen_data(): return { "x": np.array([2, 3, 4]).astype('float32'), "y": np.array([1, 5, 2]).astype('float32'), } x = fluid.data(name="x", shape=[3], dtype='float32') y = fluid.data(name="y", shape=[3], dtype='float32') z = self._executed_api(x, y) place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) z_expected = np.array([1.0, -2.0, 2.0]) self.assertEqual((z_value == z_expected).all(), True) def test_dygraph(self): with fluid.dygraph.guard(): np_x = np.array([2, 3, 4]).astype('float64') np_y = np.array([1, 5, 2]).astype('float64') x = fluid.dygraph.to_variable(np_x) y = fluid.dygraph.to_variable(np_y) z = self._executed_api(x, y) np_z = z.numpy() z_expected = np.array([1.0, -2.0, 2.0]) self.assertEqual((np_z == z_expected).all(), True) class TestSubtractInplaceApi(TestSubtractApi): def _executed_api(self, x, y, name=None): return x.subtract_(y, name) class TestSubtractInplaceBroadcastSuccess(unittest.TestCase): def init_data(self): self.x_numpy = np.random.rand(2, 3, 4).astype('float') self.y_numpy = np.random.rand(3, 4).astype('float') def test_broadcast_success(self): paddle.disable_static() self.init_data() x = paddle.to_tensor(self.x_numpy) y = paddle.to_tensor(self.y_numpy) inplace_result = x.subtract_(y) numpy_result = self.x_numpy - self.y_numpy self.assertEqual((inplace_result.numpy() == numpy_result).all(), True) paddle.enable_static() class TestSubtractInplaceBroadcastSuccess2(TestSubtractInplaceBroadcastSuccess): def init_data(self): self.x_numpy = np.random.rand(1, 2, 3, 1).astype('float') self.y_numpy = np.random.rand(3, 1).astype('float') class TestSubtractInplaceBroadcastSuccess3(TestSubtractInplaceBroadcastSuccess): def init_data(self): self.x_numpy = np.random.rand(2, 3, 1, 5).astype('float') self.y_numpy = np.random.rand(1, 3, 1, 5).astype('float') class TestSubtractInplaceBroadcastError(unittest.TestCase): def init_data(self): self.x_numpy = np.random.rand(3, 4).astype('float') self.y_numpy = np.random.rand(2, 3, 4).astype('float') def test_broadcast_errors(self): paddle.disable_static() self.init_data() x = paddle.to_tensor(self.x_numpy) y = paddle.to_tensor(self.y_numpy) def broadcast_shape_error(): x.subtract_(y) self.assertRaises(ValueError, broadcast_shape_error) paddle.enable_static() class TestSubtractInplaceBroadcastError2(TestSubtractInplaceBroadcastError): def init_data(self): self.x_numpy = np.random.rand(2, 1, 4).astype('float') self.y_numpy = np.random.rand(2, 3, 4).astype('float') class TestSubtractInplaceBroadcastError3(TestSubtractInplaceBroadcastError): def init_data(self): self.x_numpy = np.random.rand(5, 2, 1, 4).astype('float') self.y_numpy = np.random.rand(2, 3, 4).astype('float') class TestFloatElementwiseSubop(unittest.TestCase): def test_dygraph_sub(self): paddle.disable_static() np_a = np.random.random((2, 3, 4)).astype(np.float64) np_b = np.random.random((2, 3, 4)).astype(np.float64) tensor_a = paddle.to_tensor(np_a, dtype="float32") tensor_b = paddle.to_tensor(np_b, dtype="float32") # normal case: tensor - tensor expect_out = np_a - np_b actual_out = tensor_a - tensor_b np.testing.assert_allclose( actual_out, expect_out, rtol=1e-07, atol=1e-07 ) # normal case: tensor - scalar expect_out = np_a - 1 actual_out = tensor_a - 1 np.testing.assert_allclose( actual_out, expect_out, rtol=1e-07, atol=1e-07 ) # normal case: scalar - tenor expect_out = 1 - np_a actual_out = 1 - tensor_a np.testing.assert_allclose( actual_out, expect_out, rtol=1e-07, atol=1e-07 ) paddle.enable_static() class TestFloatElementwiseSubop1(unittest.TestCase): def test_dygraph_sub(self): paddle.disable_static() np_a = np.random.random((2, 3, 4)).astype(np.float32) np_b = np.random.random((2, 3, 4)).astype(np.float32) tensor_a = paddle.to_tensor(np_a, dtype="float32") tensor_b = paddle.to_tensor(np_b, dtype="float32") # normal case: nparray - tenor expect_out = np_a - np_b actual_out = np_a - tensor_b np.testing.assert_allclose( actual_out, expect_out, rtol=1e-07, atol=1e-07 ) # normal case: tenor - nparray actual_out = tensor_a - np_b np.testing.assert_allclose( actual_out, expect_out, rtol=1e-07, atol=1e-07 ) paddle.enable_static() if __name__ == '__main__': paddle.enable_static() unittest.main()