parallel_executor.cc 12.0 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
C
chengduoZH 已提交
16
#include <string>
17
#include <tuple>
Q
qiaolongfei 已提交
18
#include <vector>
C
chengduo 已提交
19
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
20

X
clean  
Xin Pan 已提交
21
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
22

Y
Yu Yang 已提交
23
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
24
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
25
#endif
Y
Yang Yang 已提交
26

Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
yuyang18 已提交
29
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
31
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
32

Y
Yang Yang 已提交
33
namespace paddle {
Y
Yu Yang 已提交
34 35
namespace framework {

Y
Yu Yang 已提交
36 37 38
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
39
      : places_(places) {}
Y
Yu Yang 已提交
40 41 42 43

  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
  Scope *global_scope_;
Y
Yu Yang 已提交
44
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
45

Y
Yu Yang 已提交
46
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
47
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
48
#endif
C
chengduoZH 已提交
49 50
  bool own_local_scope_;
  bool use_cuda_;
51
  bool use_all_reduce_;
Y
Yu Yang 已提交
52 53
};

54 55 56 57
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
58
ParallelExecutor::ParallelExecutor(
59
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
60
    const std::unordered_set<std::string> &params,
61 62
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
63
    Scope *scope, const std::vector<Scope *> &local_scopes,
64
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
65
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
66
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
67
  member_->global_scope_ = scope;
68
  member_->use_cuda_ = exec_strategy.use_cuda_;
69 70 71 72 73 74 75 76
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;

  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
  }
Y
Yu Yang 已提交
77

78
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
79
  // Create local scopes
80
  if (local_scopes.empty()) {
C
chengduoZH 已提交
81
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
82 83
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
84
      member_->local_scopes_.emplace_back(&scope->NewScope());
85 86
    }
  } else {
C
chengduoZH 已提交
87
    member_->own_local_scope_ = false;
88 89
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
90
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
91
    }
Y
Yu Yang 已提交
92 93
  }

C
chengduoZH 已提交
94
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
95 96
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
97 98 99 100 101 102 103 104 105
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
    ncclUniqueId *nccl_id = nullptr;
    if (nccl_id_var != nullptr) {
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
    }
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
        member_->places_, nccl_id, num_trainers, trainer_id));
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
106
#endif
C
chengduoZH 已提交
107 108 109
  }

  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
110
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
111
  }
112
// Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
113

114
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
X
Xin Pan 已提交
115
// ncclOp
Y
yuyang18 已提交
116
#ifdef PADDLE_WITH_CUDA
117
  std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
X
Xin Pan 已提交
118
      main_program, member_->places_, loss_var_name, params,
119
      member_->local_scopes_, member_->use_cuda_, member_->nccl_ctxs_.get());
S
sneaxiy 已提交
120

S
sneaxiy 已提交
121 122 123 124
  graph = ir::PassRegistry::Instance()
              .Get("modify_op_lock_and_record_event_pass")
              ->Apply(std::move(graph));

S
sneaxiy 已提交
125 126 127 128 129 130 131 132 133 134 135
  auto max_memory_size = GetEagerDeletionThreshold();
  if (max_memory_size >= 0) {
    for (auto &place : member_->places_) {
      if (!platform::is_gpu_place(place)) continue;
      auto gpu_place = boost::get<platform::CUDAPlace>(place);
      if (gcs_[gpu_place.device] == nullptr) {
        ref_cnts_[gpu_place.device].reset(new details::ReferenceCountMap());
        cur_ref_cnts_[gpu_place.device].reset(
            new details::AtomicReferenceCountMap());
        gcs_[gpu_place.device].reset(
            new StreamGarbageCollector<Tensor>(gpu_place, max_memory_size));
S
sneaxiy 已提交
136 137
      }
    }
S
sneaxiy 已提交
138 139 140 141 142 143 144 145 146 147
    if (!gcs_.empty()) {
      auto ref_cnt_pass =
          ir::PassRegistry::Instance().Get("reference_count_pass");
      ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount, &ref_cnts_);
      ref_cnt_pass->SetNotOwned(details::kCurReferenceCount, &cur_ref_cnts_);
      ref_cnt_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
      graph = ref_cnt_pass->Apply(std::move(graph));
      graph->SetNotOwned("garbage_collector", &gcs_);
    }
  }
C
chengduoZH 已提交
148
#else
149 150 151
  std::unique_ptr<ir::Graph> graph =
      build_strategy.Apply(main_program, member_->places_, loss_var_name,
                           params, member_->local_scopes_, member_->use_cuda_);
X
Xin Pan 已提交
152

S
sneaxiy 已提交
153 154 155
  graph = ir::PassRegistry::Instance()
              .Get("modify_op_lock_and_record_event_pass")
              ->Apply(std::move(graph));
Y
Yu Yang 已提交
156
#endif
C
chengduo 已提交
157

158 159 160 161 162 163 164 165 166 167 168
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
  std::vector<details::VariableInfo> var_infos;
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
    }
  }
W
Wu Yi 已提交
169 170 171 172 173 174
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
    PADDLE_ENFORCE_EQ(ir::GraphNum(*graph), 1,
                      "The number of graph should be only one");
  }

Y
yuyang18 已提交
175 176 177 178 179 180
  if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
    member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, places, std::move(graph)));
  } else {
    member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, places, std::move(graph)));
C
chengduoZH 已提交
181
  }
Y
yuyang18 已提交
182 183 184 185

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
      exec_strategy, member_->local_scopes_, std::move(var_infos),
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
186 187
}

Y
Yancey1989 已提交
188
void ParallelExecutor::BCastParamsToDevices(
189
    const std::unordered_set<std::string> &vars) const {
X
Xin Pan 已提交
190
  // the initializing bcast, all vars would be bcast from device(0).
191
  for (auto &var : vars) {
X
Xin Pan 已提交
192
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
193
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
194 195 196 197
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
198 199 200 201
    if (!main_tensor.IsInitialized()) {
      VLOG(3) << "one in var not inited, return!";
      continue;
    }
202 203
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
C
chengduoZH 已提交
204
#ifdef PADDLE_WITH_CUDA
205
      std::vector<void *> buffers;
206 207 208 209 210
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
211

X
Xin Pan 已提交
212
        if (i == 0) {
213 214
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
215
          auto local_scope = member_->local_scopes_[i];
216
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
217
          t->Resize(dims);
218
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
219
        }
220
        buffers.push_back(buffer);
221
      }
222

223 224 225 226 227 228
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
229 230
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
231
        }
232
        member_->nccl_ctxs_->WaitAll();
233
      }
C
chengduoZH 已提交
234 235 236
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
237 238
    } else {
      platform::CPUPlace cpu;
Y
Yancey1989 已提交
239
      for (size_t i = 0; i < member_->places_.size(); ++i) {
X
Xin Pan 已提交
240
        if (i == 0) continue;
Y
Yancey1989 已提交
241

242 243
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
244 245 246 247

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
248 249 250 251 252 253
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
254
      }
Y
Stash  
Yu Yang 已提交
255 256
    }
  }
Y
Yu Yang 已提交
257
}
Y
Yu Yang 已提交
258

Y
Yu Yang 已提交
259 260
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
X
Xin Pan 已提交
261
  platform::RecordBlock b(0);
S
sneaxiy 已提交
262 263 264
#ifdef PADDLE_WITH_CUDA
  if (!gcs_.empty()) {
    ResetReferenceCount();
S
sneaxiy 已提交
265 266 267 268 269 270 271
    for (auto &pair : cur_ref_cnts_) {
      auto &name_map = *(pair.second);
      for (auto &fetch_name : fetch_tensors) {
        name_map.erase(fetch_name);
      }
      name_map.erase(fetched_var_name);
    }
S
sneaxiy 已提交
272 273
  }
#endif
S
sneaxiy 已提交
274 275 276
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
277
}
Y
Yu Yang 已提交
278

Y
Yu Yang 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
298 299 300 301 302
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
303 304
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
305
      auto t =
Y
Yu Yang 已提交
306
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
307 308
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
309 310 311 312
    }
  }
}

313
ParallelExecutor::~ParallelExecutor() {
314 315
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
C
chengduozh 已提交
316 317
  }

C
chengduoZH 已提交
318
  if (member_->own_local_scope_) {
319
    for (size_t i = 1; i < member_->local_scopes_.size(); ++i) {
M
minqiyang 已提交
320 321 322 323
      Scope *local_scope = member_->local_scopes_[i];
      if (member_->global_scope_->HasKid(local_scope)) {
        member_->global_scope_->DeleteScope(local_scope);
      }
324 325
    }
  }
S
sneaxiy 已提交
326

S
sneaxiy 已提交
327 328
  // member_ must be destructed before gcs_ since the destructor of
  // ReferenceCountOpHandle use raw pointers of gcs_ inside.
S
sneaxiy 已提交
329
  member_.reset();
330 331
}

Y
Yu Yang 已提交
332
}  // namespace framework
Y
Yang Yang 已提交
333
}  // namespace paddle
S
sneaxiy 已提交
334 335

USE_PASS(modify_op_lock_and_record_event_pass);
S
sneaxiy 已提交
336 337 338
#ifdef PADDLE_WITH_CUDA
USE_PASS(reference_count_pass);
#endif