parallel_executor.cc 10.9 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
Q
qiaolongfei 已提交
16

C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
Y
Yu Yang 已提交
20

X
clean  
Xin Pan 已提交
21
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
22
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
X
Xin Pan 已提交
23

Y
Yu Yang 已提交
24
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
25
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
26
#endif
Y
Yang Yang 已提交
27

Y
yuyang18 已提交
28
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
29
#include "paddle/fluid/framework/details/ssa_graph_builder_factory.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
31
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
32

Y
Yang Yang 已提交
33
namespace paddle {
Y
Yu Yang 已提交
34 35
namespace framework {

Y
Yu Yang 已提交
36 37 38
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
39
      : places_(places) {}
Y
Yu Yang 已提交
40 41 42 43

  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
  Scope *global_scope_;
Y
Yu Yang 已提交
44
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
45

Y
Yu Yang 已提交
46
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
47
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
48
#endif
C
chengduoZH 已提交
49 50
  bool own_local_scope_;
  bool use_cuda_;
51
  bool use_all_reduce_;
Y
Yu Yang 已提交
52 53
};

54 55 56 57
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
58
ParallelExecutor::ParallelExecutor(
59
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
60
    const std::unordered_set<std::string> &params,
61 62
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
63
    Scope *scope, const std::vector<Scope *> &local_scopes,
64
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
65
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
66
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
67
  member_->global_scope_ = scope;
68
  member_->use_cuda_ = exec_strategy.use_cuda_;
69 70 71 72 73 74 75 76
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;

  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
  }
Y
Yu Yang 已提交
77

78
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
79
  // Create local scopes
80
  if (local_scopes.empty()) {
C
chengduoZH 已提交
81
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
82 83
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
84
      member_->local_scopes_.emplace_back(&scope->NewScope());
85 86
    }
  } else {
C
chengduoZH 已提交
87
    member_->own_local_scope_ = false;
88 89
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
90
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
91
    }
Y
Yu Yang 已提交
92 93
  }

C
chengduoZH 已提交
94
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
95 96
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
97 98 99 100 101 102 103 104 105
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
    ncclUniqueId *nccl_id = nullptr;
    if (nccl_id_var != nullptr) {
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
    }
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
        member_->places_, nccl_id, num_trainers, trainer_id));
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
106
#endif
C
chengduoZH 已提交
107 108 109
  }

  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
110
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
111
  }
Y
yuyang18 已提交
112 113 114 115 116 117 118 119 120 121
  // Startup Program has been run. All local scopes has correct parameters.

  // Step 2. Create vars in each scope;
  std::vector<details::VariableInfo> var_infos;
  for (auto *var : main_program.Block(0).AllVars()) {
    var_infos.emplace_back();
    var_infos.back().name_ = var->Name();
    var_infos.back().type_ = var->GetType();
    var_infos.back().persistable_ = var->Persistable();
  }
Y
Yu Yang 已提交
122

Y
yuyang18 已提交
123 124 125
  // Step 3. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  details::SSAGraphBuilderFactory builder_factory(
Y
Yancey1989 已提交
126
      member_->places_, loss_var_name, params, member_->local_scopes_,
Y
yuyang18 已提交
127
      build_strategy);
C
chengduoZH 已提交
128
  if (member_->use_cuda_) {
Y
yuyang18 已提交
129
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
130 131
    builder_factory.SetNCCLContextMap(member_->nccl_ctxs_.get());
#else
132
    PADDLE_THROW("Not compiled with CUDA.");
Y
Yu Yang 已提交
133
#endif
C
chengduoZH 已提交
134
  }
X
Xin Pan 已提交
135

X
Xin Pan 已提交
136
  std::unique_ptr<ir::Graph> graph(new ir::Graph(main_program));
X
Xin Pan 已提交
137
  if (!build_strategy.debug_graphviz_path_.empty()) {
X
Xin Pan 已提交
138 139
    auto viz_pass = ir::PassRegistry::Instance().Get("graph_viz_pass");
    const std::string graph_path = string::Sprintf(
X
Xin Pan 已提交
140
        "%s%s", build_strategy.debug_graphviz_path_.c_str(), "_original_graph");
X
Xin Pan 已提交
141 142
    viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path));
    graph = viz_pass->Apply(std::move(graph));
X
Xin Pan 已提交
143
  }
X
Xin Pan 已提交
144 145

  builder_ = builder_factory.Create();
X
clean  
Xin Pan 已提交
146
  graph = builder_->Apply(std::move(graph));
X
Xin Pan 已提交
147

X
Xin Pan 已提交
148
  if (!build_strategy.debug_graphviz_path_.empty()) {
X
Xin Pan 已提交
149 150
    auto viz_pass = ir::PassRegistry::Instance().Get("graph_viz_pass");
    const std::string graph_path = string::Sprintf(
X
Xin Pan 已提交
151
        "%s%s", build_strategy.debug_graphviz_path_.c_str(), "_before_exec");
X
Xin Pan 已提交
152 153
    viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path));
    graph = viz_pass->Apply(std::move(graph));
X
Xin Pan 已提交
154
  }
X
Xin Pan 已提交
155

Y
Yu Yang 已提交
156
  member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
X
Xin Pan 已提交
157
      exec_strategy, member_->local_scopes_, places, std::move(graph)));
Y
yuyang18 已提交
158 159 160
  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
      exec_strategy, member_->local_scopes_, std::move(var_infos),
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
161 162
}

Y
Yancey1989 已提交
163
void ParallelExecutor::BCastParamsToDevices(
164
    const std::unordered_set<std::string> &vars) const {
165
  // the initializing bcast, all vars would be bcast from device(0),
Y
yi.wu 已提交
166
  // otherwise
167
  // bcast from the specified device.
Y
wip  
yi.wu 已提交
168
  bool initializing = builder_.get() == nullptr ? true : false;
Y
Yu Yang 已提交
169

170
  for (auto &var : vars) {
171 172
    int var_dev_id =
        builder_.get() == nullptr ? -1 : builder_->GetVarDeviceID(var);
Y
yi.wu 已提交
173
    if (!initializing && var_dev_id == -1) continue;
174 175

    framework::Variable *main_var = nullptr;
Y
yi.wu 已提交
176
    if (initializing) {
177 178 179 180 181
      main_var = member_->local_scopes_[0]->FindVar(var);
    } else {
      main_var = member_->local_scopes_[var_dev_id]->FindVar(var);
    }

J
JiayiFeng 已提交
182
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
183 184 185 186 187 188
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
C
chengduoZH 已提交
189
#ifdef PADDLE_WITH_CUDA
190
      std::vector<void *> buffers;
191 192 193 194 195
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
196

Y
yi.wu 已提交
197
        if ((initializing && i == 0) ||
Y
update  
yi.wu 已提交
198
            (!initializing && static_cast<int>(i) == var_dev_id)) {
199 200
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
201
          auto local_scope = member_->local_scopes_[i];
202
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
203
          t->Resize(dims);
204
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
205
        }
206
        buffers.push_back(buffer);
207
      }
208

209 210 211 212 213 214
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
Y
yi.wu 已提交
215 216 217 218
          if (initializing) {
            platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                         nccl_ctx.comm_, nccl_ctx.stream());
          } else {
Y
update  
yi.wu 已提交
219
            if (var_dev_id >= 0) {
Y
yi.wu 已提交
220 221 222 223 224
              platform::dynload::ncclBcast(buffers[i], numel, data_type,
                                           var_dev_id, nccl_ctx.comm_,
                                           nccl_ctx.stream());
            }
          }
225
        }
226
        member_->nccl_ctxs_->WaitAll();
227
      }
228

C
chengduoZH 已提交
229 230 231
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
232 233
    } else {
      platform::CPUPlace cpu;
Y
Yancey1989 已提交
234 235 236 237 238
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        if ((initializing && i == 0) ||
            (!initializing && static_cast<int>(i) == var_dev_id))
          continue;

239 240
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
241 242 243 244

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
245 246 247 248 249 250
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
251
      }
Y
Stash  
Yu Yang 已提交
252 253
    }
  }
Y
Yu Yang 已提交
254
}
Y
Yu Yang 已提交
255

Y
Yu Yang 已提交
256 257
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
X
Xin Pan 已提交
258
  platform::RecordBlock b(0);
Y
Yu Yang 已提交
259 260 261
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
262
}
Y
Yu Yang 已提交
263

Y
Yu Yang 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
283 284 285 286 287
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
288 289
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
290
      auto t =
Y
Yu Yang 已提交
291
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
292 293
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
294 295 296 297
    }
  }
}

298
ParallelExecutor::~ParallelExecutor() {
C
chengduoZH 已提交
299
  if (member_->own_local_scope_) {
300 301 302 303 304 305
    for (size_t i = 1; i < member_->local_scopes_.size(); ++i) {
      member_->global_scope_->DeleteScope(member_->local_scopes_[i]);
    }
  }
}

Y
Yu Yang 已提交
306
}  // namespace framework
Y
Yang Yang 已提交
307
}  // namespace paddle
X
Xin Pan 已提交
308 309

USE_PASS(graph_viz_pass);