parallel_executor.cc 8.0 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
Q
qiaolongfei 已提交
16

C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
Y
Yu Yang 已提交
20

Y
Yu Yang 已提交
21
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
22
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
23
#endif
Y
Yang Yang 已提交
24

Y
Yu Yang 已提交
25
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
Y
yuyang18 已提交
26
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
27
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
28
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
29

Y
Yang Yang 已提交
30
namespace paddle {
Y
Yu Yang 已提交
31 32
namespace framework {

Y
Yu Yang 已提交
33 34 35
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
36
      : places_(places) {}
Y
Yu Yang 已提交
37 38 39 40

  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
  Scope *global_scope_;
Y
Yu Yang 已提交
41
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
42

Y
Yu Yang 已提交
43
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
44
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
45
#endif
46
  bool own_local_scope;
Y
Yu Yang 已提交
47 48
};

49 50 51 52
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
53
ParallelExecutor::ParallelExecutor(
54
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
55
    const std::unordered_set<std::string> &params,
56 57
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
58
    Scope *scope, const std::vector<Scope *> &local_scopes,
59
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
60
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
61
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
62
  member_->global_scope_ = scope;
Y
Yu Yang 已提交
63

64
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
65
  // Create local scopes
66
  if (local_scopes.empty()) {
67
    member_->own_local_scope = true;
Y
Yu Yang 已提交
68 69
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
70
      member_->local_scopes_.emplace_back(&scope->NewScope());
71 72
    }
  } else {
73
    member_->own_local_scope = false;
74 75
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
76
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
77
    }
Y
Yu Yang 已提交
78 79
  }

Y
Yu Yang 已提交
80 81
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
T
typhoonzero 已提交
82
  auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
T
typhoonzero 已提交
83 84 85 86 87 88
  ncclUniqueId *nccl_id = nullptr;
  if (nccl_id_var != nullptr) {
    nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
  }
  member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
      member_->places_, nccl_id, num_trainers, trainer_id));
Y
Yu Yang 已提交
89
#endif
90 91 92
  if (platform::is_gpu_place(places[0]) && member_->local_scopes_.size() != 1 &&
      local_scopes.empty()) {  // Is CUDA
    BCastParamsToGPUs(bcast_vars);
Y
Yu Yang 已提交
93
  }
Y
yuyang18 已提交
94 95 96 97 98 99 100 101 102 103
  // Startup Program has been run. All local scopes has correct parameters.

  // Step 2. Create vars in each scope;
  std::vector<details::VariableInfo> var_infos;
  for (auto *var : main_program.Block(0).AllVars()) {
    var_infos.emplace_back();
    var_infos.back().name_ = var->Name();
    var_infos.back().type_ = var->GetType();
    var_infos.back().persistable_ = var->Persistable();
  }
Y
Yu Yang 已提交
104

Y
yuyang18 已提交
105
// Step 3. Convert main_program to SSA form and dependency graph. Also, insert
Y
Yu Yang 已提交
106 107
// ncclOp
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
108 109
  details::MultiDevSSAGraphBuilder builder(
      member_->places_, loss_var_name, params, member_->local_scopes_,
Y
yuyang18 已提交
110
      member_->nccl_ctxs_.get(), build_strategy);
Y
Yu Yang 已提交
111
#else
Y
yuyang18 已提交
112 113 114
  details::MultiDevSSAGraphBuilder builder(member_->places_, loss_var_name,
                                           params, member_->local_scopes_,
                                           build_strategy);
Y
Yu Yang 已提交
115
#endif
Y
yuyang18 已提交
116

Y
Yu Yang 已提交
117
  auto graph = builder.Build(main_program);
Y
Yu Yang 已提交
118

Y
Yu Yang 已提交
119
  member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
Y
yuyang18 已提交
120
      exec_strategy, member_->local_scopes_, places, std::move(graph)));
Y
Yu Yang 已提交
121

Y
yuyang18 已提交
122 123 124
  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
      exec_strategy, member_->local_scopes_, std::move(var_infos),
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
125 126 127
}

void ParallelExecutor::BCastParamsToGPUs(
128
    const std::unordered_set<std::string> &vars) const {
Y
Yu Yang 已提交
129
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
130
  auto *main_scope = member_->local_scopes_[0];
Y
Yu Yang 已提交
131

132 133
  for (auto &var : vars) {
    auto *main_var = main_scope->FindVar(var);
J
JiayiFeng 已提交
134
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      platform::NCCLGroupGuard guard;
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
        if (i == 0) {
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
150
          auto local_scope = member_->local_scopes_[i];
151
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
152
          t->Resize(dims);
153
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
154
        }
155 156 157 158 159 160 161 162 163 164 165 166
        auto &nccl_ctx = member_->nccl_ctxs_->at(place);
        platform::dynload::ncclBcast(buffer, numel, data_type, 0,
                                     nccl_ctx.comm_, nccl_ctx.stream());
      }
    } else {
      platform::CPUPlace cpu;
      for (size_t i = 1; i < member_->places_.size(); ++i) {
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
        t->Resize(dims);
        t->mutable_data(cpu, main_tensor.type());
        paddle::framework::TensorCopy(main_tensor, cpu, t);
Y
Yu Yang 已提交
167
      }
Y
Stash  
Yu Yang 已提交
168
    }
Y
Yu Yang 已提交
169
    member_->nccl_ctxs_->WaitAll();
Y
Stash  
Yu Yang 已提交
170
  }
Y
Yu Yang 已提交
171 172 173 174
#else
  PADDLE_THROW("Not compiled with CUDA");
#endif
}
Y
Yu Yang 已提交
175

Y
Yu Yang 已提交
176 177
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
X
Xin Pan 已提交
178
  platform::RecordBlock b(0);
Y
Yu Yang 已提交
179 180 181
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
182
}
Y
Yu Yang 已提交
183

Y
Yu Yang 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
203 204 205 206 207
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
208 209
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
210
      auto t =
Y
Yu Yang 已提交
211
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
212 213
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
214 215 216 217
    }
  }
}

218 219 220 221 222 223 224 225
ParallelExecutor::~ParallelExecutor() {
  if (member_->own_local_scope) {
    for (size_t i = 1; i < member_->local_scopes_.size(); ++i) {
      member_->global_scope_->DeleteScope(member_->local_scopes_[i]);
    }
  }
}

Y
Yu Yang 已提交
226
}  // namespace framework
Y
Yang Yang 已提交
227
}  // namespace paddle