device_context.h 27.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#include "paddle/fluid/platform/dynload/cusparse.h"
28
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
29
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
30
#endif
31
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Q
QI JUN 已提交
32
#endif
D
dzhwinter 已提交
33

34
#ifdef PADDLE_WITH_HIP
35
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"  // NOLINT
36 37 38 39 40
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
41
#include "paddle/fluid/platform/device/gpu/gpu_info.h"  // NOLINT
42 43
#endif

44 45 46 47
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
48
#ifdef PADDLE_WITH_MKLDNN
49
#include "dnnl.hpp"
50
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
51 52
#endif

53
#include <map>
W
wanghuancoder 已提交
54

55
#include "glog/logging.h"
Y
Yi Wang 已提交
56 57
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
58
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
59
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
60
#endif
61
#ifdef PADDLE_WITH_ASCEND_CL
62 63
#include "paddle/fluid/platform/device/npu/enforce_npu.h"
#include "paddle/fluid/platform/device/npu/npu_stream.h"
64
#endif
J
jianghaicheng 已提交
65 66 67
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/device.h"
#endif
Q
qijun 已提交
68
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
69

W
wanghuancoder 已提交
70 71 72 73 74
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

75
#ifdef PADDLE_WITH_XPU
76 77
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
78 79
#endif

80 81
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
82
#include "paddle/fluid/platform/device/npu/npu_info.h"
83 84
#endif

Q
QI JUN 已提交
85 86 87
namespace paddle {
namespace platform {

88
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
89 90 91 92
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
93
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
94 95 96 97
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
98 99
#endif  // PADDLE_WITH_CUDA

100 101 102 103
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
104
  NPU = 3,
J
jianghaicheng 已提交
105
  IPU = 4,
F
fwenguang 已提交
106 107 108
  MLU = 5,

  MAX_DEVICE_TYPES = 6,
109 110
};

111 112
DeviceType Place2DeviceType(const platform::Place& place);

113 114 115
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
116
constexpr DeviceType kNPU = DeviceType::NPU;
J
jianghaicheng 已提交
117
constexpr DeviceType kIPU = DeviceType::IPU;
F
fwenguang 已提交
118
constexpr DeviceType kMLU = DeviceType::MLU;
119

Q
QI JUN 已提交
120 121
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
122
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
123
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
124

125
  virtual void Wait() const {}
Q
QI JUN 已提交
126 127
};

Q
qijun 已提交
128 129
class CPUDeviceContext : public DeviceContext {
 public:
130
  CPUDeviceContext();
Q
qijun 已提交
131
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
132

133
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
134

L
liaogang 已提交
135
  Place GetPlace() const override;
Y
Yu Yang 已提交
136

Q
qijun 已提交
137
 private:
D
dzhwinter 已提交
138
  CPUPlace place_;
Q
qijun 已提交
139
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
140 141
};

Y
Yang Yu 已提交
142 143 144 145 146 147 148 149
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

J
jianghaicheng 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
// Graphcore IPU
#ifdef PADDLE_WITH_IPU
class IPUDeviceContext : public DeviceContext {
 public:
  IPUDeviceContext() = delete;
  explicit IPUDeviceContext(IPUPlace place);
  virtual ~IPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;
  int DeviceId() const { return device_.getId(); }

 private:
  IPUPlace place_;
  platform::ipu::Device device_;
};
template <>
struct DefaultDeviceContextType<platform::IPUPlace> {
  using TYPE = IPUDeviceContext;
};
F
fwenguang 已提交
171
#endif
J
jianghaicheng 已提交
172

F
fwenguang 已提交
173 174 175 176 177
#ifdef PADDLE_WITH_MLU
class MLUDeviceContext;

template <>
struct DefaultDeviceContextType<platform::MLUPlace>;
J
jianghaicheng 已提交
178 179
#endif

180
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
181
namespace xpu = baidu::xpu::api;
182 183 184 185 186 187
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
Q
QingshuChen 已提交
188
  XPUVersion xpu_version() const { return xpu_version_; }
189 190 191 192 193 194
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

195
#ifdef PADDLE_WITH_XPU_BKCL
196
  /*! \brief  Return bkcl context. */
197 198 199 200 201 202
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

203 204
 private:
  XPUPlace place_;
Q
QingshuChen 已提交
205
  XPUVersion xpu_version_;
206
  xpu::Context* context_;
207 208 209
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
210 211 212 213 214 215 216 217 218 219 220 221 222

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

223 224 225 226 227 228 229 230
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  aclrtContext context() const;
231

232 233 234 235 236 237
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

238 239 240 241 242 243 244
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

260 261 262
 private:
  NPUPlace place_;
  aclrtContext context_;
263 264 265 266

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

  Place GetPlace() const override;

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

303 304 305
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
306
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
307
class EigenCudaStreamDevice;
S
sneaxiy 已提交
308

309 310 311 312 313
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
314 315
      const stream::Priority& priority = stream::Priority::kNormal,
      const stream::StreamFlag& flag = stream::StreamFlag::kDefaultFlag);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

331 332 333 334 335 336
  stream::CUDAStream* SetStream(stream::CUDAStream* new_stream_ptr) {
    auto* old_stream_ptr = stream_.release();
    stream_.reset(new_stream_ptr);
    return old_stream_ptr;
  }

337
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
338

339 340 341
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
342
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
343
#endif
344

345
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
346 347 348
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
349
#endif
G
Guo Sheng 已提交
350

351 352 353 354 355 356 357 358 359 360 361
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
362 363 364 365 366
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

386 387 388 389 390
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
391 392 393 394 395 396 397
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
398 399 400 401 402
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
403 404
    }
  }
405
#endif
406 407 408

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
409 410
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
411
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenGetVersion(
412 413
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
414 415
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
416 417 418 419
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
420 421
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
422
            << ", but MIOPEN version in your machine is "
423
            << local_miopen_version / 100 << "." << local_miopen_version % 100
424 425 426 427
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
428 429
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_GPU_SUCCESS(
430 431
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
432 433 434 435 436 437 438 439 440 441 442 443 444
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
445 446
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
447
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
448
#endif
449 450 451 452 453
    } else {
      cudnn_handle_ = nullptr;
    }
  }

454
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
455
  void InitCuSolverContext() {
456 457
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
458 459
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
460
#endif
G
Guo Sheng 已提交
461

462 463
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
464
#ifdef PADDLE_WITH_HIP
465
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
466
#else
467
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
468
#endif
469 470 471 472 473 474 475
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
476
    cublas_tf32_tensor_core_handle_.reset();
477 478
  }

479
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
480 481
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
482
      PADDLE_ENFORCE_GPU_SUCCESS(
G
Guo Sheng 已提交
483 484 485
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
486
#endif
G
Guo Sheng 已提交
487

488 489 490 491
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
492 493 494
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
495
  cudnnHandle_t cudnn_handle_;
496
#endif
497 498
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
499
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
500
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
501
  cusolverDnHandle_t cusolver_dn_handle_;
502
#endif
503 504 505
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

506
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
507
 public:
D
dzhwinter 已提交
508
  explicit CUDADeviceContext(CUDAPlace place);
509
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
510

511
  /*! \brief  Wait for all operations completion in the stream. */
512
  void Wait() const override;
Q
QI JUN 已提交
513

514
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
515
  Place GetPlace() const override;
516

K
Kexin Zhao 已提交
517
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
518 519
  int GetComputeCapability() const;

520 521 522
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

523 524 525 526 527 528
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

529 530 531
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

532 533 534
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

535 536 537
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
538
    return context()->CublasCall(callback);
539 540 541 542 543 544 545 546 547
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
548
    return context()->TensorCoreCublasCallIfAvailable(callback);
549
  }
S
sneaxiy 已提交
550

551 552 553 554
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
555
  cudnnHandle_t cudnn_handle() const;
556
#endif
557

558 559 560 561
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
562
  cublasHandle_t cublas_handle() const;
563
#endif
564

S
sneaxiy 已提交
565 566 567 568 569 570 571 572 573
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

574
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
575
  cusolverDnHandle_t cusolver_dn_handle() const;
576
#endif
G
Guo Sheng 已提交
577

Q
init  
qijun 已提交
578
  /*! \brief  Return cuda stream in the device context. */
579
  gpuStream_t stream() const;
Q
QI JUN 已提交
580

581
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
582 583 584 585 586
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
587
#endif
Q
qingqing01 已提交
588

Y
Yu Yang 已提交
589
  template <typename Callback>
590
  void RecordEvent(gpuEvent_t ev, Callback callback) const {
591
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
592 593
  }

S
sneaxiy 已提交
594 595
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
596 597 598 599 600
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
601 602
  }

603
  void ResetDefaultContext(const stream::Priority& priority) {
604 605 606
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

607
  void ResetThreadContext(const stream::Priority& priority) {
608 609 610 611 612 613 614 615 616 617
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
618

Q
QI JUN 已提交
619
 private:
D
dzhwinter 已提交
620
  CUDAPlace place_;
621
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
622

623 624 625 626 627 628
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
629

630 631
  mutable std::mutex cudnn_handle_mtx_;

632
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
633 634 635 636 637 638
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
639
#endif
Q
qingqing01 已提交
640

C
chengduo 已提交
641 642 643 644 645
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
646
  int max_threads_per_block_;
647
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
648

649
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
650
};
Q
qijun 已提交
651

652 653
class CudnnWorkspaceHandle {
 public:
654 655
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
656 657 658 659 660 661 662 663

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
664 665 666 667
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
668 669 670 671 672 673 674 675 676 677 678 679 680
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

681
  void ReallocWorkspace(size_t required_workspace_bytes);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
698
  std::mutex* mtx_;
699 700
};

Y
Yang Yu 已提交
701 702
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
703
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
704 705
};

C
chengduoZH 已提交
706
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
707 708 709 710 711 712
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
713

C
chengduoZH 已提交
714 715 716 717 718 719 720 721 722 723 724
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
725
#endif
Q
qijun 已提交
726

T
tensor-tang 已提交
727
#ifdef PADDLE_WITH_MKLDNN
728 729 730 731 732 733

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
734
    bool said_once = false;
735 736 737 738 739 740 741 742 743 744 745
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
746
    // MKL-DNN stream used for execution of primitives (per-thread)
747 748
    dnnl::engine cur_engine;
    dnnl::stream cur_stream;
J
Jacek Czaja 已提交
749 750
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
751
    void* exec_ptr_ = nullptr;
752 753

    Body();
754
    ~Body();
755 756 757 758 759 760
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
761
    void log_lib_version(void);
762 763
    const dnnl::engine& get_engine(void);
    dnnl::stream& get_stream(void);
J
Jacek Czaja 已提交
764 765 766 767
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
768 769
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
785

T
tensor-tang 已提交
786 787
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
788 789 790 791 792 793 794 795 796 797
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
798
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
799 800 801
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
802
  using ShapeBlob = umap_key_string_t<KeyBlob>;
803 804
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

805 806 807 808
  // Auxillary two-level structure (shape, executor) to easier control
  // clearing cache objects related to specific executor

  using ExecKey = void*;
809
  using ExecMapCacheIterPair = std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>;
810 811 812
  using ExecMap =
      std::unordered_map<ExecKey, std::vector<ExecMapCacheIterPair>>;
  using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;
813

T
tensor-tang 已提交
814 815 816
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
817
  const dnnl::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
818

819
  // Register object to currently used executor's map
820 821
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
  void RemoveShapeEntriesWithExecutor(void) const;
822

823
  // Remove all entries from the blob map
824
  void ResetBlobMap(void* ptr);
825 826 827

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
828

829 830 831
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

832 833
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
834

835
  // Calculate number of oneDNN objects cached
836
  unsigned int GetCachedObjectsNumber(void) const;
837

838 839
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
840

841 842 843 844
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
845
 private:
846
  std::shared_ptr<BlobMap> p_blobmap_;
847 848
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
849
  std::shared_ptr<ExecShape> p_exec_items_;
850
  std::shared_ptr<std::mutex> p_mutex_;
851
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
852 853 854
};
#endif

D
dzhwinter 已提交
855 856 857 858 859
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
860
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
861 862 863
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
864 865 866 867
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
868
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
869 870 871 872 873 874
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

875 876
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
877
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
878
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
879

Y
Yang Yu 已提交
880 881 882 883 884 885 886
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

887 888
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
889 890
 private:
  static DeviceContextPool* pool;
891 892
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
893 894 895
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
896 897
}  // namespace platform
}  // namespace paddle