custom_operator.cc 43.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/custom_operator.h"

#include <algorithm>
#include <functional>
#include <iostream>
#include <map>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

28
#include "paddle/fluid/eager/api/utils/global_utils.h"
29
#include "paddle/fluid/framework/attribute.h"
30
#include "paddle/fluid/framework/convert_utils.h"
31 32 33
#include "paddle/fluid/framework/op_meta_info_helper.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
34
#include "paddle/fluid/framework/phi_utils.h"
35
#include "paddle/fluid/framework/tensor.h"
36
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
37 38
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
#include "paddle/fluid/string/string_helper.h"
39 40 41
#include "paddle/phi/api/all.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/core/compat/convert_utils.h"
42
#include "paddle/phi/core/tensor_utils.h"
43
#include "paddle/utils/any.h"
H
HongyuJia 已提交
44 45 46
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/phi/backends/device_manager.h"
#endif
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

namespace paddle {
namespace framework {

namespace detail {

// dynamic lib load func
template <typename T>
static T* DynLoad(void* handle, std::string name) {
  T* func = reinterpret_cast<T*>(dlsym(handle, name.c_str()));
#if !defined(_WIN32)
  auto errorno = dlerror();
#else
  auto errorno = GetLastError();
#endif  // !_WIN32
  PADDLE_ENFORCE_NOT_NULL(
63 64 65 66
      func,
      platform::errors::NotFound(
          "Failed to load dynamic operator library, error message(%s).",
          errorno));
67 68 69
  return func;
}

70
inline static bool IsDuplicableVar(const std::string& var_name) {
71 72 73 74
  std::string suffix = kTensorVectorSuffix;
  return var_name.rfind(suffix) != std::string::npos;
}

75 76
inline static std::string NoGrad(const std::string& var_name,
                                 bool is_double_grad = false) {
77
  std::string suffix = kGradVarSuffix;
78 79 80 81 82 83 84 85
  std::string new_out_suffix = kDoubleGradNewOutSuffix;
  std::string tmp_var_name(var_name);
  if (is_double_grad &&
      (tmp_var_name.rfind(new_out_suffix) != std::string::npos)) {
    tmp_var_name = tmp_var_name.substr(
        0, tmp_var_name.size() - /*kDoubleGradNewOutSuffix length*/ 4);
  }
  return tmp_var_name.substr(0, tmp_var_name.size() - kGradVarSuffixSize);
86 87
}

88 89 90 91 92 93 94 95 96 97 98
inline static bool IsGradVar(const std::string& var_name, bool is_double_grad) {
  std::string suffix = kGradVarSuffix;
  if (!is_double_grad) {
    return var_name.rfind(suffix) != std::string::npos;
  } else {
    // for double grad cases, the X@GRAD is not a grad var, X@GRAD@GRAD is a
    // grad var, here we remove a @GRAD suffix
    return NoGrad(var_name).rfind(suffix) != std::string::npos;
  }
}

99 100
inline static bool IsMemberOf(const std::vector<std::string>& vec,
                              const std::string& name) {
101 102 103
  return std::find(vec.cbegin(), vec.cend(), name) != vec.cend();
}

104
static std::vector<std::string> ParseAttrStr(const std::string& attr) {
105
  auto split_pos = attr.find_first_of(":");
106 107
  PADDLE_ENFORCE_NE(split_pos,
                    std::string::npos,
108 109 110 111 112 113 114 115 116 117
                    platform::errors::InvalidArgument(
                        "Invalid attribute string format. Attribute string "
                        "format is `<name>:<type>`."));

  std::vector<std::string> rlt;
  // 1. name
  rlt.emplace_back(string::trim_spaces(attr.substr(0, split_pos)));
  // 2. type
  rlt.emplace_back(string::trim_spaces(attr.substr(split_pos + 1)));

118
  VLOG(3) << "attr name: " << rlt[0] << ", attr type str: " << rlt[1];
119 120 121 122

  return rlt;
}

123 124 125 126 127 128 129 130
}  // namespace detail

////////////////// Kernel Define ////////////////////

// custom op kernel call function define
static void RunKernelFunc(const framework::ExecutionContext& ctx,
                          const paddle::KernelFunc& func,
                          const std::vector<std::string>& inputs,
131 132
                          const std::vector<std::string>& outputs,
                          const std::vector<std::string>& attrs) {
133
  VLOG(3) << "Custom Operator: Start run KernelFunc.";
134 135
  // prepare CustomOpKernelContext
  paddle::CustomOpKernelContext kernel_ctx;
136
  for (auto& in_name : inputs) {
137
    VLOG(3) << "Custom Operator: input name - " << in_name;
138
    if (detail::IsDuplicableVar(in_name)) {
139 140
      // return const std::vector<const phi::DenseTensor*>
      auto vec_x = ctx.MultiInput<phi::DenseTensor>(in_name);
141 142
      PADDLE_ENFORCE_NE(vec_x.empty(),
                        true,
143 144
                        platform::errors::NotFound(
                            "Input vector<tensor> (%s) is empty.", in_name));
145
      std::vector<paddle::experimental::Tensor> custom_vec_in;
146 147 148
      for (size_t i = 0; i < vec_x.size(); ++i) {
        auto* x = vec_x[i];
        PADDLE_ENFORCE_NOT_NULL(
149 150 151 152 153 154 155
            x,
            platform::errors::NotFound(
                "The %d-th tensor in input vector<tensor> (%s) is nullptr.",
                i,
                in_name));
        PADDLE_ENFORCE_EQ(x->IsInitialized(),
                          true,
156 157 158
                          platform::errors::InvalidArgument(
                              "The %d-th tensor in input vector<tensor> (%s) "
                              "is not initialized.",
159 160
                              i,
                              in_name));
161
        paddle::experimental::Tensor custom_t;
162
        custom_t.set_impl(std::make_shared<phi::DenseTensor>(*x));
163 164
        custom_vec_in.emplace_back(custom_t);
      }
165
      kernel_ctx.EmplaceBackInputs(std::move(custom_vec_in));
166
    } else {
167
      auto* x = ctx.Input<phi::DenseTensor>(in_name);
168 169 170 171 172
      PADDLE_ENFORCE_NOT_NULL(
          x,
          platform::errors::NotFound("Input tensor (%s) is nullptr.", in_name));
      PADDLE_ENFORCE_EQ(x->IsInitialized(),
                        true,
173 174
                        platform::errors::InvalidArgument(
                            "Input tensor (%s) is not initialized.", in_name));
175
      paddle::experimental::Tensor custom_in;
176
      custom_in.set_impl(std::make_shared<phi::DenseTensor>(*x));
177 178 179 180 181 182 183 184 185 186
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (custom_in.is_gpu_pinned()) {
        VLOG(3) << "Custom Operator: custom input is gpu pinned tensor";
        auto gpu_place = phi::GPUPlace(platform::GetCurrentDeviceId());
        auto custom_gpu_in = custom_in.copy_to(gpu_place, true);
        kernel_ctx.EmplaceBackInput(std::move(custom_gpu_in));
      } else {
        kernel_ctx.EmplaceBackInput(std::move(custom_in));
      }
#else
187
      kernel_ctx.EmplaceBackInput(std::move(custom_in));
188
#endif
189
    }
190 191
  }

192 193 194 195 196
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
197
      kernel_ctx.EmplaceBackAttr(ctx.Attr<bool>(attr_name));
198
    } else if (attr_type_str == "int") {
199
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int>(attr_name));
200
    } else if (attr_type_str == "float") {
201
      kernel_ctx.EmplaceBackAttr(ctx.Attr<float>(attr_name));
202
    } else if (attr_type_str == "int64_t") {
203
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int64_t>(attr_name));
204
    } else if (attr_type_str == "std::string") {
205
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::string>(attr_name));
206
    } else if (attr_type_str == "std::vector<int>") {
207
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int>>(attr_name));
208
    } else if (attr_type_str == "std::vector<float>") {
209
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<float>>(attr_name));
210
    } else if (attr_type_str == "std::vector<int64_t>") {
211
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int64_t>>(attr_name));
212
    } else if (attr_type_str == "std::vector<std::string>") {
213
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<std::string>>(attr_name));
214 215 216 217 218
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
219
          "`std::vector<float>`, `std::vector<int64_t>`, "
220 221 222 223 224
          "`std::vector<std::string>`, Please check whether "
          "the attribute data type and data type string are matched.",
          attr_type_str));
    }
  }
225

226 227
  VLOG(3) << "Custom Operator: push outputs into CustomOpKernelContext.";
  // cache the target tensor pointers
228
  std::vector<phi::DenseTensor*> true_out_ptrs;
229 230 231 232 233 234 235 236
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      PADDLE_ENFORCE(i == 0UL && outputs.size() == 1UL,
                     platform::errors::PreconditionNotMet(
                         "If custom operator's outputs contains `paddle::Vec("
                         ")` type, "
                         "it only can hold one output."));
237
      auto vec_out = ctx.MultiOutput<phi::DenseTensor>(out_name);
238 239
      PADDLE_ENFORCE_NE(vec_out.empty(),
                        true,
240 241 242 243 244 245 246 247
                        platform::errors::NotFound(
                            "Output vector<tensor> (%s) is empty.", out_name));
      std::vector<paddle::experimental::Tensor> custom_vec_out;
      for (size_t j = 0; j < vec_out.size(); ++j) {
        auto* out = vec_out[j];
        PADDLE_ENFORCE_NOT_NULL(
            out,
            platform::errors::NotFound(
248 249
                "The %d-th tensor in output vector<tensor> (%s) is nullptr.",
                j,
250 251 252 253
                out_name));
        true_out_ptrs.emplace_back(out);
        paddle::experimental::Tensor custom_t;
        // here only can copy the output tensor into context
254
        custom_t.set_impl(std::make_shared<phi::DenseTensor>(*out));
255 256 257 258
        custom_vec_out.emplace_back(custom_t);
      }
      kernel_ctx.EmplaceBackOutputs(std::move(custom_vec_out));
    } else {
259
      auto* out = ctx.Output<phi::DenseTensor>(out_name);
260 261 262
      PADDLE_ENFORCE_NOT_NULL(out,
                              platform::errors::NotFound(
                                  "Output tensor (%s) is nullptr.", out_name));
263 264 265
      true_out_ptrs.emplace_back(out);
      paddle::experimental::Tensor custom_out;
      // here only can copy the output tensor into context
266
      custom_out.set_impl(std::make_shared<phi::DenseTensor>(*out));
267 268 269
      kernel_ctx.EmplaceBackOutput(std::move(custom_out));
    }
  }
270

271 272 273 274 275 276 277
  try {
    VLOG(3) << "Custom Operator: Run ComputeFunc.";
    func(&kernel_ctx);

    // sync output tensor data into original output
    auto* calc_outs = kernel_ctx.AllMutableOutput();
    PADDLE_ENFORCE_EQ(
278 279
        true_out_ptrs.size(),
        calc_outs->size(),
280 281 282 283
        platform::errors::InvalidArgument(
            "The number of element in custom operator outputs is wrong, "
            "expected contains %d Tensors, but actually contains %d "
            "Tensors.",
284 285
            true_out_ptrs.size(),
            calc_outs->size()));
286 287 288
    for (size_t i = 0; i < true_out_ptrs.size(); ++i) {
      auto* true_out = true_out_ptrs.at(i);
      auto calc_out =
289
          std::dynamic_pointer_cast<phi::DenseTensor>(calc_outs->at(i).impl());
290
      // assign meta info
291
      auto* true_out_meta = phi::DenseTensorUtils::GetMutableMeta(true_out);
292 293 294
      true_out_meta->dims = calc_out->dims();
      true_out_meta->dtype = calc_out->dtype();
      true_out_meta->layout = calc_out->layout();
295 296
      true_out_meta->offset = calc_out->offset();
      // lod no need to be reset
297 298 299
      // reset holder if needed
      if (true_out->Holder() != calc_out->Holder()) {
        true_out->ResetHolder(calc_out->Holder());
300
      }
301 302 303 304 305 306 307
    }
  } catch (platform::EnforceNotMet& exception) {
    throw std::move(exception);
  } catch (std::exception& ex) {
    PADDLE_THROW(platform::errors::External("%s", ex.what()));
  } catch (...) {
    PADDLE_THROW(platform::errors::Fatal(
308
        "Custom operator raises an unknown exception in runtime."));
309 310 311
  }
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
static void RunInferShapeFunc(framework::InferShapeContext* ctx,
                              const paddle::InferShapeFunc& func,
                              const std::vector<std::string>& inputs,
                              const std::vector<std::string>& outputs,
                              const std::vector<std::string>& attrs) {
  std::vector<std::vector<int64_t>> input_shapes;
  std::vector<std::vector<std::vector<int64_t>>> vec_input_shapes;

  VLOG(3) << "Custom Operator: InferShape - get input ddim.";
  for (auto& in_name : inputs) {
    if (detail::IsDuplicableVar(in_name)) {
      OP_INOUT_CHECK(ctx->HasInputs(in_name), "Input", in_name, "Custom");
      auto vec_ddim = ctx->GetInputsDim(in_name);
      std::vector<std::vector<int64_t>> vec_shape;
      vec_shape.reserve(vec_ddim.size());
327 328
      std::transform(vec_ddim.begin(),
                     vec_ddim.end(),
329 330
                     std::back_inserter(vec_shape),
                     [&](const DDim& ddim) -> std::vector<int64_t> {
331
                       return phi::vectorize(ddim);
332 333 334 335 336
                     });
      vec_input_shapes.emplace_back(vec_shape);
    } else {
      OP_INOUT_CHECK(ctx->HasInput(in_name), "Input", in_name, "Custom");
      auto ddim = ctx->GetInputDim(in_name);
337
      input_shapes.emplace_back(phi::vectorize(ddim));
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
    }
  }

  std::vector<paddle::any> custom_attrs;
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
      custom_attrs.emplace_back(ctx->Attrs().Get<bool>(attr_name));
    } else if (attr_type_str == "int") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int>(attr_name));
    } else if (attr_type_str == "float") {
      custom_attrs.emplace_back(ctx->Attrs().Get<float>(attr_name));
    } else if (attr_type_str == "int64_t") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int64_t>(attr_name));
    } else if (attr_type_str == "std::string") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::string>(attr_name));
    } else if (attr_type_str == "std::vector<int>") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::vector<int>>(attr_name));
    } else if (attr_type_str == "std::vector<float>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<float>>(attr_name));
    } else if (attr_type_str == "std::vector<int64_t>") {
      // NOTE(chenweihang): InferShape can't support std::vector<int64_t>
      // attr type, because the input type is std::vector<int64_t>, only
      // can use one rule to parse std::vector<int64_t> parameter
      continue;
    } else if (attr_type_str == "std::vector<std::string>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<std::string>>(attr_name));
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
          "`std::vector<float>`, `std::vector<std::string>`, "
          "Please check whether the attribute data type and "
          "data type string are matched.",
          attr_type_str));
    }
  }

  VLOG(3) << "Custom Operator: InferShape - calc output ddim.";
  auto output_shapes = func(input_shapes, vec_input_shapes, custom_attrs);

  VLOG(3) << "Custom Operator: InferShape - set output ddim.";
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      std::vector<DDim> vec_ddim;
      vec_ddim.reserve(output_shapes.size());
390 391
      std::transform(output_shapes.begin(),
                     output_shapes.end(),
392 393
                     std::back_inserter(vec_ddim),
                     [&](const std::vector<int64_t>& shape) -> DDim {
394
                       return phi::make_ddim(shape);
395 396 397
                     });
      ctx->SetOutputsDim(out_name, vec_ddim);
    } else {
398
      ctx->SetOutputDim(out_name, phi::make_ddim(output_shapes[i]));
399 400 401 402
    }
  }
}

403 404 405 406 407 408 409 410 411
//////////////////// Operator Define /////////////////

class CustomOperator : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

  // Dummy infershape
  // Because it is a pure virtual function, it must be implemented
  void InferShape(framework::InferShapeContext* ctx) const override {
412
    VLOG(3) << "Custom Operator: Dummy infer shape of custom operator.";
413 414 415 416 417 418 419 420 421 422 423 424 425
  }

  /**
   * NOTE: [Skip the Kernel Selection]
   * Custom Op only registers one Op kernel on each device, so that the
   * data type selection and promotion that depends on GetExpectedKernelType,
   * as well as the adaptation of various other special situations,
   * need users to implement, to avoid users needs to implement
   * GetExpectedKernelType function when expanding other cases.
   * The RAW type is used here as the data type, indicating that
   * it can only be determined at runtime.
   */
  framework::OpKernelType GetExpectedKernelType(
426
      const framework::ExecutionContext& ctx) const override {
427 428 429 430 431 432 433 434 435
    return framework::OpKernelType(proto::VarType::RAW, ctx.GetPlace());
  }

  /**
   * NOTE: [Skip Input Variable Cast for DataType]
   * Because the kernel data type is RAW, we should skip the cast for
   * data type difference when PrepareData.
   */
  framework::OpKernelType GetKernelTypeForVar(
436
      const std::string& var_name,
437
      const phi::DenseTensor& tensor,
438
      const OpKernelType& expected_kernel_type) const override {
439
    return OpKernelType(expected_kernel_type.data_type_,
440 441
                        expected_kernel_type.place_,
                        tensor.layout());
442 443 444 445 446 447 448 449 450 451 452 453
  }
};

class CustomOpMaker : public OpProtoAndCheckerMaker {
 public:
  explicit CustomOpMaker(const std::vector<std::string>& inputs,
                         const std::vector<std::string>& outputs,
                         const std::vector<std::string>& attrs)
      : inputs_(inputs), outputs_(outputs), attrs_(attrs) {}

  void Make() override {
    for (auto& in_name : inputs_) {
454 455 456 457 458 459
      if (detail::IsDuplicableVar(in_name)) {
        AddInput(in_name, "The input " + in_name + "of Custom operator.")
            .AsDuplicable();
      } else {
        AddInput(in_name, "The input " + in_name + "of Custom operator.");
      }
460 461
    }
    for (auto& out_name : outputs_) {
462 463 464 465 466 467
      if (detail::IsDuplicableVar(out_name)) {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.")
            .AsDuplicable();
      } else {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.");
      }
468
    }
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
    for (auto& attr : attrs_) {
      auto attr_name_and_type = detail::ParseAttrStr(attr);
      auto attr_name = attr_name_and_type[0];
      auto attr_type_str = attr_name_and_type[1];
      if (attr_type_str == "bool") {
        AddAttr<bool>(attr_name, "custom operator bool attribute.")
            .SetDefault(false);
      } else if (attr_type_str == "int") {
        AddAttr<int>(attr_name, "custom operator int attribute.").SetDefault(1);
      } else if (attr_type_str == "float") {
        AddAttr<float>(attr_name, "custom operator float attribute.")
            .SetDefault(1.0f);
      } else if (attr_type_str == "int64_t") {
        AddAttr<int64_t>(attr_name, "custom operator int64_t attribute.")
            .SetDefault(1);
      } else if (attr_type_str == "std::string") {
        AddAttr<std::string>(attr_name, "custom operator int attribute.")
            .SetDefault("");
      } else if (attr_type_str == "std::vector<int>") {
        AddAttr<std::vector<int>>(attr_name,
                                  "custom operator std::vector<int> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<float>") {
        AddAttr<std::vector<float>>(
            attr_name, "custom operator std::vector<float> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<int64_t>") {
        AddAttr<std::vector<int64_t>>(
            attr_name, "custom operator std::vector<int64_t> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<std::string>") {
        AddAttr<std::vector<std::string>>(
            attr_name, "custom operator std::vector<std::string> attribute.")
            .SetDefault({});
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported `%s` type value as custom attribute now. "
            "Supported data types include `bool`, `int`, `float`, "
            "`int64_t`, `std::string`, `std::vector<int>`, "
508
            "`std::vector<float>`, `std::vector<int64_t>`, "
509 510 511 512 513
            "`std::vector<std::string>`, Please check whether "
            "the attribute data type and data type string are matched.",
            attr_type_str));
      }
    }
514 515 516
    AddComment(R"DOC(
Custom Operator.

517
According to the phi::DenseTensor operation function implemented by the user
518
independently of the framework, it is encapsulated into a framework
H
HongyuJia 已提交
519 520
operator to adapt to various execution scenarios such as dynamic graph
mode, static graph mode, and inference mode.
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

)DOC");
  }

 private:
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  std::vector<std::string> attrs_;
};

template <typename T>
class CustomGradOpMaker;

template <>
class CustomGradOpMaker<OpDesc> : public SingleGradOpMaker<OpDesc> {
 public:
  explicit CustomGradOpMaker(
538 539
      const OpDesc& fwd_op,
      const std::unordered_set<std::string>& no_grad_set,
540
      std::unordered_map<std::string, std::string>* grad_to_var,
541 542
      const std::vector<BlockDesc*>& grad_block,
      const std::string& name,
543
      const std::vector<std::string>& inputs,
544 545
      const std::vector<std::string>& outputs,
      bool is_double_grad)
546 547 548
      : SingleGradOpMaker<OpDesc>(fwd_op, no_grad_set, grad_to_var, grad_block),
        name_(name),
        inputs_(inputs),
549 550
        outputs_(outputs),
        is_double_grad_(is_double_grad) {}
551 552 553 554 555 556 557 558 559

 protected:
  void Apply(GradOpPtr<OpDesc> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
560
      VLOG(3) << "Custom Operator: GradOpDescMaker - input: " << in_name;
561
      if (!detail::IsGradVar(in_name, is_double_grad_)) {
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
577
      VLOG(3) << "Custom Operator: GradOpDescMaker - output: " << out_name;
578
      if (detail::IsDuplicableVar(out_name)) {
579
        grad_op->SetOutput(
580 581 582
            out_name,
            this->InputGrad(detail::NoGrad(out_name, is_double_grad_),
                            /*drop_empty_grad=*/false));
583
      } else {
584 585 586
        grad_op->SetOutput(
            out_name,
            this->InputGrad(detail::NoGrad(out_name, is_double_grad_)));
587
      }
588
    }
589
    grad_op->SetAttrMap(this->Attrs());
590 591 592 593 594 595
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
596
  bool is_double_grad_{false};
597 598 599 600 601 602 603 604 605 606 607 608
};

template <>
class CustomGradOpMaker<imperative::OpBase>
    : public SingleGradOpMaker<imperative::OpBase> {
 public:
  explicit CustomGradOpMaker(
      const std::string& type,
      const imperative::NameVarBaseMap& var_base_map_in,
      const imperative::NameVarBaseMap& var_base_map_out,
      const AttributeMap& attrs,
      const std::map<std::string, std::string>& inplace_map,
609 610 611 612
      const std::string& name,
      const std::vector<std::string>& inputs,
      const std::vector<std::string>& outputs,
      bool is_double_grad)
613 614 615 616
      : SingleGradOpMaker<imperative::OpBase>(
            type, var_base_map_in, var_base_map_out, attrs, inplace_map),
        name_(name),
        inputs_(inputs),
617 618
        outputs_(outputs),
        is_double_grad_(is_double_grad) {}
619 620 621 622 623 624 625 626 627 628 629 630 631 632

 protected:
  // TODO(chenweihang): The code is duplicated with the previous one, because
  // ere OpMaker's Input, Output and other methods are protected. Putting the
  // function implementation outside the class will cause the method to be
  // uncallable,
  // so it is still implemented in the class for the time being.
  void Apply(GradOpPtr<imperative::OpBase> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
633
      VLOG(3) << "Custom Operator: GradOpBaseMaker - input: " << in_name;
634
      if (!detail::IsGradVar(in_name, is_double_grad_)) {
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
650
      VLOG(3) << "Custom Operator: GradOpBaseMaker - output: " << out_name;
651 652
      grad_op->SetOutput(
          out_name, this->InputGrad(detail::NoGrad(out_name, is_double_grad_)));
653
    }
654
    grad_op->SetAttrMap(this->Attrs());
655 656 657 658 659 660
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
661
  bool is_double_grad_{false};
662 663 664 665
};

//////////// Operator and Kernel Register //////////////

666 667 668
static void RegisterOperatorKernelWithPlace(
    const std::string& name,
    const OperatorWithKernel::OpKernelFunc& op_kernel_func,
669 670
    const proto::VarType::Type type,
    const platform::Place& place) {
671
  OpKernelType key(type, place);
672
  VLOG(3) << "Custom Operator: op kernel key: " << key;
673
  OperatorWithKernel::AllOpKernels()[name][key] = op_kernel_func;
674 675
}

676 677 678 679 680 681
static void RegisterOperatorKernel(const std::string& name,
                                   const paddle::KernelFunc& kernel_func,
                                   const std::vector<std::string>& inputs,
                                   const std::vector<std::string>& outputs,
                                   const std::vector<std::string>& attrs,
                                   void* dso_handle) {
682
  VLOG(3) << "Custom Operator: op name in kernel: " << name;
683 684 685 686 687
  // NOTE [ Dummy Op Kernel Key ]
  // TODO(chenweihang): Because execute engine need get device context based
  // op_kernel_key.place_, so we should register kernel for each
  // device. But this is not entirely correct, if user only give a cpu kernel,
  // but call api in gpu device, it will cause error.
688 689 690
  OperatorWithKernel::OpKernelFunc op_kernel_func;
  if (kernel_func) {
    VLOG(3) << "Register custom operator " << name << " with kernel func";
691 692
    op_kernel_func = [kernel_func, inputs, outputs, attrs](
                         const framework::ExecutionContext& ctx) {
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
      VLOG(3) << "Custom Operator: run custom kernel func in lambda.";
      RunKernelFunc(ctx, kernel_func, inputs, outputs, attrs);
    };
  } else {
    VLOG(3) << "Register custom operator " << name
            << " with raw op kernel func";
    PADDLE_ENFORCE_NOT_NULL(
        dso_handle,
        platform::errors::InvalidArgument(
            "The dso handle must be provided if kernel_func is nullptr."));
    using OpKernelFuncPtr = void(const framework::ExecutionContext&);
    auto symbol_name = "PD_" + name + "_raw_op_kernel_func";
    auto* func = detail::DynLoad<OpKernelFuncPtr>(dso_handle, symbol_name);
    op_kernel_func = func;
  }
708 709
  RegisterOperatorKernelWithPlace(
      name, op_kernel_func, proto::VarType::RAW, platform::CPUPlace());
710
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
711 712
  RegisterOperatorKernelWithPlace(
      name, op_kernel_func, proto::VarType::RAW, platform::CUDAPlace());
713
#endif
714 715 716 717
#if defined(PADDLE_WITH_XPU)
  RegisterOperatorKernelWithPlace(
      name, op_kernel_func, proto::VarType::RAW, platform::XPUPlace());
#endif
H
HongyuJia 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  for (const auto& dev_type : device_types) {
    for (size_t dev_id = 0;
         dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
         dev_id++) {
      RegisterOperatorKernelWithPlace(name,
                                      op_kernel_func,
                                      proto::VarType::RAW,
                                      platform::CustomPlace(dev_type, dev_id));
    }
  }
#endif
731 732
}

733 734
void RegisterOperatorWithMetaInfo(const std::vector<OpMetaInfo>& op_meta_infos,
                                  void* dso_handle) {
735 736 737 738 739 740
  /* Op register */
  OpInfo info;

  auto& base_op_meta = op_meta_infos.front();

  auto op_name = OpMetaInfoHelper::GetOpName(base_op_meta);
741 742

  if (OpInfoMap::Instance().Has(op_name)) {
743
    LOG(WARNING) << "Operator (" << op_name << ") has been registered.";
744 745 746
    return;
  }

747 748 749 750 751 752 753
  auto& op_inputs = OpMetaInfoHelper::GetInputs(base_op_meta);
  auto& op_outputs = OpMetaInfoHelper::GetOutputs(base_op_meta);
  auto& op_attrs = OpMetaInfoHelper::GetAttrs(base_op_meta);
  auto& kernel_fn = OpMetaInfoHelper::GetKernelFn(base_op_meta);
  auto& infer_shape_func = OpMetaInfoHelper::GetInferShapeFn(base_op_meta);
  auto& infer_dtype_func = OpMetaInfoHelper::GetInferDtypeFn(base_op_meta);

754 755
  VLOG(3) << "Custom Operator: forward, op name: " << op_name;
  VLOG(3) << "Custom Operator: forward, op inputs: "
756
          << string::join_strings(op_inputs, ',');
757
  VLOG(3) << "Custom Operator: forward, op outputs: "
758
          << string::join_strings(op_outputs, ',');
759
  VLOG(3) << "Custom Operator: forward, op attrs: "
760
          << string::join_strings(op_attrs, ',');
761 762

  // Op
763 764
  info.creator_ = [](const std::string& op_name,
                     const VariableNameMap& inputs,
765 766 767 768 769 770 771 772 773 774 775 776 777
                     const VariableNameMap& outputs,
                     const AttributeMap& attrs) {
    return new CustomOperator(op_name, inputs, outputs, attrs);
  };

  // OpMaker
  info.proto_ = new proto::OpProto;
  info.proto_->set_type(op_name);

  info.checker_ = new OpAttrChecker();
  CustomOpMaker custom_maker(op_inputs, op_outputs, op_attrs);
  custom_maker(info.proto_, info.checker_);
  PADDLE_ENFORCE_EQ(
778 779
      info.proto_->IsInitialized(),
      true,
780 781
      platform::errors::PreconditionNotMet(
          "Fail to initialize %s's OpProto, because %s is not initialized.",
782 783
          op_name,
          info.proto_->InitializationErrorString()));
784 785

  // InferShape
786 787 788 789
  if (infer_shape_func == nullptr) {
    // use default InferShape
    info.infer_shape_ = [op_inputs, op_outputs](InferShapeContext* ctx) {
      PADDLE_ENFORCE_EQ(
790 791
          op_inputs.size(),
          1UL,
792 793 794
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
795 796 797
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
798 799 800
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));
      PADDLE_ENFORCE_EQ(
801 802
          op_outputs.size(),
          1UL,
803 804 805
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
806 807 808
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
809 810 811
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));

812
      VLOG(3) << "Custom Operator: Default InferShape - share ddim.";
813 814 815
      ctx->ShareDim(op_inputs[0], op_outputs[0]);
    };
  } else {
816 817
    info.infer_shape_ = [op_inputs, op_outputs, op_attrs, infer_shape_func](
                            InferShapeContext* ctx) {
818
      RunInferShapeFunc(ctx, infer_shape_func, op_inputs, op_outputs, op_attrs);
819 820
    };
  }
821 822

  // Infer Dtype
823
  if (infer_dtype_func == nullptr) {
824
    // use default InferDtype
825 826
    info.infer_var_type_ = [op_inputs, op_outputs](InferVarTypeContext* ctx) {
      PADDLE_ENFORCE_EQ(
827 828
          op_inputs.size(),
          1UL,
829 830 831
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
832 833 834
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
835 836 837
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));
      PADDLE_ENFORCE_EQ(
838 839
          op_outputs.size(),
          1UL,
840 841 842
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
843 844 845
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
846 847 848
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));

849
      VLOG(3) << "Custom Operator: InferDtype - share dtype.";
850 851 852 853
      auto dtype = ctx->GetInputDataType(op_inputs[0]);
      ctx->SetOutputDataType(op_outputs[0], dtype);
    };
  } else {
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
    info.infer_var_type_ =
        [op_inputs, op_outputs, infer_dtype_func](InferVarTypeContext* ctx) {
          std::vector<DataType> input_dtypes;
          std::vector<std::vector<DataType>> vec_input_dtypes;

          VLOG(3) << "Custom Operator: InferDtype - get input dtype.";
          for (auto& in_name : op_inputs) {
            if (detail::IsDuplicableVar(in_name)) {
              std::vector<DataType> vec_custom_dtype;
              for (size_t i = 0; i < ctx->InputSize(in_name); ++i) {
                auto dtype = ctx->GetInputDataType(in_name, i);
                vec_custom_dtype.emplace_back(
                    paddle::framework::TransToPhiDataType(dtype));
              }
              vec_input_dtypes.emplace_back(vec_custom_dtype);
            } else {
              auto dtype = ctx->GetInputDataType(in_name);
              input_dtypes.emplace_back(
                  paddle::framework::TransToPhiDataType(dtype));
            }
874
          }
875

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
          VLOG(3) << "Custom Operator: InferDtype - infer output dtype.";
          auto output_dtypes = infer_dtype_func(input_dtypes, vec_input_dtypes);

          VLOG(3) << "Custom Operator: InferDtype - set output dtype.";
          for (size_t i = 0; i < op_outputs.size(); ++i) {
            auto out_name = op_outputs[i];
            if (detail::IsDuplicableVar(out_name)) {
              for (size_t j = 0; j < output_dtypes.size(); ++j) {
                auto dtype =
                    paddle::framework::TransToProtoVarType(output_dtypes[i]);
                ctx->SetOutputDataType(out_name, dtype, j);
              }
            } else {
              ctx->SetOutputDataType(
                  out_name,
                  paddle::framework::TransToProtoVarType(output_dtypes[i]));
            }
893
          }
894
        };
895
  }
896 897

  // Kernel func
898 899
  RegisterOperatorKernel(
      op_name, kernel_fn, op_inputs, op_outputs, op_attrs, dso_handle);
900 901 902 903 904 905 906 907 908

  // If grad op or double grad op exists
  std::string cur_op_name = op_name;
  for (size_t i = 1; i < op_meta_infos.size(); ++i) {
    auto& cur_grad_op = op_meta_infos[i];

    auto& grad_op_name = OpMetaInfoHelper::GetOpName(cur_grad_op);
    auto& grad_op_inputs = OpMetaInfoHelper::GetInputs(cur_grad_op);
    auto& grad_op_outputs = OpMetaInfoHelper::GetOutputs(cur_grad_op);
909
    auto& grad_op_attrs = OpMetaInfoHelper::GetAttrs(cur_grad_op);
910
    auto& grad_kernel_fn = OpMetaInfoHelper::GetKernelFn(cur_grad_op);
911
    auto& grad_infer_shape_fn = OpMetaInfoHelper::GetInferShapeFn(cur_grad_op);
912

913 914
    VLOG(3) << "Custom Operator: backward, op name: " << grad_op_name;
    VLOG(3) << "Custom Operator: backward, op inputs: "
915
            << string::join_strings(grad_op_inputs, ',');
916
    VLOG(3) << "Custom Operator: backward, op outputs: "
917 918
            << string::join_strings(grad_op_outputs, ',');

919 920
    bool is_double_grad = (i == 2);

921
    // GradOpDescMaker
922 923 924 925 926 927
    info.grad_op_maker_ =
        [grad_op_name, grad_op_inputs, grad_op_outputs, is_double_grad](
            const OpDesc& fwd_op,
            const std::unordered_set<std::string>& no_grad_set,
            std::unordered_map<std::string, std::string>* grad_to_var,
            const std::vector<BlockDesc*>& grad_block) {
928 929 930 931 932 933 934 935
          CustomGradOpMaker<paddle::framework::OpDesc> maker(fwd_op,
                                                             no_grad_set,
                                                             grad_to_var,
                                                             grad_block,
                                                             grad_op_name,
                                                             grad_op_inputs,
                                                             grad_op_outputs,
                                                             is_double_grad);
936 937
          return maker();
        };
938 939

    // GradOpBaseMaker
940 941 942 943 944 945 946 947
    info.dygraph_grad_op_maker_ =
        [grad_op_name, grad_op_inputs, grad_op_outputs, is_double_grad](
            const std::string& type,
            const imperative::NameVarBaseMap& var_base_map_in,
            const imperative::NameVarBaseMap& var_base_map_out,
            const framework::AttributeMap& attrs,
            const framework::AttributeMap& default_attrs,
            const std::map<std::string, std::string>& inplace_map) {
948 949 950 951 952 953 954 955 956
          CustomGradOpMaker<paddle::imperative::OpBase> maker(type,
                                                              var_base_map_in,
                                                              var_base_map_out,
                                                              attrs,
                                                              inplace_map,
                                                              grad_op_name,
                                                              grad_op_inputs,
                                                              grad_op_outputs,
                                                              is_double_grad);
957 958 959
          maker.SetDygraphDefaultAttrsMap(default_attrs);
          return maker();
        };
960 961 962 963 964

    /* Grad op register */
    OpInfo grad_info;

    // Grad Op
965 966 967 968 969 970
    grad_info.creator_ = [](const std::string& type,
                            const VariableNameMap& inputs,
                            const VariableNameMap& outputs,
                            const AttributeMap& attrs) {
      return new CustomOperator(type, inputs, outputs, attrs);
    };
971

972
    // Grad InferShape
973
    if (grad_infer_shape_fn == nullptr) {
974 975
      grad_info.infer_shape_ = [grad_op_inputs,
                                grad_op_outputs,
976
                                is_double_grad](InferShapeContext* ctx) {
977 978 979 980 981 982 983 984 985 986
        // 1. if forward input exists, gradient's shape is same with forward
        // input
        // default
        //    [Suitable for most situations]
        // 2. if forward input not exists, and only contains one grad input and
        // output,
        //    use grad input shape as grad output shape
        //    [Suitable for the situation that forward input is not used as
        //    backward input]
        for (auto& out_name : grad_op_outputs) {
987
          auto fwd_name = detail::NoGrad(out_name, is_double_grad);
988 989
          if (detail::IsDuplicableVar(fwd_name)) {
            // Duplicable forward var must as backward input
990 991
            ctx->ShareDim(fwd_name, out_name);
          } else {
992 993 994 995 996 997 998 999 1000 1001
            if (ctx->HasInput(fwd_name)) {
              ctx->ShareDim(fwd_name, out_name);
            } else {
              PADDLE_ENFORCE_EQ(
                  grad_op_inputs.size() == 1UL && grad_op_outputs.size() == 1UL,
                  true,
                  platform::errors::Unavailable(
                      "Custom grad operator infershape error. "
                      "If a custom grad operator contains only one input and "
                      "only one output, the input shape will be directly set "
H
HongyuJia 已提交
1002 1003 1004
                      "to the output shape. Otherwise, Please set the forward "
                      "input as the grad operator's input or  set the "
                      "InferShapeFn of custom grad operator by "
1005 1006 1007
                      ".SetInferShapeFn(PD_INFER_SHAPE(...))"));
              ctx->ShareDim(grad_op_inputs[0], out_name);
            }
1008 1009
          }
        }
1010 1011
      };
    } else {
1012 1013 1014
      grad_info.infer_shape_ = [grad_op_inputs,
                                grad_op_outputs,
                                grad_op_attrs,
1015
                                grad_infer_shape_fn](InferShapeContext* ctx) {
1016 1017 1018 1019 1020
        RunInferShapeFunc(ctx,
                          grad_infer_shape_fn,
                          grad_op_inputs,
                          grad_op_outputs,
                          grad_op_attrs);
1021 1022
      };
    }
1023 1024

    // Kernel func
1025 1026 1027 1028 1029 1030
    RegisterOperatorKernel(grad_op_name,
                           grad_kernel_fn,
                           grad_op_inputs,
                           grad_op_outputs,
                           grad_op_attrs,
                           dso_handle);
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

    // update current info
    OpInfoMap::Instance().Insert(cur_op_name, info);
    cur_op_name = grad_op_name;
    info = grad_info;
  }
  // insert last info
  OpInfoMap::Instance().Insert(cur_op_name, info);
}

void RegisterOperatorWithMetaInfoMap(
1042
    const paddle::OpMetaInfoMap& op_meta_info_map, void* dso_handle) {
1043
  auto& meta_info_map = op_meta_info_map.GetMap();
1044
  VLOG(3) << "Custom Operator: size of op meta info map - "
1045 1046 1047
          << meta_info_map.size();
  // pair: {op_type, OpMetaInfo}
  for (auto& pair : meta_info_map) {
1048
    VLOG(3) << "Custom Operator: pair first -> op name: " << pair.first;
1049
    RegisterOperatorWithMetaInfo(pair.second, dso_handle);
1050 1051 1052 1053 1054 1055
  }
}

////////////////////// User APIs ///////////////////////

// load op api
1056 1057
const std::unordered_map<std::string, std::vector<OpMetaInfo>>&
LoadOpMetaInfoAndRegisterOp(const std::string& dso_name) {
1058
  void* handle = paddle::platform::dynload::GetOpDsoHandle(dso_name);
1059
  VLOG(3) << "load custom_op lib: " << dso_name;
1060 1061 1062 1063
  typedef OpMetaInfoMap& get_op_meta_info_map_t();
  auto* get_op_meta_info_map =
      detail::DynLoad<get_op_meta_info_map_t>(handle, "PD_GetOpMetaInfoMap");
  auto& op_meta_info_map = get_op_meta_info_map();
1064
  RegisterOperatorWithMetaInfoMap(op_meta_info_map, handle);
1065
  return op_meta_info_map.GetMap();
1066 1067 1068 1069
}

}  // namespace framework
}  // namespace paddle