custom_operator.cc 39.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/custom_operator.h"

#include <algorithm>
#include <functional>
#include <iostream>
#include <map>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/op_meta_info_helper.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
32
#include "paddle/fluid/framework/pten_utils.h"
33 34 35
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
#include "paddle/fluid/string/string_helper.h"
36
#include "paddle/pten/api/all.h"
37
#include "paddle/pten/api/lib/api_declare.h"
38 39
#include "paddle/pten/api/lib/ext_compat_utils.h"
#include "paddle/pten/api/lib/utils/tensor_utils.h"
40
#include "paddle/pten/core/compat/convert_utils.h"
41
#include "paddle/utils/any.h"
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

namespace paddle {
namespace framework {

namespace detail {

// dynamic lib load func
template <typename T>
static T* DynLoad(void* handle, std::string name) {
  T* func = reinterpret_cast<T*>(dlsym(handle, name.c_str()));
#if !defined(_WIN32)
  auto errorno = dlerror();
#else
  auto errorno = GetLastError();
#endif  // !_WIN32
  PADDLE_ENFORCE_NOT_NULL(
      func, platform::errors::NotFound(
                "Failed to load dynamic operator library, error message(%s).",
                errorno));
  return func;
}

64
inline static bool IsGradVar(const std::string& var_name) {
65 66 67 68
  std::string suffix = kGradVarSuffix;
  return var_name.rfind(suffix) != std::string::npos;
}

69
inline static bool IsDuplicableVar(const std::string& var_name) {
70 71 72 73
  std::string suffix = kTensorVectorSuffix;
  return var_name.rfind(suffix) != std::string::npos;
}

74
inline static std::string NoGrad(const std::string& var_name) {
75 76 77 78
  std::string suffix = kGradVarSuffix;
  return var_name.substr(0, var_name.size() - kGradVarSuffixSize);
}

79 80
inline static bool IsMemberOf(const std::vector<std::string>& vec,
                              const std::string& name) {
81 82 83
  return std::find(vec.cbegin(), vec.cend(), name) != vec.cend();
}

84
static std::vector<std::string> ParseAttrStr(const std::string& attr) {
85 86 87 88 89 90 91 92 93 94 95 96
  auto split_pos = attr.find_first_of(":");
  PADDLE_ENFORCE_NE(split_pos, std::string::npos,
                    platform::errors::InvalidArgument(
                        "Invalid attribute string format. Attribute string "
                        "format is `<name>:<type>`."));

  std::vector<std::string> rlt;
  // 1. name
  rlt.emplace_back(string::trim_spaces(attr.substr(0, split_pos)));
  // 2. type
  rlt.emplace_back(string::trim_spaces(attr.substr(split_pos + 1)));

97
  VLOG(3) << "attr name: " << rlt[0] << ", attr type str: " << rlt[1];
98 99 100 101

  return rlt;
}

102 103 104 105 106 107 108 109
}  // namespace detail

////////////////// Kernel Define ////////////////////

// custom op kernel call function define
static void RunKernelFunc(const framework::ExecutionContext& ctx,
                          const paddle::KernelFunc& func,
                          const std::vector<std::string>& inputs,
110 111
                          const std::vector<std::string>& outputs,
                          const std::vector<std::string>& attrs) {
112
  VLOG(3) << "Custom Operator: Start run KernelFunc.";
113 114
  // prepare CustomOpKernelContext
  paddle::CustomOpKernelContext kernel_ctx;
115
  for (auto& in_name : inputs) {
116
    VLOG(3) << "Custom Operator: input name - " << in_name;
117 118 119 120 121 122
    if (detail::IsDuplicableVar(in_name)) {
      // return const std::vector<const Tensor*>
      auto vec_x = ctx.MultiInput<Tensor>(in_name);
      PADDLE_ENFORCE_NE(vec_x.empty(), true,
                        platform::errors::NotFound(
                            "Input vector<tensor> (%s) is empty.", in_name));
123
      std::vector<paddle::experimental::Tensor> custom_vec_in;
124 125 126 127 128 129 130 131 132 133 134
      for (size_t i = 0; i < vec_x.size(); ++i) {
        auto* x = vec_x[i];
        PADDLE_ENFORCE_NOT_NULL(
            x, platform::errors::NotFound(
                   "The %d-th tensor in input vector<tensor> (%s) is nullptr.",
                   i, in_name));
        PADDLE_ENFORCE_EQ(x->IsInitialized(), true,
                          platform::errors::InvalidArgument(
                              "The %d-th tensor in input vector<tensor> (%s) "
                              "is not initialized.",
                              i, in_name));
135
        paddle::experimental::Tensor custom_t;
136
        custom_t.set_impl(std::make_shared<pten::DenseTensor>(*x));
137 138
        custom_vec_in.emplace_back(custom_t);
      }
139
      kernel_ctx.EmplaceBackInputs(std::move(custom_vec_in));
140 141 142 143 144 145 146
    } else {
      auto* x = ctx.Input<Tensor>(in_name);
      PADDLE_ENFORCE_NOT_NULL(x, platform::errors::NotFound(
                                     "Input tensor (%s) is nullptr.", in_name));
      PADDLE_ENFORCE_EQ(x->IsInitialized(), true,
                        platform::errors::InvalidArgument(
                            "Input tensor (%s) is not initialized.", in_name));
147
      paddle::experimental::Tensor custom_in;
148
      custom_in.set_impl(std::make_shared<pten::DenseTensor>(*x));
149
      kernel_ctx.EmplaceBackInput(std::move(custom_in));
150
    }
151 152
  }

153 154 155 156 157
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
158
      kernel_ctx.EmplaceBackAttr(ctx.Attr<bool>(attr_name));
159
    } else if (attr_type_str == "int") {
160
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int>(attr_name));
161
    } else if (attr_type_str == "float") {
162
      kernel_ctx.EmplaceBackAttr(ctx.Attr<float>(attr_name));
163
    } else if (attr_type_str == "int64_t") {
164
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int64_t>(attr_name));
165
    } else if (attr_type_str == "std::string") {
166
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::string>(attr_name));
167
    } else if (attr_type_str == "std::vector<int>") {
168
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int>>(attr_name));
169
    } else if (attr_type_str == "std::vector<float>") {
170
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<float>>(attr_name));
171
    } else if (attr_type_str == "std::vector<int64_t>") {
172
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int64_t>>(attr_name));
173
    } else if (attr_type_str == "std::vector<std::string>") {
174
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<std::string>>(attr_name));
175 176 177 178 179
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
180
          "`std::vector<float>`, `std::vector<int64_t>`, "
181 182 183 184 185
          "`std::vector<std::string>`, Please check whether "
          "the attribute data type and data type string are matched.",
          attr_type_str));
    }
  }
186

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
  VLOG(3) << "Custom Operator: push outputs into CustomOpKernelContext.";
  // cache the target tensor pointers
  std::vector<Tensor*> true_out_ptrs;
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      PADDLE_ENFORCE(i == 0UL && outputs.size() == 1UL,
                     platform::errors::PreconditionNotMet(
                         "If custom operator's outputs contains `paddle::Vec("
                         ")` type, "
                         "it only can hold one output."));
      auto vec_out = ctx.MultiOutput<Tensor>(out_name);
      PADDLE_ENFORCE_NE(vec_out.empty(), true,
                        platform::errors::NotFound(
                            "Output vector<tensor> (%s) is empty.", out_name));
      std::vector<paddle::experimental::Tensor> custom_vec_out;
      for (size_t j = 0; j < vec_out.size(); ++j) {
        auto* out = vec_out[j];
        PADDLE_ENFORCE_NOT_NULL(
            out,
            platform::errors::NotFound(
                "The %d-th tensor in output vector<tensor> (%s) is nullptr.", j,
                out_name));
        true_out_ptrs.emplace_back(out);
        paddle::experimental::Tensor custom_t;
        // here only can copy the output tensor into context
        custom_t.set_impl(std::make_shared<pten::DenseTensor>(*out));
        custom_vec_out.emplace_back(custom_t);
      }
      kernel_ctx.EmplaceBackOutputs(std::move(custom_vec_out));
    } else {
      auto* out = ctx.Output<Tensor>(out_name);
      PADDLE_ENFORCE_NOT_NULL(
          out, platform::errors::NotFound("Output tensor (%s) is nullptr.",
                                          out_name));
      true_out_ptrs.emplace_back(out);
      paddle::experimental::Tensor custom_out;
      // here only can copy the output tensor into context
      custom_out.set_impl(std::make_shared<pten::DenseTensor>(*out));
      kernel_ctx.EmplaceBackOutput(std::move(custom_out));
    }
  }
229

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
  try {
    VLOG(3) << "Custom Operator: Run ComputeFunc.";
    func(&kernel_ctx);

    // sync output tensor data into original output
    auto* calc_outs = kernel_ctx.AllMutableOutput();
    PADDLE_ENFORCE_EQ(
        true_out_ptrs.size(), calc_outs->size(),
        platform::errors::InvalidArgument(
            "The number of element in custom operator outputs is wrong, "
            "expected contains %d Tensors, but actually contains %d "
            "Tensors.",
            true_out_ptrs.size(), calc_outs->size()));
    for (size_t i = 0; i < true_out_ptrs.size(); ++i) {
      auto* true_out = true_out_ptrs.at(i);
      auto calc_out =
          std::dynamic_pointer_cast<pten::DenseTensor>(calc_outs->at(i).impl());
      // assgin meta info
      auto* true_out_meta = pten::DenseTensorUtils::GetMutableMeta(true_out);
      true_out_meta->dims = calc_out->dims();
      true_out_meta->dtype = calc_out->dtype();
      true_out_meta->layout = calc_out->layout();
252 253
      true_out_meta->offset = calc_out->offset();
      // lod no need to be reset
254 255 256
      // reset holder if needed
      if (true_out->Holder() != calc_out->Holder()) {
        true_out->ResetHolder(calc_out->Holder());
257
      }
258 259 260 261 262 263 264 265
    }
  } catch (platform::EnforceNotMet& exception) {
    throw std::move(exception);
  } catch (std::exception& ex) {
    PADDLE_THROW(platform::errors::External("%s", ex.what()));
  } catch (...) {
    PADDLE_THROW(platform::errors::Fatal(
        "Custom operator raises an unknown exception in rumtime."));
266 267 268
  }
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static void RunInferShapeFunc(framework::InferShapeContext* ctx,
                              const paddle::InferShapeFunc& func,
                              const std::vector<std::string>& inputs,
                              const std::vector<std::string>& outputs,
                              const std::vector<std::string>& attrs) {
  std::vector<std::vector<int64_t>> input_shapes;
  std::vector<std::vector<std::vector<int64_t>>> vec_input_shapes;

  VLOG(3) << "Custom Operator: InferShape - get input ddim.";
  for (auto& in_name : inputs) {
    if (detail::IsDuplicableVar(in_name)) {
      OP_INOUT_CHECK(ctx->HasInputs(in_name), "Input", in_name, "Custom");
      auto vec_ddim = ctx->GetInputsDim(in_name);
      std::vector<std::vector<int64_t>> vec_shape;
      vec_shape.reserve(vec_ddim.size());
      std::transform(vec_ddim.begin(), vec_ddim.end(),
                     std::back_inserter(vec_shape),
                     [&](const DDim& ddim) -> std::vector<int64_t> {
                       return framework::vectorize(ddim);
                     });
      vec_input_shapes.emplace_back(vec_shape);
    } else {
      OP_INOUT_CHECK(ctx->HasInput(in_name), "Input", in_name, "Custom");
      auto ddim = ctx->GetInputDim(in_name);
      input_shapes.emplace_back(framework::vectorize(ddim));
    }
  }

  std::vector<paddle::any> custom_attrs;
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
      custom_attrs.emplace_back(ctx->Attrs().Get<bool>(attr_name));
    } else if (attr_type_str == "int") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int>(attr_name));
    } else if (attr_type_str == "float") {
      custom_attrs.emplace_back(ctx->Attrs().Get<float>(attr_name));
    } else if (attr_type_str == "int64_t") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int64_t>(attr_name));
    } else if (attr_type_str == "std::string") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::string>(attr_name));
    } else if (attr_type_str == "std::vector<int>") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::vector<int>>(attr_name));
    } else if (attr_type_str == "std::vector<float>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<float>>(attr_name));
    } else if (attr_type_str == "std::vector<int64_t>") {
      // NOTE(chenweihang): InferShape can't support std::vector<int64_t>
      // attr type, because the input type is std::vector<int64_t>, only
      // can use one rule to parse std::vector<int64_t> parameter
      continue;
    } else if (attr_type_str == "std::vector<std::string>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<std::string>>(attr_name));
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
          "`std::vector<float>`, `std::vector<std::string>`, "
          "Please check whether the attribute data type and "
          "data type string are matched.",
          attr_type_str));
    }
  }

  VLOG(3) << "Custom Operator: InferShape - calc output ddim.";
  auto output_shapes = func(input_shapes, vec_input_shapes, custom_attrs);

  VLOG(3) << "Custom Operator: InferShape - set output ddim.";
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      std::vector<DDim> vec_ddim;
      vec_ddim.reserve(output_shapes.size());
      std::transform(output_shapes.begin(), output_shapes.end(),
                     std::back_inserter(vec_ddim),
                     [&](const std::vector<int64_t>& shape) -> DDim {
                       return framework::make_ddim(shape);
                     });
      ctx->SetOutputsDim(out_name, vec_ddim);
    } else {
      ctx->SetOutputDim(out_name, framework::make_ddim(output_shapes[i]));
    }
  }
}

358 359 360 361 362 363 364 365 366
//////////////////// Operator Define /////////////////

class CustomOperator : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

  // Dummy infershape
  // Because it is a pure virtual function, it must be implemented
  void InferShape(framework::InferShapeContext* ctx) const override {
367
    VLOG(3) << "Custom Operator: Dummy infer shape of custom operator.";
368 369 370 371 372 373 374 375 376 377 378 379 380
  }

  /**
   * NOTE: [Skip the Kernel Selection]
   * Custom Op only registers one Op kernel on each device, so that the
   * data type selection and promotion that depends on GetExpectedKernelType,
   * as well as the adaptation of various other special situations,
   * need users to implement, to avoid users needs to implement
   * GetExpectedKernelType function when expanding other cases.
   * The RAW type is used here as the data type, indicating that
   * it can only be determined at runtime.
   */
  framework::OpKernelType GetExpectedKernelType(
381
      const framework::ExecutionContext& ctx) const override {
382 383 384 385 386 387 388 389 390 391
    return framework::OpKernelType(proto::VarType::RAW, ctx.GetPlace());
  }

  /**
   * NOTE: [Skip Input Variable Cast for DataType]
   * Because the kernel data type is RAW, we should skip the cast for
   * data type difference when PrepareData.
   */
  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
392
      const OpKernelType& expected_kernel_type) const override {
393 394 395 396 397 398 399 400 401 402 403 404 405 406
    return OpKernelType(expected_kernel_type.data_type_,
                        expected_kernel_type.place_, tensor.layout());
  }
};

class CustomOpMaker : public OpProtoAndCheckerMaker {
 public:
  explicit CustomOpMaker(const std::vector<std::string>& inputs,
                         const std::vector<std::string>& outputs,
                         const std::vector<std::string>& attrs)
      : inputs_(inputs), outputs_(outputs), attrs_(attrs) {}

  void Make() override {
    for (auto& in_name : inputs_) {
407 408 409 410 411 412
      if (detail::IsDuplicableVar(in_name)) {
        AddInput(in_name, "The input " + in_name + "of Custom operator.")
            .AsDuplicable();
      } else {
        AddInput(in_name, "The input " + in_name + "of Custom operator.");
      }
413 414
    }
    for (auto& out_name : outputs_) {
415 416 417 418 419 420
      if (detail::IsDuplicableVar(out_name)) {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.")
            .AsDuplicable();
      } else {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.");
      }
421
    }
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
    for (auto& attr : attrs_) {
      auto attr_name_and_type = detail::ParseAttrStr(attr);
      auto attr_name = attr_name_and_type[0];
      auto attr_type_str = attr_name_and_type[1];
      if (attr_type_str == "bool") {
        AddAttr<bool>(attr_name, "custom operator bool attribute.")
            .SetDefault(false);
      } else if (attr_type_str == "int") {
        AddAttr<int>(attr_name, "custom operator int attribute.").SetDefault(1);
      } else if (attr_type_str == "float") {
        AddAttr<float>(attr_name, "custom operator float attribute.")
            .SetDefault(1.0f);
      } else if (attr_type_str == "int64_t") {
        AddAttr<int64_t>(attr_name, "custom operator int64_t attribute.")
            .SetDefault(1);
      } else if (attr_type_str == "std::string") {
        AddAttr<std::string>(attr_name, "custom operator int attribute.")
            .SetDefault("");
      } else if (attr_type_str == "std::vector<int>") {
        AddAttr<std::vector<int>>(attr_name,
                                  "custom operator std::vector<int> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<float>") {
        AddAttr<std::vector<float>>(
            attr_name, "custom operator std::vector<float> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<int64_t>") {
        AddAttr<std::vector<int64_t>>(
            attr_name, "custom operator std::vector<int64_t> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<std::string>") {
        AddAttr<std::vector<std::string>>(
            attr_name, "custom operator std::vector<std::string> attribute.")
            .SetDefault({});
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported `%s` type value as custom attribute now. "
            "Supported data types include `bool`, `int`, `float`, "
            "`int64_t`, `std::string`, `std::vector<int>`, "
461
            "`std::vector<float>`, `std::vector<int64_t>`, "
462 463 464 465 466
            "`std::vector<std::string>`, Please check whether "
            "the attribute data type and data type string are matched.",
            attr_type_str));
      }
    }
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
    AddComment(R"DOC(
Custom Operator.

According to the Tensor operation function implemented by the user 
independently of the framework, it is encapsulated into a framework 
operator to adapt to various execution scenarios such as dynamic graph, 
mode static graph mode, and inference mode.

)DOC");
  }

 private:
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  std::vector<std::string> attrs_;
};

template <typename T>
class CustomGradOpMaker;

template <>
class CustomGradOpMaker<OpDesc> : public SingleGradOpMaker<OpDesc> {
 public:
  explicit CustomGradOpMaker(
      const OpDesc& fwd_op, const std::unordered_set<std::string>& no_grad_set,
      std::unordered_map<std::string, std::string>* grad_to_var,
      const std::vector<BlockDesc*>& grad_block, const std::string& name,
      const std::vector<std::string>& inputs,
      const std::vector<std::string>& outputs)
      : SingleGradOpMaker<OpDesc>(fwd_op, no_grad_set, grad_to_var, grad_block),
        name_(name),
        inputs_(inputs),
        outputs_(outputs) {}

 protected:
  void Apply(GradOpPtr<OpDesc> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
509
      VLOG(3) << "Custom Operator: GradOpDescMaker - input: " << in_name;
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
      if (!detail::IsGradVar(in_name)) {
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
526
      VLOG(3) << "Custom Operator: GradOpDescMaker - output: " << out_name;
527 528 529 530 531 532 533
      if (detail::IsDuplicableVar(out_name)) {
        grad_op->SetOutput(out_name,
                           this->InputGrad(detail::NoGrad(out_name),
                                           /*drop_empty_grad=*/false));
      } else {
        grad_op->SetOutput(out_name, this->InputGrad(detail::NoGrad(out_name)));
      }
534
    }
535
    grad_op->SetAttrMap(this->Attrs());
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
};

template <>
class CustomGradOpMaker<imperative::OpBase>
    : public SingleGradOpMaker<imperative::OpBase> {
 public:
  explicit CustomGradOpMaker(
      const std::string& type,
      const imperative::NameVarBaseMap& var_base_map_in,
      const imperative::NameVarBaseMap& var_base_map_out,
      const AttributeMap& attrs,
      const std::map<std::string, std::string>& inplace_map,
      const std::string& name, const std::vector<std::string>& inputs,
      const std::vector<std::string>& outputs)
      : SingleGradOpMaker<imperative::OpBase>(
            type, var_base_map_in, var_base_map_out, attrs, inplace_map),
        name_(name),
        inputs_(inputs),
        outputs_(outputs) {}

 protected:
  // TODO(chenweihang): The code is duplicated with the previous one, because
  // ere OpMaker's Input, Output and other methods are protected. Putting the
  // function implementation outside the class will cause the method to be
  // uncallable,
  // so it is still implemented in the class for the time being.
  void Apply(GradOpPtr<imperative::OpBase> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
575
      VLOG(3) << "Custom Operator: GradOpBaseMaker - input: " << in_name;
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
      if (!detail::IsGradVar(in_name)) {
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
592
      VLOG(3) << "Custom Operator: GradOpBaseMaker - output: " << out_name;
593 594
      grad_op->SetOutput(out_name, this->InputGrad(detail::NoGrad(out_name)));
    }
595
    grad_op->SetAttrMap(this->Attrs());
596 597 598 599 600 601 602 603 604 605
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
};

//////////// Operator and Kernel Register //////////////

606 607 608 609
static void RegisterOperatorKernelWithPlace(
    const std::string& name,
    const OperatorWithKernel::OpKernelFunc& op_kernel_func,
    const proto::VarType::Type type, const PlaceType& place) {
610
  OpKernelType key(type, experimental::ConvertExtPlaceToInnerPlace(place));
611
  VLOG(3) << "Custom Operator: op kernel key: " << key;
612
  OperatorWithKernel::AllOpKernels()[name][key] = op_kernel_func;
613 614
}

615 616 617 618 619 620
static void RegisterOperatorKernel(const std::string& name,
                                   const paddle::KernelFunc& kernel_func,
                                   const std::vector<std::string>& inputs,
                                   const std::vector<std::string>& outputs,
                                   const std::vector<std::string>& attrs,
                                   void* dso_handle) {
621
  VLOG(3) << "Custom Operator: op name in kernel: " << name;
622 623 624 625 626
  // NOTE [ Dummy Op Kernel Key ]
  // TODO(chenweihang): Because execute engine need get device context based
  // op_kernel_key.place_, so we should register kernel for each
  // device. But this is not entirely correct, if user only give a cpu kernel,
  // but call api in gpu device, it will cause error.
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
  OperatorWithKernel::OpKernelFunc op_kernel_func;
  if (kernel_func) {
    VLOG(3) << "Register custom operator " << name << " with kernel func";
    op_kernel_func = [kernel_func, inputs, outputs,
                      attrs](const framework::ExecutionContext& ctx) {
      VLOG(3) << "Custom Operator: run custom kernel func in lambda.";
      RunKernelFunc(ctx, kernel_func, inputs, outputs, attrs);
    };
  } else {
    VLOG(3) << "Register custom operator " << name
            << " with raw op kernel func";
    PADDLE_ENFORCE_NOT_NULL(
        dso_handle,
        platform::errors::InvalidArgument(
            "The dso handle must be provided if kernel_func is nullptr."));
    using OpKernelFuncPtr = void(const framework::ExecutionContext&);
    auto symbol_name = "PD_" + name + "_raw_op_kernel_func";
    auto* func = detail::DynLoad<OpKernelFuncPtr>(dso_handle, symbol_name);
    op_kernel_func = func;
  }
  RegisterOperatorKernelWithPlace(name, op_kernel_func, proto::VarType::RAW,
                                  PlaceType::kCPU);
649
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
650 651
  RegisterOperatorKernelWithPlace(name, op_kernel_func, proto::VarType::RAW,
                                  PlaceType::kGPU);
652
#endif
653 654
}

655 656
void RegisterOperatorWithMetaInfo(const std::vector<OpMetaInfo>& op_meta_infos,
                                  void* dso_handle) {
657 658 659 660 661 662
  /* Op register */
  OpInfo info;

  auto& base_op_meta = op_meta_infos.front();

  auto op_name = OpMetaInfoHelper::GetOpName(base_op_meta);
663 664

  if (OpInfoMap::Instance().Has(op_name)) {
665
    LOG(WARNING) << "Operator (" << op_name << ") has been registered.";
666 667 668
    return;
  }

669 670 671 672 673 674 675
  auto& op_inputs = OpMetaInfoHelper::GetInputs(base_op_meta);
  auto& op_outputs = OpMetaInfoHelper::GetOutputs(base_op_meta);
  auto& op_attrs = OpMetaInfoHelper::GetAttrs(base_op_meta);
  auto& kernel_fn = OpMetaInfoHelper::GetKernelFn(base_op_meta);
  auto& infer_shape_func = OpMetaInfoHelper::GetInferShapeFn(base_op_meta);
  auto& infer_dtype_func = OpMetaInfoHelper::GetInferDtypeFn(base_op_meta);

676 677
  VLOG(3) << "Custom Operator: forward, op name: " << op_name;
  VLOG(3) << "Custom Operator: forward, op inputs: "
678
          << string::join_strings(op_inputs, ',');
679
  VLOG(3) << "Custom Operator: forward, op outputs: "
680
          << string::join_strings(op_outputs, ',');
681
  VLOG(3) << "Custom Operator: forward, op attrs: "
682
          << string::join_strings(op_attrs, ',');
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

  // Op
  info.creator_ = [](const std::string& op_name, const VariableNameMap& inputs,
                     const VariableNameMap& outputs,
                     const AttributeMap& attrs) {
    return new CustomOperator(op_name, inputs, outputs, attrs);
  };

  // OpMaker
  info.proto_ = new proto::OpProto;
  info.proto_->set_type(op_name);

  info.checker_ = new OpAttrChecker();
  CustomOpMaker custom_maker(op_inputs, op_outputs, op_attrs);
  custom_maker(info.proto_, info.checker_);
  PADDLE_ENFORCE_EQ(
      info.proto_->IsInitialized(), true,
      platform::errors::PreconditionNotMet(
          "Fail to initialize %s's OpProto, because %s is not initialized.",
          op_name, info.proto_->InitializationErrorString()));

  // InferShape
705 706 707 708 709 710 711 712
  if (infer_shape_func == nullptr) {
    // use default InferShape
    info.infer_shape_ = [op_inputs, op_outputs](InferShapeContext* ctx) {
      PADDLE_ENFORCE_EQ(
          op_inputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
713 714 715
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
716 717 718 719 720 721 722
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));
      PADDLE_ENFORCE_EQ(
          op_outputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
723 724 725
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
726 727 728
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));

729
      VLOG(3) << "Custom Operator: Default InferShape - share ddim.";
730 731 732
      ctx->ShareDim(op_inputs[0], op_outputs[0]);
    };
  } else {
733
    info.infer_shape_ = [op_inputs, op_outputs, op_attrs,
734
                         infer_shape_func](InferShapeContext* ctx) {
735
      RunInferShapeFunc(ctx, infer_shape_func, op_inputs, op_outputs, op_attrs);
736 737
    };
  }
738 739

  // Infer Dtype
740 741 742 743 744 745 746 747
  if (infer_dtype_func == nullptr) {
    // use defalut InferDtype
    info.infer_var_type_ = [op_inputs, op_outputs](InferVarTypeContext* ctx) {
      PADDLE_ENFORCE_EQ(
          op_inputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
748 749 750
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
751 752 753 754 755 756 757
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));
      PADDLE_ENFORCE_EQ(
          op_outputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
758 759 760
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
761 762 763
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));

764
      VLOG(3) << "Custom Operator: InferDtype - share dtype.";
765 766 767 768 769 770 771
      auto dtype = ctx->GetInputDataType(op_inputs[0]);
      ctx->SetOutputDataType(op_outputs[0], dtype);
    };
  } else {
    info.infer_var_type_ = [op_inputs, op_outputs,
                            infer_dtype_func](InferVarTypeContext* ctx) {
      std::vector<DataType> input_dtypes;
772
      std::vector<std::vector<DataType>> vec_input_dtypes;
773

774
      VLOG(3) << "Custom Operator: InferDtype - get input dtype.";
775
      for (auto& in_name : op_inputs) {
776 777 778 779
        if (detail::IsDuplicableVar(in_name)) {
          std::vector<DataType> vec_custom_dtype;
          for (size_t i = 0; i < ctx->InputSize(in_name); ++i) {
            auto dtype = ctx->GetInputDataType(in_name, i);
780
            vec_custom_dtype.emplace_back(pten::TransToPtenDataType(dtype));
781 782 783 784
          }
          vec_input_dtypes.emplace_back(vec_custom_dtype);
        } else {
          auto dtype = ctx->GetInputDataType(in_name);
785
          input_dtypes.emplace_back(pten::TransToPtenDataType(dtype));
786
        }
787
      }
788

789
      VLOG(3) << "Custom Operator: InferDtype - infer output dtype.";
790
      auto output_dtypes = infer_dtype_func(input_dtypes, vec_input_dtypes);
791

792
      VLOG(3) << "Custom Operator: InferDtype - set output dtype.";
793
      for (size_t i = 0; i < op_outputs.size(); ++i) {
794 795 796
        auto out_name = op_outputs[i];
        if (detail::IsDuplicableVar(out_name)) {
          for (size_t j = 0; j < output_dtypes.size(); ++j) {
797
            auto dtype = pten::TransToProtoVarType(output_dtypes[i]);
798 799 800
            ctx->SetOutputDataType(out_name, dtype, j);
          }
        } else {
801 802
          ctx->SetOutputDataType(out_name,
                                 pten::TransToProtoVarType(output_dtypes[i]));
803
        }
804 805 806
      }
    };
  }
807 808

  // Kernel func
809 810
  RegisterOperatorKernel(op_name, kernel_fn, op_inputs, op_outputs, op_attrs,
                         dso_handle);
811 812 813 814 815 816 817 818 819

  // If grad op or double grad op exists
  std::string cur_op_name = op_name;
  for (size_t i = 1; i < op_meta_infos.size(); ++i) {
    auto& cur_grad_op = op_meta_infos[i];

    auto& grad_op_name = OpMetaInfoHelper::GetOpName(cur_grad_op);
    auto& grad_op_inputs = OpMetaInfoHelper::GetInputs(cur_grad_op);
    auto& grad_op_outputs = OpMetaInfoHelper::GetOutputs(cur_grad_op);
820
    auto& grad_op_attrs = OpMetaInfoHelper::GetAttrs(cur_grad_op);
821
    auto& grad_kernel_fn = OpMetaInfoHelper::GetKernelFn(cur_grad_op);
822
    auto& grad_infer_shape_fn = OpMetaInfoHelper::GetInferShapeFn(cur_grad_op);
823

824 825
    VLOG(3) << "Custom Operator: backward, op name: " << grad_op_name;
    VLOG(3) << "Custom Operator: backward, op inputs: "
826
            << string::join_strings(grad_op_inputs, ',');
827
    VLOG(3) << "Custom Operator: backward, op outputs: "
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
            << string::join_strings(grad_op_outputs, ',');

    // GradOpDescMaker
    info.grad_op_maker_ = [grad_op_name, grad_op_inputs, grad_op_outputs](
        const OpDesc& fwd_op,
        const std::unordered_set<std::string>& no_grad_set,
        std::unordered_map<std::string, std::string>* grad_to_var,
        const std::vector<BlockDesc*>& grad_block) {
      CustomGradOpMaker<paddle::framework::OpDesc> maker(
          fwd_op, no_grad_set, grad_to_var, grad_block, grad_op_name,
          grad_op_inputs, grad_op_outputs);
      return maker();
    };

    // GradOpBaseMaker
    info.dygraph_grad_op_maker_ = [grad_op_name, grad_op_inputs,
                                   grad_op_outputs](
        const std::string& type,
        const imperative::NameVarBaseMap& var_base_map_in,
        const imperative::NameVarBaseMap& var_base_map_out,
        const framework::AttributeMap& attrs,
849
        const framework::AttributeMap& default_attrs,
850 851 852 853
        const std::map<std::string, std::string>& inplace_map) {
      CustomGradOpMaker<paddle::imperative::OpBase> maker(
          type, var_base_map_in, var_base_map_out, attrs, inplace_map,
          grad_op_name, grad_op_inputs, grad_op_outputs);
854
      maker.SetDygraphDefaultAttrsMap(default_attrs);
855 856 857 858 859 860 861 862 863 864 865 866 867
      return maker();
    };

    /* Grad op register */
    OpInfo grad_info;

    // Grad Op
    grad_info.creator_ = [](
        const std::string& type, const VariableNameMap& inputs,
        const VariableNameMap& outputs, const AttributeMap& attrs) {
      return new CustomOperator(type, inputs, outputs, attrs);
    };

868
    // Grad InferShape
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
    if (grad_infer_shape_fn == nullptr) {
      grad_info.infer_shape_ = [grad_op_inputs,
                                grad_op_outputs](InferShapeContext* ctx) {
        // 1. if forward input exists, gradient's shape is same with forward
        // input
        // default
        //    [Suitable for most situations]
        // 2. if forward input not exists, and only contains one grad input and
        // output,
        //    use grad input shape as grad output shape
        //    [Suitable for the situation that forward input is not used as
        //    backward input]
        for (auto& out_name : grad_op_outputs) {
          auto fwd_name = detail::NoGrad(out_name);
          if (detail::IsDuplicableVar(fwd_name)) {
            // Duplicable forward var must as backward input
885 886
            ctx->ShareDim(fwd_name, out_name);
          } else {
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
            if (ctx->HasInput(fwd_name)) {
              ctx->ShareDim(fwd_name, out_name);
            } else {
              PADDLE_ENFORCE_EQ(
                  grad_op_inputs.size() == 1UL && grad_op_outputs.size() == 1UL,
                  true,
                  platform::errors::Unavailable(
                      "Custom grad operator infershape error. "
                      "If a custom grad operator contains only one input and "
                      "only one output, the input shape will be directly set "
                      "to "
                      "the output shape. Otherwise, Please set the forward "
                      "input "
                      "as the grad operator's input or  set the InferShapeFn "
                      "of custom grad operator by "
                      ".SetInferShapeFn(PD_INFER_SHAPE(...))"));
              ctx->ShareDim(grad_op_inputs[0], out_name);
            }
905 906
          }
        }
907 908 909 910 911 912 913 914
      };
    } else {
      grad_info.infer_shape_ = [grad_op_inputs, grad_op_outputs, grad_op_attrs,
                                grad_infer_shape_fn](InferShapeContext* ctx) {
        RunInferShapeFunc(ctx, grad_infer_shape_fn, grad_op_inputs,
                          grad_op_outputs, grad_op_attrs);
      };
    }
915 916 917

    // Kernel func
    RegisterOperatorKernel(grad_op_name, grad_kernel_fn, grad_op_inputs,
918
                           grad_op_outputs, grad_op_attrs, dso_handle);
919 920 921 922 923 924 925 926 927 928 929

    // update current info
    OpInfoMap::Instance().Insert(cur_op_name, info);
    cur_op_name = grad_op_name;
    info = grad_info;
  }
  // insert last info
  OpInfoMap::Instance().Insert(cur_op_name, info);
}

void RegisterOperatorWithMetaInfoMap(
930
    const paddle::OpMetaInfoMap& op_meta_info_map, void* dso_handle) {
931
  auto& meta_info_map = op_meta_info_map.GetMap();
932
  VLOG(3) << "Custom Operator: size of op meta info map - "
933 934 935
          << meta_info_map.size();
  // pair: {op_type, OpMetaInfo}
  for (auto& pair : meta_info_map) {
936
    VLOG(3) << "Custom Operator: pair first -> op name: " << pair.first;
937
    RegisterOperatorWithMetaInfo(pair.second, dso_handle);
938 939 940 941 942 943 944 945
  }
}

////////////////////// User APIs ///////////////////////

// load op api
void LoadOpMetaInfoAndRegisterOp(const std::string& dso_name) {
  void* handle = paddle::platform::dynload::GetOpDsoHandle(dso_name);
946
  VLOG(3) << "load custom_op lib: " << dso_name;
947 948 949 950 951
  typedef OpMetaInfoMap& get_op_meta_info_map_t();
  auto* get_op_meta_info_map =
      detail::DynLoad<get_op_meta_info_map_t>(handle, "PD_GetOpMetaInfoMap");
  auto& op_meta_info_map = get_op_meta_info_map();

952
  RegisterOperatorWithMetaInfoMap(op_meta_info_map, handle);
953 954 955 956
}

}  // namespace framework
}  // namespace paddle