custom_operator.cc 42.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/custom_operator.h"

#include <algorithm>
#include <functional>
#include <iostream>
#include <map>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

28
#include "paddle/fluid/eager/api/utils/global_utils.h"
29
#include "paddle/fluid/framework/attribute.h"
30
#include "paddle/fluid/framework/convert_utils.h"
31 32 33
#include "paddle/fluid/framework/op_meta_info_helper.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
34
#include "paddle/fluid/framework/phi_utils.h"
35
#include "paddle/fluid/framework/tensor.h"
36
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
37 38
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
#include "paddle/fluid/string/string_helper.h"
39 40 41
#include "paddle/phi/api/all.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/core/compat/convert_utils.h"
42
#include "paddle/phi/core/tensor_utils.h"
43
#include "paddle/utils/any.h"
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

namespace paddle {
namespace framework {

namespace detail {

// dynamic lib load func
template <typename T>
static T* DynLoad(void* handle, std::string name) {
  T* func = reinterpret_cast<T*>(dlsym(handle, name.c_str()));
#if !defined(_WIN32)
  auto errorno = dlerror();
#else
  auto errorno = GetLastError();
#endif  // !_WIN32
  PADDLE_ENFORCE_NOT_NULL(
60 61 62 63
      func,
      platform::errors::NotFound(
          "Failed to load dynamic operator library, error message(%s).",
          errorno));
64 65 66
  return func;
}

67
inline static bool IsDuplicableVar(const std::string& var_name) {
68 69 70 71
  std::string suffix = kTensorVectorSuffix;
  return var_name.rfind(suffix) != std::string::npos;
}

72 73
inline static std::string NoGrad(const std::string& var_name,
                                 bool is_double_grad = false) {
74
  std::string suffix = kGradVarSuffix;
75 76 77 78 79 80 81 82
  std::string new_out_suffix = kDoubleGradNewOutSuffix;
  std::string tmp_var_name(var_name);
  if (is_double_grad &&
      (tmp_var_name.rfind(new_out_suffix) != std::string::npos)) {
    tmp_var_name = tmp_var_name.substr(
        0, tmp_var_name.size() - /*kDoubleGradNewOutSuffix length*/ 4);
  }
  return tmp_var_name.substr(0, tmp_var_name.size() - kGradVarSuffixSize);
83 84
}

85 86 87 88 89 90 91 92 93 94 95
inline static bool IsGradVar(const std::string& var_name, bool is_double_grad) {
  std::string suffix = kGradVarSuffix;
  if (!is_double_grad) {
    return var_name.rfind(suffix) != std::string::npos;
  } else {
    // for double grad cases, the X@GRAD is not a grad var, X@GRAD@GRAD is a
    // grad var, here we remove a @GRAD suffix
    return NoGrad(var_name).rfind(suffix) != std::string::npos;
  }
}

96 97
inline static bool IsMemberOf(const std::vector<std::string>& vec,
                              const std::string& name) {
98 99 100
  return std::find(vec.cbegin(), vec.cend(), name) != vec.cend();
}

101
static std::vector<std::string> ParseAttrStr(const std::string& attr) {
102
  auto split_pos = attr.find_first_of(":");
103 104
  PADDLE_ENFORCE_NE(split_pos,
                    std::string::npos,
105 106 107 108 109 110 111 112 113 114
                    platform::errors::InvalidArgument(
                        "Invalid attribute string format. Attribute string "
                        "format is `<name>:<type>`."));

  std::vector<std::string> rlt;
  // 1. name
  rlt.emplace_back(string::trim_spaces(attr.substr(0, split_pos)));
  // 2. type
  rlt.emplace_back(string::trim_spaces(attr.substr(split_pos + 1)));

115
  VLOG(3) << "attr name: " << rlt[0] << ", attr type str: " << rlt[1];
116 117 118 119

  return rlt;
}

120 121 122 123 124 125 126 127
}  // namespace detail

////////////////// Kernel Define ////////////////////

// custom op kernel call function define
static void RunKernelFunc(const framework::ExecutionContext& ctx,
                          const paddle::KernelFunc& func,
                          const std::vector<std::string>& inputs,
128 129
                          const std::vector<std::string>& outputs,
                          const std::vector<std::string>& attrs) {
130
  VLOG(3) << "Custom Operator: Start run KernelFunc.";
131 132
  // prepare CustomOpKernelContext
  paddle::CustomOpKernelContext kernel_ctx;
133
  for (auto& in_name : inputs) {
134
    VLOG(3) << "Custom Operator: input name - " << in_name;
135
    if (detail::IsDuplicableVar(in_name)) {
136 137
      // return const std::vector<const phi::DenseTensor*>
      auto vec_x = ctx.MultiInput<phi::DenseTensor>(in_name);
138 139
      PADDLE_ENFORCE_NE(vec_x.empty(),
                        true,
140 141
                        platform::errors::NotFound(
                            "Input vector<tensor> (%s) is empty.", in_name));
142
      std::vector<paddle::experimental::Tensor> custom_vec_in;
143 144 145
      for (size_t i = 0; i < vec_x.size(); ++i) {
        auto* x = vec_x[i];
        PADDLE_ENFORCE_NOT_NULL(
146 147 148 149 150 151 152
            x,
            platform::errors::NotFound(
                "The %d-th tensor in input vector<tensor> (%s) is nullptr.",
                i,
                in_name));
        PADDLE_ENFORCE_EQ(x->IsInitialized(),
                          true,
153 154 155
                          platform::errors::InvalidArgument(
                              "The %d-th tensor in input vector<tensor> (%s) "
                              "is not initialized.",
156 157
                              i,
                              in_name));
158
        paddle::experimental::Tensor custom_t;
159
        custom_t.set_impl(std::make_shared<phi::DenseTensor>(*x));
160 161
        custom_vec_in.emplace_back(custom_t);
      }
162
      kernel_ctx.EmplaceBackInputs(std::move(custom_vec_in));
163
    } else {
164
      auto* x = ctx.Input<phi::DenseTensor>(in_name);
165 166 167 168 169
      PADDLE_ENFORCE_NOT_NULL(
          x,
          platform::errors::NotFound("Input tensor (%s) is nullptr.", in_name));
      PADDLE_ENFORCE_EQ(x->IsInitialized(),
                        true,
170 171
                        platform::errors::InvalidArgument(
                            "Input tensor (%s) is not initialized.", in_name));
172
      paddle::experimental::Tensor custom_in;
173
      custom_in.set_impl(std::make_shared<phi::DenseTensor>(*x));
174 175 176 177 178 179 180 181 182 183
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (custom_in.is_gpu_pinned()) {
        VLOG(3) << "Custom Operator: custom input is gpu pinned tensor";
        auto gpu_place = phi::GPUPlace(platform::GetCurrentDeviceId());
        auto custom_gpu_in = custom_in.copy_to(gpu_place, true);
        kernel_ctx.EmplaceBackInput(std::move(custom_gpu_in));
      } else {
        kernel_ctx.EmplaceBackInput(std::move(custom_in));
      }
#else
184
      kernel_ctx.EmplaceBackInput(std::move(custom_in));
185
#endif
186
    }
187 188
  }

189 190 191 192 193
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
194
      kernel_ctx.EmplaceBackAttr(ctx.Attr<bool>(attr_name));
195
    } else if (attr_type_str == "int") {
196
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int>(attr_name));
197
    } else if (attr_type_str == "float") {
198
      kernel_ctx.EmplaceBackAttr(ctx.Attr<float>(attr_name));
199
    } else if (attr_type_str == "int64_t") {
200
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int64_t>(attr_name));
201
    } else if (attr_type_str == "std::string") {
202
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::string>(attr_name));
203
    } else if (attr_type_str == "std::vector<int>") {
204
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int>>(attr_name));
205
    } else if (attr_type_str == "std::vector<float>") {
206
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<float>>(attr_name));
207
    } else if (attr_type_str == "std::vector<int64_t>") {
208
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int64_t>>(attr_name));
209
    } else if (attr_type_str == "std::vector<std::string>") {
210
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<std::string>>(attr_name));
211 212 213 214 215
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
216
          "`std::vector<float>`, `std::vector<int64_t>`, "
217 218 219 220 221
          "`std::vector<std::string>`, Please check whether "
          "the attribute data type and data type string are matched.",
          attr_type_str));
    }
  }
222

223 224
  VLOG(3) << "Custom Operator: push outputs into CustomOpKernelContext.";
  // cache the target tensor pointers
225
  std::vector<phi::DenseTensor*> true_out_ptrs;
226 227 228 229 230 231 232 233
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      PADDLE_ENFORCE(i == 0UL && outputs.size() == 1UL,
                     platform::errors::PreconditionNotMet(
                         "If custom operator's outputs contains `paddle::Vec("
                         ")` type, "
                         "it only can hold one output."));
234
      auto vec_out = ctx.MultiOutput<phi::DenseTensor>(out_name);
235 236
      PADDLE_ENFORCE_NE(vec_out.empty(),
                        true,
237 238 239 240 241 242 243 244
                        platform::errors::NotFound(
                            "Output vector<tensor> (%s) is empty.", out_name));
      std::vector<paddle::experimental::Tensor> custom_vec_out;
      for (size_t j = 0; j < vec_out.size(); ++j) {
        auto* out = vec_out[j];
        PADDLE_ENFORCE_NOT_NULL(
            out,
            platform::errors::NotFound(
245 246
                "The %d-th tensor in output vector<tensor> (%s) is nullptr.",
                j,
247 248 249 250
                out_name));
        true_out_ptrs.emplace_back(out);
        paddle::experimental::Tensor custom_t;
        // here only can copy the output tensor into context
251
        custom_t.set_impl(std::make_shared<phi::DenseTensor>(*out));
252 253 254 255
        custom_vec_out.emplace_back(custom_t);
      }
      kernel_ctx.EmplaceBackOutputs(std::move(custom_vec_out));
    } else {
256
      auto* out = ctx.Output<phi::DenseTensor>(out_name);
257 258 259
      PADDLE_ENFORCE_NOT_NULL(out,
                              platform::errors::NotFound(
                                  "Output tensor (%s) is nullptr.", out_name));
260 261 262
      true_out_ptrs.emplace_back(out);
      paddle::experimental::Tensor custom_out;
      // here only can copy the output tensor into context
263
      custom_out.set_impl(std::make_shared<phi::DenseTensor>(*out));
264 265 266
      kernel_ctx.EmplaceBackOutput(std::move(custom_out));
    }
  }
267

268 269 270 271 272 273 274
  try {
    VLOG(3) << "Custom Operator: Run ComputeFunc.";
    func(&kernel_ctx);

    // sync output tensor data into original output
    auto* calc_outs = kernel_ctx.AllMutableOutput();
    PADDLE_ENFORCE_EQ(
275 276
        true_out_ptrs.size(),
        calc_outs->size(),
277 278 279 280
        platform::errors::InvalidArgument(
            "The number of element in custom operator outputs is wrong, "
            "expected contains %d Tensors, but actually contains %d "
            "Tensors.",
281 282
            true_out_ptrs.size(),
            calc_outs->size()));
283 284 285
    for (size_t i = 0; i < true_out_ptrs.size(); ++i) {
      auto* true_out = true_out_ptrs.at(i);
      auto calc_out =
286
          std::dynamic_pointer_cast<phi::DenseTensor>(calc_outs->at(i).impl());
287
      // assign meta info
288
      auto* true_out_meta = phi::DenseTensorUtils::GetMutableMeta(true_out);
289 290 291
      true_out_meta->dims = calc_out->dims();
      true_out_meta->dtype = calc_out->dtype();
      true_out_meta->layout = calc_out->layout();
292 293
      true_out_meta->offset = calc_out->offset();
      // lod no need to be reset
294 295 296
      // reset holder if needed
      if (true_out->Holder() != calc_out->Holder()) {
        true_out->ResetHolder(calc_out->Holder());
297
      }
298 299 300 301 302 303 304
    }
  } catch (platform::EnforceNotMet& exception) {
    throw std::move(exception);
  } catch (std::exception& ex) {
    PADDLE_THROW(platform::errors::External("%s", ex.what()));
  } catch (...) {
    PADDLE_THROW(platform::errors::Fatal(
305
        "Custom operator raises an unknown exception in runtime."));
306 307 308
  }
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
static void RunInferShapeFunc(framework::InferShapeContext* ctx,
                              const paddle::InferShapeFunc& func,
                              const std::vector<std::string>& inputs,
                              const std::vector<std::string>& outputs,
                              const std::vector<std::string>& attrs) {
  std::vector<std::vector<int64_t>> input_shapes;
  std::vector<std::vector<std::vector<int64_t>>> vec_input_shapes;

  VLOG(3) << "Custom Operator: InferShape - get input ddim.";
  for (auto& in_name : inputs) {
    if (detail::IsDuplicableVar(in_name)) {
      OP_INOUT_CHECK(ctx->HasInputs(in_name), "Input", in_name, "Custom");
      auto vec_ddim = ctx->GetInputsDim(in_name);
      std::vector<std::vector<int64_t>> vec_shape;
      vec_shape.reserve(vec_ddim.size());
324 325
      std::transform(vec_ddim.begin(),
                     vec_ddim.end(),
326 327
                     std::back_inserter(vec_shape),
                     [&](const DDim& ddim) -> std::vector<int64_t> {
328
                       return phi::vectorize(ddim);
329 330 331 332 333
                     });
      vec_input_shapes.emplace_back(vec_shape);
    } else {
      OP_INOUT_CHECK(ctx->HasInput(in_name), "Input", in_name, "Custom");
      auto ddim = ctx->GetInputDim(in_name);
334
      input_shapes.emplace_back(phi::vectorize(ddim));
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    }
  }

  std::vector<paddle::any> custom_attrs;
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
      custom_attrs.emplace_back(ctx->Attrs().Get<bool>(attr_name));
    } else if (attr_type_str == "int") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int>(attr_name));
    } else if (attr_type_str == "float") {
      custom_attrs.emplace_back(ctx->Attrs().Get<float>(attr_name));
    } else if (attr_type_str == "int64_t") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int64_t>(attr_name));
    } else if (attr_type_str == "std::string") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::string>(attr_name));
    } else if (attr_type_str == "std::vector<int>") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::vector<int>>(attr_name));
    } else if (attr_type_str == "std::vector<float>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<float>>(attr_name));
    } else if (attr_type_str == "std::vector<int64_t>") {
      // NOTE(chenweihang): InferShape can't support std::vector<int64_t>
      // attr type, because the input type is std::vector<int64_t>, only
      // can use one rule to parse std::vector<int64_t> parameter
      continue;
    } else if (attr_type_str == "std::vector<std::string>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<std::string>>(attr_name));
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
          "`std::vector<float>`, `std::vector<std::string>`, "
          "Please check whether the attribute data type and "
          "data type string are matched.",
          attr_type_str));
    }
  }

  VLOG(3) << "Custom Operator: InferShape - calc output ddim.";
  auto output_shapes = func(input_shapes, vec_input_shapes, custom_attrs);

  VLOG(3) << "Custom Operator: InferShape - set output ddim.";
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      std::vector<DDim> vec_ddim;
      vec_ddim.reserve(output_shapes.size());
387 388
      std::transform(output_shapes.begin(),
                     output_shapes.end(),
389 390
                     std::back_inserter(vec_ddim),
                     [&](const std::vector<int64_t>& shape) -> DDim {
391
                       return phi::make_ddim(shape);
392 393 394
                     });
      ctx->SetOutputsDim(out_name, vec_ddim);
    } else {
395
      ctx->SetOutputDim(out_name, phi::make_ddim(output_shapes[i]));
396 397 398 399
    }
  }
}

400 401 402 403 404 405 406 407 408
//////////////////// Operator Define /////////////////

class CustomOperator : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

  // Dummy infershape
  // Because it is a pure virtual function, it must be implemented
  void InferShape(framework::InferShapeContext* ctx) const override {
409
    VLOG(3) << "Custom Operator: Dummy infer shape of custom operator.";
410 411 412 413 414 415 416 417 418 419 420 421 422
  }

  /**
   * NOTE: [Skip the Kernel Selection]
   * Custom Op only registers one Op kernel on each device, so that the
   * data type selection and promotion that depends on GetExpectedKernelType,
   * as well as the adaptation of various other special situations,
   * need users to implement, to avoid users needs to implement
   * GetExpectedKernelType function when expanding other cases.
   * The RAW type is used here as the data type, indicating that
   * it can only be determined at runtime.
   */
  framework::OpKernelType GetExpectedKernelType(
423
      const framework::ExecutionContext& ctx) const override {
424 425 426 427 428 429 430 431 432
    return framework::OpKernelType(proto::VarType::RAW, ctx.GetPlace());
  }

  /**
   * NOTE: [Skip Input Variable Cast for DataType]
   * Because the kernel data type is RAW, we should skip the cast for
   * data type difference when PrepareData.
   */
  framework::OpKernelType GetKernelTypeForVar(
433
      const std::string& var_name,
434
      const phi::DenseTensor& tensor,
435
      const OpKernelType& expected_kernel_type) const override {
436
    return OpKernelType(expected_kernel_type.data_type_,
437 438
                        expected_kernel_type.place_,
                        tensor.layout());
439 440 441 442 443 444 445 446 447 448 449 450
  }
};

class CustomOpMaker : public OpProtoAndCheckerMaker {
 public:
  explicit CustomOpMaker(const std::vector<std::string>& inputs,
                         const std::vector<std::string>& outputs,
                         const std::vector<std::string>& attrs)
      : inputs_(inputs), outputs_(outputs), attrs_(attrs) {}

  void Make() override {
    for (auto& in_name : inputs_) {
451 452 453 454 455 456
      if (detail::IsDuplicableVar(in_name)) {
        AddInput(in_name, "The input " + in_name + "of Custom operator.")
            .AsDuplicable();
      } else {
        AddInput(in_name, "The input " + in_name + "of Custom operator.");
      }
457 458
    }
    for (auto& out_name : outputs_) {
459 460 461 462 463 464
      if (detail::IsDuplicableVar(out_name)) {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.")
            .AsDuplicable();
      } else {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.");
      }
465
    }
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
    for (auto& attr : attrs_) {
      auto attr_name_and_type = detail::ParseAttrStr(attr);
      auto attr_name = attr_name_and_type[0];
      auto attr_type_str = attr_name_and_type[1];
      if (attr_type_str == "bool") {
        AddAttr<bool>(attr_name, "custom operator bool attribute.")
            .SetDefault(false);
      } else if (attr_type_str == "int") {
        AddAttr<int>(attr_name, "custom operator int attribute.").SetDefault(1);
      } else if (attr_type_str == "float") {
        AddAttr<float>(attr_name, "custom operator float attribute.")
            .SetDefault(1.0f);
      } else if (attr_type_str == "int64_t") {
        AddAttr<int64_t>(attr_name, "custom operator int64_t attribute.")
            .SetDefault(1);
      } else if (attr_type_str == "std::string") {
        AddAttr<std::string>(attr_name, "custom operator int attribute.")
            .SetDefault("");
      } else if (attr_type_str == "std::vector<int>") {
        AddAttr<std::vector<int>>(attr_name,
                                  "custom operator std::vector<int> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<float>") {
        AddAttr<std::vector<float>>(
            attr_name, "custom operator std::vector<float> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<int64_t>") {
        AddAttr<std::vector<int64_t>>(
            attr_name, "custom operator std::vector<int64_t> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<std::string>") {
        AddAttr<std::vector<std::string>>(
            attr_name, "custom operator std::vector<std::string> attribute.")
            .SetDefault({});
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported `%s` type value as custom attribute now. "
            "Supported data types include `bool`, `int`, `float`, "
            "`int64_t`, `std::string`, `std::vector<int>`, "
505
            "`std::vector<float>`, `std::vector<int64_t>`, "
506 507 508 509 510
            "`std::vector<std::string>`, Please check whether "
            "the attribute data type and data type string are matched.",
            attr_type_str));
      }
    }
511 512 513
    AddComment(R"DOC(
Custom Operator.

514
According to the phi::DenseTensor operation function implemented by the user
515
independently of the framework, it is encapsulated into a framework
H
HongyuJia 已提交
516 517
operator to adapt to various execution scenarios such as dynamic graph
mode, static graph mode, and inference mode.
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534

)DOC");
  }

 private:
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  std::vector<std::string> attrs_;
};

template <typename T>
class CustomGradOpMaker;

template <>
class CustomGradOpMaker<OpDesc> : public SingleGradOpMaker<OpDesc> {
 public:
  explicit CustomGradOpMaker(
535 536
      const OpDesc& fwd_op,
      const std::unordered_set<std::string>& no_grad_set,
537
      std::unordered_map<std::string, std::string>* grad_to_var,
538 539
      const std::vector<BlockDesc*>& grad_block,
      const std::string& name,
540
      const std::vector<std::string>& inputs,
541 542
      const std::vector<std::string>& outputs,
      bool is_double_grad)
543 544 545
      : SingleGradOpMaker<OpDesc>(fwd_op, no_grad_set, grad_to_var, grad_block),
        name_(name),
        inputs_(inputs),
546 547
        outputs_(outputs),
        is_double_grad_(is_double_grad) {}
548 549 550 551 552 553 554 555 556

 protected:
  void Apply(GradOpPtr<OpDesc> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
557
      VLOG(3) << "Custom Operator: GradOpDescMaker - input: " << in_name;
558
      if (!detail::IsGradVar(in_name, is_double_grad_)) {
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
574
      VLOG(3) << "Custom Operator: GradOpDescMaker - output: " << out_name;
575
      if (detail::IsDuplicableVar(out_name)) {
576
        grad_op->SetOutput(
577 578 579
            out_name,
            this->InputGrad(detail::NoGrad(out_name, is_double_grad_),
                            /*drop_empty_grad=*/false));
580
      } else {
581 582 583
        grad_op->SetOutput(
            out_name,
            this->InputGrad(detail::NoGrad(out_name, is_double_grad_)));
584
      }
585
    }
586
    grad_op->SetAttrMap(this->Attrs());
587 588 589 590 591 592
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
593
  bool is_double_grad_{false};
594 595 596 597 598 599 600 601 602 603 604 605
};

template <>
class CustomGradOpMaker<imperative::OpBase>
    : public SingleGradOpMaker<imperative::OpBase> {
 public:
  explicit CustomGradOpMaker(
      const std::string& type,
      const imperative::NameVarBaseMap& var_base_map_in,
      const imperative::NameVarBaseMap& var_base_map_out,
      const AttributeMap& attrs,
      const std::map<std::string, std::string>& inplace_map,
606 607 608 609
      const std::string& name,
      const std::vector<std::string>& inputs,
      const std::vector<std::string>& outputs,
      bool is_double_grad)
610 611 612 613
      : SingleGradOpMaker<imperative::OpBase>(
            type, var_base_map_in, var_base_map_out, attrs, inplace_map),
        name_(name),
        inputs_(inputs),
614 615
        outputs_(outputs),
        is_double_grad_(is_double_grad) {}
616 617 618 619 620 621 622 623 624 625 626 627 628 629

 protected:
  // TODO(chenweihang): The code is duplicated with the previous one, because
  // ere OpMaker's Input, Output and other methods are protected. Putting the
  // function implementation outside the class will cause the method to be
  // uncallable,
  // so it is still implemented in the class for the time being.
  void Apply(GradOpPtr<imperative::OpBase> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
630
      VLOG(3) << "Custom Operator: GradOpBaseMaker - input: " << in_name;
631
      if (!detail::IsGradVar(in_name, is_double_grad_)) {
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
647
      VLOG(3) << "Custom Operator: GradOpBaseMaker - output: " << out_name;
648 649
      grad_op->SetOutput(
          out_name, this->InputGrad(detail::NoGrad(out_name, is_double_grad_)));
650
    }
651
    grad_op->SetAttrMap(this->Attrs());
652 653 654 655 656 657
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
658
  bool is_double_grad_{false};
659 660 661 662
};

//////////// Operator and Kernel Register //////////////

663 664 665
static void RegisterOperatorKernelWithPlace(
    const std::string& name,
    const OperatorWithKernel::OpKernelFunc& op_kernel_func,
666 667
    const proto::VarType::Type type,
    const platform::Place& place) {
668
  OpKernelType key(type, place);
669
  VLOG(3) << "Custom Operator: op kernel key: " << key;
670
  OperatorWithKernel::AllOpKernels()[name][key] = op_kernel_func;
671 672
}

673 674 675 676 677 678
static void RegisterOperatorKernel(const std::string& name,
                                   const paddle::KernelFunc& kernel_func,
                                   const std::vector<std::string>& inputs,
                                   const std::vector<std::string>& outputs,
                                   const std::vector<std::string>& attrs,
                                   void* dso_handle) {
679
  VLOG(3) << "Custom Operator: op name in kernel: " << name;
680 681 682 683 684
  // NOTE [ Dummy Op Kernel Key ]
  // TODO(chenweihang): Because execute engine need get device context based
  // op_kernel_key.place_, so we should register kernel for each
  // device. But this is not entirely correct, if user only give a cpu kernel,
  // but call api in gpu device, it will cause error.
685 686 687
  OperatorWithKernel::OpKernelFunc op_kernel_func;
  if (kernel_func) {
    VLOG(3) << "Register custom operator " << name << " with kernel func";
688 689
    op_kernel_func = [kernel_func, inputs, outputs, attrs](
                         const framework::ExecutionContext& ctx) {
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
      VLOG(3) << "Custom Operator: run custom kernel func in lambda.";
      RunKernelFunc(ctx, kernel_func, inputs, outputs, attrs);
    };
  } else {
    VLOG(3) << "Register custom operator " << name
            << " with raw op kernel func";
    PADDLE_ENFORCE_NOT_NULL(
        dso_handle,
        platform::errors::InvalidArgument(
            "The dso handle must be provided if kernel_func is nullptr."));
    using OpKernelFuncPtr = void(const framework::ExecutionContext&);
    auto symbol_name = "PD_" + name + "_raw_op_kernel_func";
    auto* func = detail::DynLoad<OpKernelFuncPtr>(dso_handle, symbol_name);
    op_kernel_func = func;
  }
705 706
  RegisterOperatorKernelWithPlace(
      name, op_kernel_func, proto::VarType::RAW, platform::CPUPlace());
707
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
708 709
  RegisterOperatorKernelWithPlace(
      name, op_kernel_func, proto::VarType::RAW, platform::CUDAPlace());
710
#endif
711 712 713 714
#if defined(PADDLE_WITH_XPU)
  RegisterOperatorKernelWithPlace(
      name, op_kernel_func, proto::VarType::RAW, platform::XPUPlace());
#endif
715 716
}

717 718
void RegisterOperatorWithMetaInfo(const std::vector<OpMetaInfo>& op_meta_infos,
                                  void* dso_handle) {
719 720 721 722 723 724
  /* Op register */
  OpInfo info;

  auto& base_op_meta = op_meta_infos.front();

  auto op_name = OpMetaInfoHelper::GetOpName(base_op_meta);
725 726

  if (OpInfoMap::Instance().Has(op_name)) {
727
    LOG(WARNING) << "Operator (" << op_name << ") has been registered.";
728 729 730
    return;
  }

731 732 733 734 735 736 737
  auto& op_inputs = OpMetaInfoHelper::GetInputs(base_op_meta);
  auto& op_outputs = OpMetaInfoHelper::GetOutputs(base_op_meta);
  auto& op_attrs = OpMetaInfoHelper::GetAttrs(base_op_meta);
  auto& kernel_fn = OpMetaInfoHelper::GetKernelFn(base_op_meta);
  auto& infer_shape_func = OpMetaInfoHelper::GetInferShapeFn(base_op_meta);
  auto& infer_dtype_func = OpMetaInfoHelper::GetInferDtypeFn(base_op_meta);

738 739
  VLOG(3) << "Custom Operator: forward, op name: " << op_name;
  VLOG(3) << "Custom Operator: forward, op inputs: "
740
          << string::join_strings(op_inputs, ',');
741
  VLOG(3) << "Custom Operator: forward, op outputs: "
742
          << string::join_strings(op_outputs, ',');
743
  VLOG(3) << "Custom Operator: forward, op attrs: "
744
          << string::join_strings(op_attrs, ',');
745 746

  // Op
747 748
  info.creator_ = [](const std::string& op_name,
                     const VariableNameMap& inputs,
749 750 751 752 753 754 755 756 757 758 759 760 761
                     const VariableNameMap& outputs,
                     const AttributeMap& attrs) {
    return new CustomOperator(op_name, inputs, outputs, attrs);
  };

  // OpMaker
  info.proto_ = new proto::OpProto;
  info.proto_->set_type(op_name);

  info.checker_ = new OpAttrChecker();
  CustomOpMaker custom_maker(op_inputs, op_outputs, op_attrs);
  custom_maker(info.proto_, info.checker_);
  PADDLE_ENFORCE_EQ(
762 763
      info.proto_->IsInitialized(),
      true,
764 765
      platform::errors::PreconditionNotMet(
          "Fail to initialize %s's OpProto, because %s is not initialized.",
766 767
          op_name,
          info.proto_->InitializationErrorString()));
768 769

  // InferShape
770 771 772 773
  if (infer_shape_func == nullptr) {
    // use default InferShape
    info.infer_shape_ = [op_inputs, op_outputs](InferShapeContext* ctx) {
      PADDLE_ENFORCE_EQ(
774 775
          op_inputs.size(),
          1UL,
776 777 778
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
779 780 781
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
782 783 784
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));
      PADDLE_ENFORCE_EQ(
785 786
          op_outputs.size(),
          1UL,
787 788 789
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
790 791 792
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
793 794 795
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));

796
      VLOG(3) << "Custom Operator: Default InferShape - share ddim.";
797 798 799
      ctx->ShareDim(op_inputs[0], op_outputs[0]);
    };
  } else {
800 801
    info.infer_shape_ = [op_inputs, op_outputs, op_attrs, infer_shape_func](
                            InferShapeContext* ctx) {
802
      RunInferShapeFunc(ctx, infer_shape_func, op_inputs, op_outputs, op_attrs);
803 804
    };
  }
805 806

  // Infer Dtype
807
  if (infer_dtype_func == nullptr) {
808
    // use default InferDtype
809 810
    info.infer_var_type_ = [op_inputs, op_outputs](InferVarTypeContext* ctx) {
      PADDLE_ENFORCE_EQ(
811 812
          op_inputs.size(),
          1UL,
813 814 815
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
816 817 818
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
819 820 821
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));
      PADDLE_ENFORCE_EQ(
822 823
          op_outputs.size(),
          1UL,
824 825 826
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
827 828 829
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
830 831 832
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));

833
      VLOG(3) << "Custom Operator: InferDtype - share dtype.";
834 835 836 837
      auto dtype = ctx->GetInputDataType(op_inputs[0]);
      ctx->SetOutputDataType(op_outputs[0], dtype);
    };
  } else {
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
    info.infer_var_type_ =
        [op_inputs, op_outputs, infer_dtype_func](InferVarTypeContext* ctx) {
          std::vector<DataType> input_dtypes;
          std::vector<std::vector<DataType>> vec_input_dtypes;

          VLOG(3) << "Custom Operator: InferDtype - get input dtype.";
          for (auto& in_name : op_inputs) {
            if (detail::IsDuplicableVar(in_name)) {
              std::vector<DataType> vec_custom_dtype;
              for (size_t i = 0; i < ctx->InputSize(in_name); ++i) {
                auto dtype = ctx->GetInputDataType(in_name, i);
                vec_custom_dtype.emplace_back(
                    paddle::framework::TransToPhiDataType(dtype));
              }
              vec_input_dtypes.emplace_back(vec_custom_dtype);
            } else {
              auto dtype = ctx->GetInputDataType(in_name);
              input_dtypes.emplace_back(
                  paddle::framework::TransToPhiDataType(dtype));
            }
858
          }
859

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
          VLOG(3) << "Custom Operator: InferDtype - infer output dtype.";
          auto output_dtypes = infer_dtype_func(input_dtypes, vec_input_dtypes);

          VLOG(3) << "Custom Operator: InferDtype - set output dtype.";
          for (size_t i = 0; i < op_outputs.size(); ++i) {
            auto out_name = op_outputs[i];
            if (detail::IsDuplicableVar(out_name)) {
              for (size_t j = 0; j < output_dtypes.size(); ++j) {
                auto dtype =
                    paddle::framework::TransToProtoVarType(output_dtypes[i]);
                ctx->SetOutputDataType(out_name, dtype, j);
              }
            } else {
              ctx->SetOutputDataType(
                  out_name,
                  paddle::framework::TransToProtoVarType(output_dtypes[i]));
            }
877
          }
878
        };
879
  }
880 881

  // Kernel func
882 883
  RegisterOperatorKernel(
      op_name, kernel_fn, op_inputs, op_outputs, op_attrs, dso_handle);
884 885 886 887 888 889 890 891 892

  // If grad op or double grad op exists
  std::string cur_op_name = op_name;
  for (size_t i = 1; i < op_meta_infos.size(); ++i) {
    auto& cur_grad_op = op_meta_infos[i];

    auto& grad_op_name = OpMetaInfoHelper::GetOpName(cur_grad_op);
    auto& grad_op_inputs = OpMetaInfoHelper::GetInputs(cur_grad_op);
    auto& grad_op_outputs = OpMetaInfoHelper::GetOutputs(cur_grad_op);
893
    auto& grad_op_attrs = OpMetaInfoHelper::GetAttrs(cur_grad_op);
894
    auto& grad_kernel_fn = OpMetaInfoHelper::GetKernelFn(cur_grad_op);
895
    auto& grad_infer_shape_fn = OpMetaInfoHelper::GetInferShapeFn(cur_grad_op);
896

897 898
    VLOG(3) << "Custom Operator: backward, op name: " << grad_op_name;
    VLOG(3) << "Custom Operator: backward, op inputs: "
899
            << string::join_strings(grad_op_inputs, ',');
900
    VLOG(3) << "Custom Operator: backward, op outputs: "
901 902
            << string::join_strings(grad_op_outputs, ',');

903 904
    bool is_double_grad = (i == 2);

905
    // GradOpDescMaker
906 907 908 909 910 911
    info.grad_op_maker_ =
        [grad_op_name, grad_op_inputs, grad_op_outputs, is_double_grad](
            const OpDesc& fwd_op,
            const std::unordered_set<std::string>& no_grad_set,
            std::unordered_map<std::string, std::string>* grad_to_var,
            const std::vector<BlockDesc*>& grad_block) {
912 913 914 915 916 917 918 919
          CustomGradOpMaker<paddle::framework::OpDesc> maker(fwd_op,
                                                             no_grad_set,
                                                             grad_to_var,
                                                             grad_block,
                                                             grad_op_name,
                                                             grad_op_inputs,
                                                             grad_op_outputs,
                                                             is_double_grad);
920 921
          return maker();
        };
922 923

    // GradOpBaseMaker
924 925 926 927 928 929 930 931
    info.dygraph_grad_op_maker_ =
        [grad_op_name, grad_op_inputs, grad_op_outputs, is_double_grad](
            const std::string& type,
            const imperative::NameVarBaseMap& var_base_map_in,
            const imperative::NameVarBaseMap& var_base_map_out,
            const framework::AttributeMap& attrs,
            const framework::AttributeMap& default_attrs,
            const std::map<std::string, std::string>& inplace_map) {
932 933 934 935 936 937 938 939 940
          CustomGradOpMaker<paddle::imperative::OpBase> maker(type,
                                                              var_base_map_in,
                                                              var_base_map_out,
                                                              attrs,
                                                              inplace_map,
                                                              grad_op_name,
                                                              grad_op_inputs,
                                                              grad_op_outputs,
                                                              is_double_grad);
941 942 943
          maker.SetDygraphDefaultAttrsMap(default_attrs);
          return maker();
        };
944 945 946 947 948

    /* Grad op register */
    OpInfo grad_info;

    // Grad Op
949 950 951 952 953 954
    grad_info.creator_ = [](const std::string& type,
                            const VariableNameMap& inputs,
                            const VariableNameMap& outputs,
                            const AttributeMap& attrs) {
      return new CustomOperator(type, inputs, outputs, attrs);
    };
955

956
    // Grad InferShape
957
    if (grad_infer_shape_fn == nullptr) {
958 959
      grad_info.infer_shape_ = [grad_op_inputs,
                                grad_op_outputs,
960
                                is_double_grad](InferShapeContext* ctx) {
961 962 963 964 965 966 967 968 969 970
        // 1. if forward input exists, gradient's shape is same with forward
        // input
        // default
        //    [Suitable for most situations]
        // 2. if forward input not exists, and only contains one grad input and
        // output,
        //    use grad input shape as grad output shape
        //    [Suitable for the situation that forward input is not used as
        //    backward input]
        for (auto& out_name : grad_op_outputs) {
971
          auto fwd_name = detail::NoGrad(out_name, is_double_grad);
972 973
          if (detail::IsDuplicableVar(fwd_name)) {
            // Duplicable forward var must as backward input
974 975
            ctx->ShareDim(fwd_name, out_name);
          } else {
976 977 978 979 980 981 982 983 984 985
            if (ctx->HasInput(fwd_name)) {
              ctx->ShareDim(fwd_name, out_name);
            } else {
              PADDLE_ENFORCE_EQ(
                  grad_op_inputs.size() == 1UL && grad_op_outputs.size() == 1UL,
                  true,
                  platform::errors::Unavailable(
                      "Custom grad operator infershape error. "
                      "If a custom grad operator contains only one input and "
                      "only one output, the input shape will be directly set "
H
HongyuJia 已提交
986 987 988
                      "to the output shape. Otherwise, Please set the forward "
                      "input as the grad operator's input or  set the "
                      "InferShapeFn of custom grad operator by "
989 990 991
                      ".SetInferShapeFn(PD_INFER_SHAPE(...))"));
              ctx->ShareDim(grad_op_inputs[0], out_name);
            }
992 993
          }
        }
994 995
      };
    } else {
996 997 998
      grad_info.infer_shape_ = [grad_op_inputs,
                                grad_op_outputs,
                                grad_op_attrs,
999
                                grad_infer_shape_fn](InferShapeContext* ctx) {
1000 1001 1002 1003 1004
        RunInferShapeFunc(ctx,
                          grad_infer_shape_fn,
                          grad_op_inputs,
                          grad_op_outputs,
                          grad_op_attrs);
1005 1006
      };
    }
1007 1008

    // Kernel func
1009 1010 1011 1012 1013 1014
    RegisterOperatorKernel(grad_op_name,
                           grad_kernel_fn,
                           grad_op_inputs,
                           grad_op_outputs,
                           grad_op_attrs,
                           dso_handle);
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

    // update current info
    OpInfoMap::Instance().Insert(cur_op_name, info);
    cur_op_name = grad_op_name;
    info = grad_info;
  }
  // insert last info
  OpInfoMap::Instance().Insert(cur_op_name, info);
}

void RegisterOperatorWithMetaInfoMap(
1026
    const paddle::OpMetaInfoMap& op_meta_info_map, void* dso_handle) {
1027
  auto& meta_info_map = op_meta_info_map.GetMap();
1028
  VLOG(3) << "Custom Operator: size of op meta info map - "
1029 1030 1031
          << meta_info_map.size();
  // pair: {op_type, OpMetaInfo}
  for (auto& pair : meta_info_map) {
1032
    VLOG(3) << "Custom Operator: pair first -> op name: " << pair.first;
1033
    RegisterOperatorWithMetaInfo(pair.second, dso_handle);
1034 1035 1036 1037 1038 1039
  }
}

////////////////////// User APIs ///////////////////////

// load op api
1040 1041
const std::unordered_map<std::string, std::vector<OpMetaInfo>>&
LoadOpMetaInfoAndRegisterOp(const std::string& dso_name) {
1042
  void* handle = paddle::platform::dynload::GetOpDsoHandle(dso_name);
1043
  VLOG(3) << "load custom_op lib: " << dso_name;
1044 1045 1046 1047
  typedef OpMetaInfoMap& get_op_meta_info_map_t();
  auto* get_op_meta_info_map =
      detail::DynLoad<get_op_meta_info_map_t>(handle, "PD_GetOpMetaInfoMap");
  auto& op_meta_info_map = get_op_meta_info_map();
1048
  RegisterOperatorWithMetaInfoMap(op_meta_info_map, handle);
1049
  return op_meta_info_map.GetMap();
1050 1051 1052 1053
}

}  // namespace framework
}  // namespace paddle