custom_operator.cc 40.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/custom_operator.h"

#include <algorithm>
#include <functional>
#include <iostream>
#include <map>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

28
#include "paddle/fluid/eager/api/utils/global_utils.h"
29
#include "paddle/fluid/framework/attribute.h"
30
#include "paddle/fluid/framework/convert_utils.h"
31 32 33
#include "paddle/fluid/framework/op_meta_info_helper.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
34
#include "paddle/fluid/framework/phi_utils.h"
35
#include "paddle/fluid/framework/tensor.h"
36
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
37 38
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
#include "paddle/fluid/string/string_helper.h"
39 40 41
#include "paddle/phi/api/all.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/core/compat/convert_utils.h"
42
#include "paddle/utils/any.h"
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

namespace paddle {
namespace framework {

namespace detail {

// dynamic lib load func
template <typename T>
static T* DynLoad(void* handle, std::string name) {
  T* func = reinterpret_cast<T*>(dlsym(handle, name.c_str()));
#if !defined(_WIN32)
  auto errorno = dlerror();
#else
  auto errorno = GetLastError();
#endif  // !_WIN32
  PADDLE_ENFORCE_NOT_NULL(
      func, platform::errors::NotFound(
                "Failed to load dynamic operator library, error message(%s).",
                errorno));
  return func;
}

65
inline static bool IsDuplicableVar(const std::string& var_name) {
66 67 68 69
  std::string suffix = kTensorVectorSuffix;
  return var_name.rfind(suffix) != std::string::npos;
}

70 71
inline static std::string NoGrad(const std::string& var_name,
                                 bool is_double_grad = false) {
72
  std::string suffix = kGradVarSuffix;
73 74 75 76 77 78 79 80
  std::string new_out_suffix = kDoubleGradNewOutSuffix;
  std::string tmp_var_name(var_name);
  if (is_double_grad &&
      (tmp_var_name.rfind(new_out_suffix) != std::string::npos)) {
    tmp_var_name = tmp_var_name.substr(
        0, tmp_var_name.size() - /*kDoubleGradNewOutSuffix length*/ 4);
  }
  return tmp_var_name.substr(0, tmp_var_name.size() - kGradVarSuffixSize);
81 82
}

83 84 85 86 87 88 89 90 91 92 93
inline static bool IsGradVar(const std::string& var_name, bool is_double_grad) {
  std::string suffix = kGradVarSuffix;
  if (!is_double_grad) {
    return var_name.rfind(suffix) != std::string::npos;
  } else {
    // for double grad cases, the X@GRAD is not a grad var, X@GRAD@GRAD is a
    // grad var, here we remove a @GRAD suffix
    return NoGrad(var_name).rfind(suffix) != std::string::npos;
  }
}

94 95
inline static bool IsMemberOf(const std::vector<std::string>& vec,
                              const std::string& name) {
96 97 98
  return std::find(vec.cbegin(), vec.cend(), name) != vec.cend();
}

99
static std::vector<std::string> ParseAttrStr(const std::string& attr) {
100 101 102 103 104 105 106 107 108 109 110 111
  auto split_pos = attr.find_first_of(":");
  PADDLE_ENFORCE_NE(split_pos, std::string::npos,
                    platform::errors::InvalidArgument(
                        "Invalid attribute string format. Attribute string "
                        "format is `<name>:<type>`."));

  std::vector<std::string> rlt;
  // 1. name
  rlt.emplace_back(string::trim_spaces(attr.substr(0, split_pos)));
  // 2. type
  rlt.emplace_back(string::trim_spaces(attr.substr(split_pos + 1)));

112
  VLOG(3) << "attr name: " << rlt[0] << ", attr type str: " << rlt[1];
113 114 115 116

  return rlt;
}

117 118 119 120 121 122 123 124
}  // namespace detail

////////////////// Kernel Define ////////////////////

// custom op kernel call function define
static void RunKernelFunc(const framework::ExecutionContext& ctx,
                          const paddle::KernelFunc& func,
                          const std::vector<std::string>& inputs,
125 126
                          const std::vector<std::string>& outputs,
                          const std::vector<std::string>& attrs) {
127
  VLOG(3) << "Custom Operator: Start run KernelFunc.";
128 129
  // prepare CustomOpKernelContext
  paddle::CustomOpKernelContext kernel_ctx;
130
  for (auto& in_name : inputs) {
131
    VLOG(3) << "Custom Operator: input name - " << in_name;
132 133 134 135 136 137
    if (detail::IsDuplicableVar(in_name)) {
      // return const std::vector<const Tensor*>
      auto vec_x = ctx.MultiInput<Tensor>(in_name);
      PADDLE_ENFORCE_NE(vec_x.empty(), true,
                        platform::errors::NotFound(
                            "Input vector<tensor> (%s) is empty.", in_name));
138
      std::vector<paddle::experimental::Tensor> custom_vec_in;
139 140 141 142 143 144 145 146 147 148 149
      for (size_t i = 0; i < vec_x.size(); ++i) {
        auto* x = vec_x[i];
        PADDLE_ENFORCE_NOT_NULL(
            x, platform::errors::NotFound(
                   "The %d-th tensor in input vector<tensor> (%s) is nullptr.",
                   i, in_name));
        PADDLE_ENFORCE_EQ(x->IsInitialized(), true,
                          platform::errors::InvalidArgument(
                              "The %d-th tensor in input vector<tensor> (%s) "
                              "is not initialized.",
                              i, in_name));
150
        paddle::experimental::Tensor custom_t;
151
        custom_t.set_impl(std::make_shared<phi::DenseTensor>(*x));
152 153
        custom_vec_in.emplace_back(custom_t);
      }
154
      kernel_ctx.EmplaceBackInputs(std::move(custom_vec_in));
155 156 157 158 159 160 161
    } else {
      auto* x = ctx.Input<Tensor>(in_name);
      PADDLE_ENFORCE_NOT_NULL(x, platform::errors::NotFound(
                                     "Input tensor (%s) is nullptr.", in_name));
      PADDLE_ENFORCE_EQ(x->IsInitialized(), true,
                        platform::errors::InvalidArgument(
                            "Input tensor (%s) is not initialized.", in_name));
162
      paddle::experimental::Tensor custom_in;
163
      custom_in.set_impl(std::make_shared<phi::DenseTensor>(*x));
164 165 166 167 168 169 170 171 172 173
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (custom_in.is_gpu_pinned()) {
        VLOG(3) << "Custom Operator: custom input is gpu pinned tensor";
        auto gpu_place = phi::GPUPlace(platform::GetCurrentDeviceId());
        auto custom_gpu_in = custom_in.copy_to(gpu_place, true);
        kernel_ctx.EmplaceBackInput(std::move(custom_gpu_in));
      } else {
        kernel_ctx.EmplaceBackInput(std::move(custom_in));
      }
#else
174
      kernel_ctx.EmplaceBackInput(std::move(custom_in));
175
#endif
176
    }
177 178
  }

179 180 181 182 183
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
184
      kernel_ctx.EmplaceBackAttr(ctx.Attr<bool>(attr_name));
185
    } else if (attr_type_str == "int") {
186
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int>(attr_name));
187
    } else if (attr_type_str == "float") {
188
      kernel_ctx.EmplaceBackAttr(ctx.Attr<float>(attr_name));
189
    } else if (attr_type_str == "int64_t") {
190
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int64_t>(attr_name));
191
    } else if (attr_type_str == "std::string") {
192
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::string>(attr_name));
193
    } else if (attr_type_str == "std::vector<int>") {
194
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int>>(attr_name));
195
    } else if (attr_type_str == "std::vector<float>") {
196
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<float>>(attr_name));
197
    } else if (attr_type_str == "std::vector<int64_t>") {
198
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int64_t>>(attr_name));
199
    } else if (attr_type_str == "std::vector<std::string>") {
200
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<std::string>>(attr_name));
201 202 203 204 205
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
206
          "`std::vector<float>`, `std::vector<int64_t>`, "
207 208 209 210 211
          "`std::vector<std::string>`, Please check whether "
          "the attribute data type and data type string are matched.",
          attr_type_str));
    }
  }
212

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
  VLOG(3) << "Custom Operator: push outputs into CustomOpKernelContext.";
  // cache the target tensor pointers
  std::vector<Tensor*> true_out_ptrs;
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      PADDLE_ENFORCE(i == 0UL && outputs.size() == 1UL,
                     platform::errors::PreconditionNotMet(
                         "If custom operator's outputs contains `paddle::Vec("
                         ")` type, "
                         "it only can hold one output."));
      auto vec_out = ctx.MultiOutput<Tensor>(out_name);
      PADDLE_ENFORCE_NE(vec_out.empty(), true,
                        platform::errors::NotFound(
                            "Output vector<tensor> (%s) is empty.", out_name));
      std::vector<paddle::experimental::Tensor> custom_vec_out;
      for (size_t j = 0; j < vec_out.size(); ++j) {
        auto* out = vec_out[j];
        PADDLE_ENFORCE_NOT_NULL(
            out,
            platform::errors::NotFound(
                "The %d-th tensor in output vector<tensor> (%s) is nullptr.", j,
                out_name));
        true_out_ptrs.emplace_back(out);
        paddle::experimental::Tensor custom_t;
        // here only can copy the output tensor into context
239
        custom_t.set_impl(std::make_shared<phi::DenseTensor>(*out));
240 241 242 243 244 245 246 247 248 249 250
        custom_vec_out.emplace_back(custom_t);
      }
      kernel_ctx.EmplaceBackOutputs(std::move(custom_vec_out));
    } else {
      auto* out = ctx.Output<Tensor>(out_name);
      PADDLE_ENFORCE_NOT_NULL(
          out, platform::errors::NotFound("Output tensor (%s) is nullptr.",
                                          out_name));
      true_out_ptrs.emplace_back(out);
      paddle::experimental::Tensor custom_out;
      // here only can copy the output tensor into context
251
      custom_out.set_impl(std::make_shared<phi::DenseTensor>(*out));
252 253 254
      kernel_ctx.EmplaceBackOutput(std::move(custom_out));
    }
  }
255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
  try {
    VLOG(3) << "Custom Operator: Run ComputeFunc.";
    func(&kernel_ctx);

    // sync output tensor data into original output
    auto* calc_outs = kernel_ctx.AllMutableOutput();
    PADDLE_ENFORCE_EQ(
        true_out_ptrs.size(), calc_outs->size(),
        platform::errors::InvalidArgument(
            "The number of element in custom operator outputs is wrong, "
            "expected contains %d Tensors, but actually contains %d "
            "Tensors.",
            true_out_ptrs.size(), calc_outs->size()));
    for (size_t i = 0; i < true_out_ptrs.size(); ++i) {
      auto* true_out = true_out_ptrs.at(i);
      auto calc_out =
272
          std::dynamic_pointer_cast<phi::DenseTensor>(calc_outs->at(i).impl());
273
      // assgin meta info
274
      auto* true_out_meta = phi::DenseTensorUtils::GetMutableMeta(true_out);
275 276 277
      true_out_meta->dims = calc_out->dims();
      true_out_meta->dtype = calc_out->dtype();
      true_out_meta->layout = calc_out->layout();
278 279
      true_out_meta->offset = calc_out->offset();
      // lod no need to be reset
280 281 282
      // reset holder if needed
      if (true_out->Holder() != calc_out->Holder()) {
        true_out->ResetHolder(calc_out->Holder());
283
      }
284 285 286 287 288 289 290 291
    }
  } catch (platform::EnforceNotMet& exception) {
    throw std::move(exception);
  } catch (std::exception& ex) {
    PADDLE_THROW(platform::errors::External("%s", ex.what()));
  } catch (...) {
    PADDLE_THROW(platform::errors::Fatal(
        "Custom operator raises an unknown exception in rumtime."));
292 293 294
  }
}

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
static void RunInferShapeFunc(framework::InferShapeContext* ctx,
                              const paddle::InferShapeFunc& func,
                              const std::vector<std::string>& inputs,
                              const std::vector<std::string>& outputs,
                              const std::vector<std::string>& attrs) {
  std::vector<std::vector<int64_t>> input_shapes;
  std::vector<std::vector<std::vector<int64_t>>> vec_input_shapes;

  VLOG(3) << "Custom Operator: InferShape - get input ddim.";
  for (auto& in_name : inputs) {
    if (detail::IsDuplicableVar(in_name)) {
      OP_INOUT_CHECK(ctx->HasInputs(in_name), "Input", in_name, "Custom");
      auto vec_ddim = ctx->GetInputsDim(in_name);
      std::vector<std::vector<int64_t>> vec_shape;
      vec_shape.reserve(vec_ddim.size());
      std::transform(vec_ddim.begin(), vec_ddim.end(),
                     std::back_inserter(vec_shape),
                     [&](const DDim& ddim) -> std::vector<int64_t> {
313
                       return phi::vectorize(ddim);
314 315 316 317 318
                     });
      vec_input_shapes.emplace_back(vec_shape);
    } else {
      OP_INOUT_CHECK(ctx->HasInput(in_name), "Input", in_name, "Custom");
      auto ddim = ctx->GetInputDim(in_name);
319
      input_shapes.emplace_back(phi::vectorize(ddim));
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
    }
  }

  std::vector<paddle::any> custom_attrs;
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
      custom_attrs.emplace_back(ctx->Attrs().Get<bool>(attr_name));
    } else if (attr_type_str == "int") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int>(attr_name));
    } else if (attr_type_str == "float") {
      custom_attrs.emplace_back(ctx->Attrs().Get<float>(attr_name));
    } else if (attr_type_str == "int64_t") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int64_t>(attr_name));
    } else if (attr_type_str == "std::string") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::string>(attr_name));
    } else if (attr_type_str == "std::vector<int>") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::vector<int>>(attr_name));
    } else if (attr_type_str == "std::vector<float>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<float>>(attr_name));
    } else if (attr_type_str == "std::vector<int64_t>") {
      // NOTE(chenweihang): InferShape can't support std::vector<int64_t>
      // attr type, because the input type is std::vector<int64_t>, only
      // can use one rule to parse std::vector<int64_t> parameter
      continue;
    } else if (attr_type_str == "std::vector<std::string>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<std::string>>(attr_name));
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
          "`std::vector<float>`, `std::vector<std::string>`, "
          "Please check whether the attribute data type and "
          "data type string are matched.",
          attr_type_str));
    }
  }

  VLOG(3) << "Custom Operator: InferShape - calc output ddim.";
  auto output_shapes = func(input_shapes, vec_input_shapes, custom_attrs);

  VLOG(3) << "Custom Operator: InferShape - set output ddim.";
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      std::vector<DDim> vec_ddim;
      vec_ddim.reserve(output_shapes.size());
      std::transform(output_shapes.begin(), output_shapes.end(),
                     std::back_inserter(vec_ddim),
                     [&](const std::vector<int64_t>& shape) -> DDim {
375
                       return phi::make_ddim(shape);
376 377 378
                     });
      ctx->SetOutputsDim(out_name, vec_ddim);
    } else {
379
      ctx->SetOutputDim(out_name, phi::make_ddim(output_shapes[i]));
380 381 382 383
    }
  }
}

384 385 386 387 388 389 390 391 392
//////////////////// Operator Define /////////////////

class CustomOperator : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

  // Dummy infershape
  // Because it is a pure virtual function, it must be implemented
  void InferShape(framework::InferShapeContext* ctx) const override {
393
    VLOG(3) << "Custom Operator: Dummy infer shape of custom operator.";
394 395 396 397 398 399 400 401 402 403 404 405 406
  }

  /**
   * NOTE: [Skip the Kernel Selection]
   * Custom Op only registers one Op kernel on each device, so that the
   * data type selection and promotion that depends on GetExpectedKernelType,
   * as well as the adaptation of various other special situations,
   * need users to implement, to avoid users needs to implement
   * GetExpectedKernelType function when expanding other cases.
   * The RAW type is used here as the data type, indicating that
   * it can only be determined at runtime.
   */
  framework::OpKernelType GetExpectedKernelType(
407
      const framework::ExecutionContext& ctx) const override {
408 409 410 411 412 413 414 415 416 417
    return framework::OpKernelType(proto::VarType::RAW, ctx.GetPlace());
  }

  /**
   * NOTE: [Skip Input Variable Cast for DataType]
   * Because the kernel data type is RAW, we should skip the cast for
   * data type difference when PrepareData.
   */
  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
418
      const OpKernelType& expected_kernel_type) const override {
419 420 421 422 423 424 425 426 427 428 429 430 431 432
    return OpKernelType(expected_kernel_type.data_type_,
                        expected_kernel_type.place_, tensor.layout());
  }
};

class CustomOpMaker : public OpProtoAndCheckerMaker {
 public:
  explicit CustomOpMaker(const std::vector<std::string>& inputs,
                         const std::vector<std::string>& outputs,
                         const std::vector<std::string>& attrs)
      : inputs_(inputs), outputs_(outputs), attrs_(attrs) {}

  void Make() override {
    for (auto& in_name : inputs_) {
433 434 435 436 437 438
      if (detail::IsDuplicableVar(in_name)) {
        AddInput(in_name, "The input " + in_name + "of Custom operator.")
            .AsDuplicable();
      } else {
        AddInput(in_name, "The input " + in_name + "of Custom operator.");
      }
439 440
    }
    for (auto& out_name : outputs_) {
441 442 443 444 445 446
      if (detail::IsDuplicableVar(out_name)) {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.")
            .AsDuplicable();
      } else {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.");
      }
447
    }
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
    for (auto& attr : attrs_) {
      auto attr_name_and_type = detail::ParseAttrStr(attr);
      auto attr_name = attr_name_and_type[0];
      auto attr_type_str = attr_name_and_type[1];
      if (attr_type_str == "bool") {
        AddAttr<bool>(attr_name, "custom operator bool attribute.")
            .SetDefault(false);
      } else if (attr_type_str == "int") {
        AddAttr<int>(attr_name, "custom operator int attribute.").SetDefault(1);
      } else if (attr_type_str == "float") {
        AddAttr<float>(attr_name, "custom operator float attribute.")
            .SetDefault(1.0f);
      } else if (attr_type_str == "int64_t") {
        AddAttr<int64_t>(attr_name, "custom operator int64_t attribute.")
            .SetDefault(1);
      } else if (attr_type_str == "std::string") {
        AddAttr<std::string>(attr_name, "custom operator int attribute.")
            .SetDefault("");
      } else if (attr_type_str == "std::vector<int>") {
        AddAttr<std::vector<int>>(attr_name,
                                  "custom operator std::vector<int> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<float>") {
        AddAttr<std::vector<float>>(
            attr_name, "custom operator std::vector<float> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<int64_t>") {
        AddAttr<std::vector<int64_t>>(
            attr_name, "custom operator std::vector<int64_t> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<std::string>") {
        AddAttr<std::vector<std::string>>(
            attr_name, "custom operator std::vector<std::string> attribute.")
            .SetDefault({});
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported `%s` type value as custom attribute now. "
            "Supported data types include `bool`, `int`, `float`, "
            "`int64_t`, `std::string`, `std::vector<int>`, "
487
            "`std::vector<float>`, `std::vector<int64_t>`, "
488 489 490 491 492
            "`std::vector<std::string>`, Please check whether "
            "the attribute data type and data type string are matched.",
            attr_type_str));
      }
    }
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    AddComment(R"DOC(
Custom Operator.

According to the Tensor operation function implemented by the user 
independently of the framework, it is encapsulated into a framework 
operator to adapt to various execution scenarios such as dynamic graph, 
mode static graph mode, and inference mode.

)DOC");
  }

 private:
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  std::vector<std::string> attrs_;
};

template <typename T>
class CustomGradOpMaker;

template <>
class CustomGradOpMaker<OpDesc> : public SingleGradOpMaker<OpDesc> {
 public:
  explicit CustomGradOpMaker(
      const OpDesc& fwd_op, const std::unordered_set<std::string>& no_grad_set,
      std::unordered_map<std::string, std::string>* grad_to_var,
      const std::vector<BlockDesc*>& grad_block, const std::string& name,
      const std::vector<std::string>& inputs,
521
      const std::vector<std::string>& outputs, bool is_double_grad)
522 523 524
      : SingleGradOpMaker<OpDesc>(fwd_op, no_grad_set, grad_to_var, grad_block),
        name_(name),
        inputs_(inputs),
525 526
        outputs_(outputs),
        is_double_grad_(is_double_grad) {}
527 528 529 530 531 532 533 534 535

 protected:
  void Apply(GradOpPtr<OpDesc> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
536
      VLOG(3) << "Custom Operator: GradOpDescMaker - input: " << in_name;
537
      if (!detail::IsGradVar(in_name, is_double_grad_)) {
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
553
      VLOG(3) << "Custom Operator: GradOpDescMaker - output: " << out_name;
554
      if (detail::IsDuplicableVar(out_name)) {
555 556 557
        grad_op->SetOutput(
            out_name, this->InputGrad(detail::NoGrad(out_name, is_double_grad_),
                                      /*drop_empty_grad=*/false));
558
      } else {
559 560
        grad_op->SetOutput(out_name, this->InputGrad(detail::NoGrad(
                                         out_name, is_double_grad_)));
561
      }
562
    }
563
    grad_op->SetAttrMap(this->Attrs());
564 565 566 567 568 569
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
570
  bool is_double_grad_{false};
571 572 573 574 575 576 577 578 579 580 581 582 583
};

template <>
class CustomGradOpMaker<imperative::OpBase>
    : public SingleGradOpMaker<imperative::OpBase> {
 public:
  explicit CustomGradOpMaker(
      const std::string& type,
      const imperative::NameVarBaseMap& var_base_map_in,
      const imperative::NameVarBaseMap& var_base_map_out,
      const AttributeMap& attrs,
      const std::map<std::string, std::string>& inplace_map,
      const std::string& name, const std::vector<std::string>& inputs,
584
      const std::vector<std::string>& outputs, bool is_double_grad)
585 586 587 588
      : SingleGradOpMaker<imperative::OpBase>(
            type, var_base_map_in, var_base_map_out, attrs, inplace_map),
        name_(name),
        inputs_(inputs),
589 590
        outputs_(outputs),
        is_double_grad_(is_double_grad) {}
591 592 593 594 595 596 597 598 599 600 601 602 603 604

 protected:
  // TODO(chenweihang): The code is duplicated with the previous one, because
  // ere OpMaker's Input, Output and other methods are protected. Putting the
  // function implementation outside the class will cause the method to be
  // uncallable,
  // so it is still implemented in the class for the time being.
  void Apply(GradOpPtr<imperative::OpBase> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
605
      VLOG(3) << "Custom Operator: GradOpBaseMaker - input: " << in_name;
606
      if (!detail::IsGradVar(in_name, is_double_grad_)) {
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
622
      VLOG(3) << "Custom Operator: GradOpBaseMaker - output: " << out_name;
623 624
      grad_op->SetOutput(
          out_name, this->InputGrad(detail::NoGrad(out_name, is_double_grad_)));
625
    }
626
    grad_op->SetAttrMap(this->Attrs());
627 628 629 630 631 632
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
633
  bool is_double_grad_{false};
634 635 636 637
};

//////////// Operator and Kernel Register //////////////

638 639 640
static void RegisterOperatorKernelWithPlace(
    const std::string& name,
    const OperatorWithKernel::OpKernelFunc& op_kernel_func,
641 642
    const proto::VarType::Type type, const platform::Place& place) {
  OpKernelType key(type, place);
643
  VLOG(3) << "Custom Operator: op kernel key: " << key;
644
  OperatorWithKernel::AllOpKernels()[name][key] = op_kernel_func;
645 646
}

647 648 649 650 651 652
static void RegisterOperatorKernel(const std::string& name,
                                   const paddle::KernelFunc& kernel_func,
                                   const std::vector<std::string>& inputs,
                                   const std::vector<std::string>& outputs,
                                   const std::vector<std::string>& attrs,
                                   void* dso_handle) {
653
  VLOG(3) << "Custom Operator: op name in kernel: " << name;
654 655 656 657 658
  // NOTE [ Dummy Op Kernel Key ]
  // TODO(chenweihang): Because execute engine need get device context based
  // op_kernel_key.place_, so we should register kernel for each
  // device. But this is not entirely correct, if user only give a cpu kernel,
  // but call api in gpu device, it will cause error.
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
  OperatorWithKernel::OpKernelFunc op_kernel_func;
  if (kernel_func) {
    VLOG(3) << "Register custom operator " << name << " with kernel func";
    op_kernel_func = [kernel_func, inputs, outputs,
                      attrs](const framework::ExecutionContext& ctx) {
      VLOG(3) << "Custom Operator: run custom kernel func in lambda.";
      RunKernelFunc(ctx, kernel_func, inputs, outputs, attrs);
    };
  } else {
    VLOG(3) << "Register custom operator " << name
            << " with raw op kernel func";
    PADDLE_ENFORCE_NOT_NULL(
        dso_handle,
        platform::errors::InvalidArgument(
            "The dso handle must be provided if kernel_func is nullptr."));
    using OpKernelFuncPtr = void(const framework::ExecutionContext&);
    auto symbol_name = "PD_" + name + "_raw_op_kernel_func";
    auto* func = detail::DynLoad<OpKernelFuncPtr>(dso_handle, symbol_name);
    op_kernel_func = func;
  }
  RegisterOperatorKernelWithPlace(name, op_kernel_func, proto::VarType::RAW,
680
                                  platform::CPUPlace());
681
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
682
  RegisterOperatorKernelWithPlace(name, op_kernel_func, proto::VarType::RAW,
683
                                  platform::CUDAPlace());
684
#endif
685 686
}

687 688
void RegisterOperatorWithMetaInfo(const std::vector<OpMetaInfo>& op_meta_infos,
                                  void* dso_handle) {
689 690 691 692 693 694
  /* Op register */
  OpInfo info;

  auto& base_op_meta = op_meta_infos.front();

  auto op_name = OpMetaInfoHelper::GetOpName(base_op_meta);
695 696

  if (OpInfoMap::Instance().Has(op_name)) {
697
    LOG(WARNING) << "Operator (" << op_name << ") has been registered.";
698 699 700
    return;
  }

701 702 703 704 705 706 707
  auto& op_inputs = OpMetaInfoHelper::GetInputs(base_op_meta);
  auto& op_outputs = OpMetaInfoHelper::GetOutputs(base_op_meta);
  auto& op_attrs = OpMetaInfoHelper::GetAttrs(base_op_meta);
  auto& kernel_fn = OpMetaInfoHelper::GetKernelFn(base_op_meta);
  auto& infer_shape_func = OpMetaInfoHelper::GetInferShapeFn(base_op_meta);
  auto& infer_dtype_func = OpMetaInfoHelper::GetInferDtypeFn(base_op_meta);

708 709
  VLOG(3) << "Custom Operator: forward, op name: " << op_name;
  VLOG(3) << "Custom Operator: forward, op inputs: "
710
          << string::join_strings(op_inputs, ',');
711
  VLOG(3) << "Custom Operator: forward, op outputs: "
712
          << string::join_strings(op_outputs, ',');
713
  VLOG(3) << "Custom Operator: forward, op attrs: "
714
          << string::join_strings(op_attrs, ',');
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736

  // Op
  info.creator_ = [](const std::string& op_name, const VariableNameMap& inputs,
                     const VariableNameMap& outputs,
                     const AttributeMap& attrs) {
    return new CustomOperator(op_name, inputs, outputs, attrs);
  };

  // OpMaker
  info.proto_ = new proto::OpProto;
  info.proto_->set_type(op_name);

  info.checker_ = new OpAttrChecker();
  CustomOpMaker custom_maker(op_inputs, op_outputs, op_attrs);
  custom_maker(info.proto_, info.checker_);
  PADDLE_ENFORCE_EQ(
      info.proto_->IsInitialized(), true,
      platform::errors::PreconditionNotMet(
          "Fail to initialize %s's OpProto, because %s is not initialized.",
          op_name, info.proto_->InitializationErrorString()));

  // InferShape
737 738 739 740 741 742 743 744
  if (infer_shape_func == nullptr) {
    // use default InferShape
    info.infer_shape_ = [op_inputs, op_outputs](InferShapeContext* ctx) {
      PADDLE_ENFORCE_EQ(
          op_inputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
745 746 747
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
748 749 750 751 752 753 754
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));
      PADDLE_ENFORCE_EQ(
          op_outputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
755 756 757
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
758 759 760
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));

761
      VLOG(3) << "Custom Operator: Default InferShape - share ddim.";
762 763 764
      ctx->ShareDim(op_inputs[0], op_outputs[0]);
    };
  } else {
765
    info.infer_shape_ = [op_inputs, op_outputs, op_attrs,
766
                         infer_shape_func](InferShapeContext* ctx) {
767
      RunInferShapeFunc(ctx, infer_shape_func, op_inputs, op_outputs, op_attrs);
768 769
    };
  }
770 771

  // Infer Dtype
772 773 774 775 776 777 778 779
  if (infer_dtype_func == nullptr) {
    // use defalut InferDtype
    info.infer_var_type_ = [op_inputs, op_outputs](InferVarTypeContext* ctx) {
      PADDLE_ENFORCE_EQ(
          op_inputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
780 781 782
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
783 784 785 786 787 788 789
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));
      PADDLE_ENFORCE_EQ(
          op_outputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
790 791 792
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
793 794 795
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));

796
      VLOG(3) << "Custom Operator: InferDtype - share dtype.";
797 798 799 800 801 802 803
      auto dtype = ctx->GetInputDataType(op_inputs[0]);
      ctx->SetOutputDataType(op_outputs[0], dtype);
    };
  } else {
    info.infer_var_type_ = [op_inputs, op_outputs,
                            infer_dtype_func](InferVarTypeContext* ctx) {
      std::vector<DataType> input_dtypes;
804
      std::vector<std::vector<DataType>> vec_input_dtypes;
805

806
      VLOG(3) << "Custom Operator: InferDtype - get input dtype.";
807
      for (auto& in_name : op_inputs) {
808 809 810 811
        if (detail::IsDuplicableVar(in_name)) {
          std::vector<DataType> vec_custom_dtype;
          for (size_t i = 0; i < ctx->InputSize(in_name); ++i) {
            auto dtype = ctx->GetInputDataType(in_name, i);
812
            vec_custom_dtype.emplace_back(
813
                paddle::framework::TransToPhiDataType(dtype));
814 815 816 817
          }
          vec_input_dtypes.emplace_back(vec_custom_dtype);
        } else {
          auto dtype = ctx->GetInputDataType(in_name);
818
          input_dtypes.emplace_back(
819
              paddle::framework::TransToPhiDataType(dtype));
820
        }
821
      }
822

823
      VLOG(3) << "Custom Operator: InferDtype - infer output dtype.";
824
      auto output_dtypes = infer_dtype_func(input_dtypes, vec_input_dtypes);
825

826
      VLOG(3) << "Custom Operator: InferDtype - set output dtype.";
827
      for (size_t i = 0; i < op_outputs.size(); ++i) {
828 829 830
        auto out_name = op_outputs[i];
        if (detail::IsDuplicableVar(out_name)) {
          for (size_t j = 0; j < output_dtypes.size(); ++j) {
831 832
            auto dtype =
                paddle::framework::TransToProtoVarType(output_dtypes[i]);
833 834 835
            ctx->SetOutputDataType(out_name, dtype, j);
          }
        } else {
836 837 838
          ctx->SetOutputDataType(
              out_name,
              paddle::framework::TransToProtoVarType(output_dtypes[i]));
839
        }
840 841 842
      }
    };
  }
843 844

  // Kernel func
845 846
  RegisterOperatorKernel(op_name, kernel_fn, op_inputs, op_outputs, op_attrs,
                         dso_handle);
847 848 849 850 851 852 853 854 855

  // If grad op or double grad op exists
  std::string cur_op_name = op_name;
  for (size_t i = 1; i < op_meta_infos.size(); ++i) {
    auto& cur_grad_op = op_meta_infos[i];

    auto& grad_op_name = OpMetaInfoHelper::GetOpName(cur_grad_op);
    auto& grad_op_inputs = OpMetaInfoHelper::GetInputs(cur_grad_op);
    auto& grad_op_outputs = OpMetaInfoHelper::GetOutputs(cur_grad_op);
856
    auto& grad_op_attrs = OpMetaInfoHelper::GetAttrs(cur_grad_op);
857
    auto& grad_kernel_fn = OpMetaInfoHelper::GetKernelFn(cur_grad_op);
858
    auto& grad_infer_shape_fn = OpMetaInfoHelper::GetInferShapeFn(cur_grad_op);
859

860 861
    VLOG(3) << "Custom Operator: backward, op name: " << grad_op_name;
    VLOG(3) << "Custom Operator: backward, op inputs: "
862
            << string::join_strings(grad_op_inputs, ',');
863
    VLOG(3) << "Custom Operator: backward, op outputs: "
864 865
            << string::join_strings(grad_op_outputs, ',');

866 867
    bool is_double_grad = (i == 2);

868
    // GradOpDescMaker
869 870
    info.grad_op_maker_ = [grad_op_name, grad_op_inputs, grad_op_outputs,
                           is_double_grad](
871 872 873 874 875 876
        const OpDesc& fwd_op,
        const std::unordered_set<std::string>& no_grad_set,
        std::unordered_map<std::string, std::string>* grad_to_var,
        const std::vector<BlockDesc*>& grad_block) {
      CustomGradOpMaker<paddle::framework::OpDesc> maker(
          fwd_op, no_grad_set, grad_to_var, grad_block, grad_op_name,
877
          grad_op_inputs, grad_op_outputs, is_double_grad);
878 879 880 881 882
      return maker();
    };

    // GradOpBaseMaker
    info.dygraph_grad_op_maker_ = [grad_op_name, grad_op_inputs,
883
                                   grad_op_outputs, is_double_grad](
884 885 886 887
        const std::string& type,
        const imperative::NameVarBaseMap& var_base_map_in,
        const imperative::NameVarBaseMap& var_base_map_out,
        const framework::AttributeMap& attrs,
888
        const framework::AttributeMap& default_attrs,
889 890 891
        const std::map<std::string, std::string>& inplace_map) {
      CustomGradOpMaker<paddle::imperative::OpBase> maker(
          type, var_base_map_in, var_base_map_out, attrs, inplace_map,
892
          grad_op_name, grad_op_inputs, grad_op_outputs, is_double_grad);
893
      maker.SetDygraphDefaultAttrsMap(default_attrs);
894 895 896 897 898 899 900 901 902 903 904 905 906
      return maker();
    };

    /* Grad op register */
    OpInfo grad_info;

    // Grad Op
    grad_info.creator_ = [](
        const std::string& type, const VariableNameMap& inputs,
        const VariableNameMap& outputs, const AttributeMap& attrs) {
      return new CustomOperator(type, inputs, outputs, attrs);
    };

907
    // Grad InferShape
908
    if (grad_infer_shape_fn == nullptr) {
909 910
      grad_info.infer_shape_ = [grad_op_inputs, grad_op_outputs,
                                is_double_grad](InferShapeContext* ctx) {
911 912 913 914 915 916 917 918 919 920
        // 1. if forward input exists, gradient's shape is same with forward
        // input
        // default
        //    [Suitable for most situations]
        // 2. if forward input not exists, and only contains one grad input and
        // output,
        //    use grad input shape as grad output shape
        //    [Suitable for the situation that forward input is not used as
        //    backward input]
        for (auto& out_name : grad_op_outputs) {
921
          auto fwd_name = detail::NoGrad(out_name, is_double_grad);
922 923
          if (detail::IsDuplicableVar(fwd_name)) {
            // Duplicable forward var must as backward input
924 925
            ctx->ShareDim(fwd_name, out_name);
          } else {
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
            if (ctx->HasInput(fwd_name)) {
              ctx->ShareDim(fwd_name, out_name);
            } else {
              PADDLE_ENFORCE_EQ(
                  grad_op_inputs.size() == 1UL && grad_op_outputs.size() == 1UL,
                  true,
                  platform::errors::Unavailable(
                      "Custom grad operator infershape error. "
                      "If a custom grad operator contains only one input and "
                      "only one output, the input shape will be directly set "
                      "to "
                      "the output shape. Otherwise, Please set the forward "
                      "input "
                      "as the grad operator's input or  set the InferShapeFn "
                      "of custom grad operator by "
                      ".SetInferShapeFn(PD_INFER_SHAPE(...))"));
              ctx->ShareDim(grad_op_inputs[0], out_name);
            }
944 945
          }
        }
946 947 948 949 950 951 952 953
      };
    } else {
      grad_info.infer_shape_ = [grad_op_inputs, grad_op_outputs, grad_op_attrs,
                                grad_infer_shape_fn](InferShapeContext* ctx) {
        RunInferShapeFunc(ctx, grad_infer_shape_fn, grad_op_inputs,
                          grad_op_outputs, grad_op_attrs);
      };
    }
954 955 956

    // Kernel func
    RegisterOperatorKernel(grad_op_name, grad_kernel_fn, grad_op_inputs,
957
                           grad_op_outputs, grad_op_attrs, dso_handle);
958 959 960 961 962 963 964 965 966 967 968

    // update current info
    OpInfoMap::Instance().Insert(cur_op_name, info);
    cur_op_name = grad_op_name;
    info = grad_info;
  }
  // insert last info
  OpInfoMap::Instance().Insert(cur_op_name, info);
}

void RegisterOperatorWithMetaInfoMap(
969
    const paddle::OpMetaInfoMap& op_meta_info_map, void* dso_handle) {
970
  auto& meta_info_map = op_meta_info_map.GetMap();
971
  VLOG(3) << "Custom Operator: size of op meta info map - "
972 973 974
          << meta_info_map.size();
  // pair: {op_type, OpMetaInfo}
  for (auto& pair : meta_info_map) {
975
    VLOG(3) << "Custom Operator: pair first -> op name: " << pair.first;
976
    RegisterOperatorWithMetaInfo(pair.second, dso_handle);
977 978 979 980 981 982
  }
}

////////////////////// User APIs ///////////////////////

// load op api
983 984
const std::unordered_map<std::string, std::vector<OpMetaInfo>>&
LoadOpMetaInfoAndRegisterOp(const std::string& dso_name) {
985
  void* handle = paddle::platform::dynload::GetOpDsoHandle(dso_name);
986
  VLOG(3) << "load custom_op lib: " << dso_name;
987 988 989 990
  typedef OpMetaInfoMap& get_op_meta_info_map_t();
  auto* get_op_meta_info_map =
      detail::DynLoad<get_op_meta_info_map_t>(handle, "PD_GetOpMetaInfoMap");
  auto& op_meta_info_map = get_op_meta_info_map();
991
  RegisterOperatorWithMetaInfoMap(op_meta_info_map, handle);
992
  return op_meta_info_map.GetMap();
993 994 995 996
}

}  // namespace framework
}  // namespace paddle