custom_operator.cc 42.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/custom_operator.h"

#include <algorithm>
#include <functional>
#include <iostream>
#include <map>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

28
#include "paddle/fluid/eager/api/utils/global_utils.h"
29
#include "paddle/fluid/framework/attribute.h"
30
#include "paddle/fluid/framework/convert_utils.h"
31 32 33
#include "paddle/fluid/framework/op_meta_info_helper.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
34
#include "paddle/fluid/framework/phi_utils.h"
35
#include "paddle/fluid/framework/tensor.h"
36
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
37 38
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
#include "paddle/fluid/string/string_helper.h"
39 40 41
#include "paddle/phi/api/all.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/core/compat/convert_utils.h"
42
#include "paddle/phi/core/tensor_utils.h"
43
#include "paddle/utils/any.h"
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

namespace paddle {
namespace framework {

namespace detail {

// dynamic lib load func
template <typename T>
static T* DynLoad(void* handle, std::string name) {
  T* func = reinterpret_cast<T*>(dlsym(handle, name.c_str()));
#if !defined(_WIN32)
  auto errorno = dlerror();
#else
  auto errorno = GetLastError();
#endif  // !_WIN32
  PADDLE_ENFORCE_NOT_NULL(
60 61 62 63
      func,
      platform::errors::NotFound(
          "Failed to load dynamic operator library, error message(%s).",
          errorno));
64 65 66
  return func;
}

67
inline static bool IsDuplicableVar(const std::string& var_name) {
68 69 70 71
  std::string suffix = kTensorVectorSuffix;
  return var_name.rfind(suffix) != std::string::npos;
}

72 73
inline static std::string NoGrad(const std::string& var_name,
                                 bool is_double_grad = false) {
74
  std::string suffix = kGradVarSuffix;
75 76 77 78 79 80 81 82
  std::string new_out_suffix = kDoubleGradNewOutSuffix;
  std::string tmp_var_name(var_name);
  if (is_double_grad &&
      (tmp_var_name.rfind(new_out_suffix) != std::string::npos)) {
    tmp_var_name = tmp_var_name.substr(
        0, tmp_var_name.size() - /*kDoubleGradNewOutSuffix length*/ 4);
  }
  return tmp_var_name.substr(0, tmp_var_name.size() - kGradVarSuffixSize);
83 84
}

85 86 87 88 89 90 91 92 93 94 95
inline static bool IsGradVar(const std::string& var_name, bool is_double_grad) {
  std::string suffix = kGradVarSuffix;
  if (!is_double_grad) {
    return var_name.rfind(suffix) != std::string::npos;
  } else {
    // for double grad cases, the X@GRAD is not a grad var, X@GRAD@GRAD is a
    // grad var, here we remove a @GRAD suffix
    return NoGrad(var_name).rfind(suffix) != std::string::npos;
  }
}

96 97
inline static bool IsMemberOf(const std::vector<std::string>& vec,
                              const std::string& name) {
98 99 100
  return std::find(vec.cbegin(), vec.cend(), name) != vec.cend();
}

101
static std::vector<std::string> ParseAttrStr(const std::string& attr) {
102
  auto split_pos = attr.find_first_of(":");
103 104
  PADDLE_ENFORCE_NE(split_pos,
                    std::string::npos,
105 106 107 108 109 110 111 112 113 114
                    platform::errors::InvalidArgument(
                        "Invalid attribute string format. Attribute string "
                        "format is `<name>:<type>`."));

  std::vector<std::string> rlt;
  // 1. name
  rlt.emplace_back(string::trim_spaces(attr.substr(0, split_pos)));
  // 2. type
  rlt.emplace_back(string::trim_spaces(attr.substr(split_pos + 1)));

115
  VLOG(3) << "attr name: " << rlt[0] << ", attr type str: " << rlt[1];
116 117 118 119

  return rlt;
}

120 121 122 123 124 125 126 127
}  // namespace detail

////////////////// Kernel Define ////////////////////

// custom op kernel call function define
static void RunKernelFunc(const framework::ExecutionContext& ctx,
                          const paddle::KernelFunc& func,
                          const std::vector<std::string>& inputs,
128 129
                          const std::vector<std::string>& outputs,
                          const std::vector<std::string>& attrs) {
130
  VLOG(3) << "Custom Operator: Start run KernelFunc.";
131 132
  // prepare CustomOpKernelContext
  paddle::CustomOpKernelContext kernel_ctx;
133
  for (auto& in_name : inputs) {
134
    VLOG(3) << "Custom Operator: input name - " << in_name;
135 136 137
    if (detail::IsDuplicableVar(in_name)) {
      // return const std::vector<const Tensor*>
      auto vec_x = ctx.MultiInput<Tensor>(in_name);
138 139
      PADDLE_ENFORCE_NE(vec_x.empty(),
                        true,
140 141
                        platform::errors::NotFound(
                            "Input vector<tensor> (%s) is empty.", in_name));
142
      std::vector<paddle::experimental::Tensor> custom_vec_in;
143 144 145
      for (size_t i = 0; i < vec_x.size(); ++i) {
        auto* x = vec_x[i];
        PADDLE_ENFORCE_NOT_NULL(
146 147 148 149 150 151 152
            x,
            platform::errors::NotFound(
                "The %d-th tensor in input vector<tensor> (%s) is nullptr.",
                i,
                in_name));
        PADDLE_ENFORCE_EQ(x->IsInitialized(),
                          true,
153 154 155
                          platform::errors::InvalidArgument(
                              "The %d-th tensor in input vector<tensor> (%s) "
                              "is not initialized.",
156 157
                              i,
                              in_name));
158
        paddle::experimental::Tensor custom_t;
159
        custom_t.set_impl(std::make_shared<phi::DenseTensor>(*x));
160 161
        custom_vec_in.emplace_back(custom_t);
      }
162
      kernel_ctx.EmplaceBackInputs(std::move(custom_vec_in));
163 164
    } else {
      auto* x = ctx.Input<Tensor>(in_name);
165 166 167 168 169
      PADDLE_ENFORCE_NOT_NULL(
          x,
          platform::errors::NotFound("Input tensor (%s) is nullptr.", in_name));
      PADDLE_ENFORCE_EQ(x->IsInitialized(),
                        true,
170 171
                        platform::errors::InvalidArgument(
                            "Input tensor (%s) is not initialized.", in_name));
172
      paddle::experimental::Tensor custom_in;
173
      custom_in.set_impl(std::make_shared<phi::DenseTensor>(*x));
174 175 176 177 178 179 180 181 182 183
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (custom_in.is_gpu_pinned()) {
        VLOG(3) << "Custom Operator: custom input is gpu pinned tensor";
        auto gpu_place = phi::GPUPlace(platform::GetCurrentDeviceId());
        auto custom_gpu_in = custom_in.copy_to(gpu_place, true);
        kernel_ctx.EmplaceBackInput(std::move(custom_gpu_in));
      } else {
        kernel_ctx.EmplaceBackInput(std::move(custom_in));
      }
#else
184
      kernel_ctx.EmplaceBackInput(std::move(custom_in));
185
#endif
186
    }
187 188
  }

189 190 191 192 193
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
194
      kernel_ctx.EmplaceBackAttr(ctx.Attr<bool>(attr_name));
195
    } else if (attr_type_str == "int") {
196
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int>(attr_name));
197
    } else if (attr_type_str == "float") {
198
      kernel_ctx.EmplaceBackAttr(ctx.Attr<float>(attr_name));
199
    } else if (attr_type_str == "int64_t") {
200
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int64_t>(attr_name));
201
    } else if (attr_type_str == "std::string") {
202
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::string>(attr_name));
203
    } else if (attr_type_str == "std::vector<int>") {
204
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int>>(attr_name));
205
    } else if (attr_type_str == "std::vector<float>") {
206
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<float>>(attr_name));
207
    } else if (attr_type_str == "std::vector<int64_t>") {
208
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int64_t>>(attr_name));
209
    } else if (attr_type_str == "std::vector<std::string>") {
210
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<std::string>>(attr_name));
211 212 213 214 215
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
216
          "`std::vector<float>`, `std::vector<int64_t>`, "
217 218 219 220 221
          "`std::vector<std::string>`, Please check whether "
          "the attribute data type and data type string are matched.",
          attr_type_str));
    }
  }
222

223 224 225 226 227 228 229 230 231 232 233 234
  VLOG(3) << "Custom Operator: push outputs into CustomOpKernelContext.";
  // cache the target tensor pointers
  std::vector<Tensor*> true_out_ptrs;
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      PADDLE_ENFORCE(i == 0UL && outputs.size() == 1UL,
                     platform::errors::PreconditionNotMet(
                         "If custom operator's outputs contains `paddle::Vec("
                         ")` type, "
                         "it only can hold one output."));
      auto vec_out = ctx.MultiOutput<Tensor>(out_name);
235 236
      PADDLE_ENFORCE_NE(vec_out.empty(),
                        true,
237 238 239 240 241 242 243 244
                        platform::errors::NotFound(
                            "Output vector<tensor> (%s) is empty.", out_name));
      std::vector<paddle::experimental::Tensor> custom_vec_out;
      for (size_t j = 0; j < vec_out.size(); ++j) {
        auto* out = vec_out[j];
        PADDLE_ENFORCE_NOT_NULL(
            out,
            platform::errors::NotFound(
245 246
                "The %d-th tensor in output vector<tensor> (%s) is nullptr.",
                j,
247 248 249 250
                out_name));
        true_out_ptrs.emplace_back(out);
        paddle::experimental::Tensor custom_t;
        // here only can copy the output tensor into context
251
        custom_t.set_impl(std::make_shared<phi::DenseTensor>(*out));
252 253 254 255 256
        custom_vec_out.emplace_back(custom_t);
      }
      kernel_ctx.EmplaceBackOutputs(std::move(custom_vec_out));
    } else {
      auto* out = ctx.Output<Tensor>(out_name);
257 258 259
      PADDLE_ENFORCE_NOT_NULL(out,
                              platform::errors::NotFound(
                                  "Output tensor (%s) is nullptr.", out_name));
260 261 262
      true_out_ptrs.emplace_back(out);
      paddle::experimental::Tensor custom_out;
      // here only can copy the output tensor into context
263
      custom_out.set_impl(std::make_shared<phi::DenseTensor>(*out));
264 265 266
      kernel_ctx.EmplaceBackOutput(std::move(custom_out));
    }
  }
267

268 269 270 271 272 273 274
  try {
    VLOG(3) << "Custom Operator: Run ComputeFunc.";
    func(&kernel_ctx);

    // sync output tensor data into original output
    auto* calc_outs = kernel_ctx.AllMutableOutput();
    PADDLE_ENFORCE_EQ(
275 276
        true_out_ptrs.size(),
        calc_outs->size(),
277 278 279 280
        platform::errors::InvalidArgument(
            "The number of element in custom operator outputs is wrong, "
            "expected contains %d Tensors, but actually contains %d "
            "Tensors.",
281 282
            true_out_ptrs.size(),
            calc_outs->size()));
283 284 285
    for (size_t i = 0; i < true_out_ptrs.size(); ++i) {
      auto* true_out = true_out_ptrs.at(i);
      auto calc_out =
286
          std::dynamic_pointer_cast<phi::DenseTensor>(calc_outs->at(i).impl());
287
      // assgin meta info
288
      auto* true_out_meta = phi::DenseTensorUtils::GetMutableMeta(true_out);
289 290 291
      true_out_meta->dims = calc_out->dims();
      true_out_meta->dtype = calc_out->dtype();
      true_out_meta->layout = calc_out->layout();
292 293
      true_out_meta->offset = calc_out->offset();
      // lod no need to be reset
294 295 296
      // reset holder if needed
      if (true_out->Holder() != calc_out->Holder()) {
        true_out->ResetHolder(calc_out->Holder());
297
      }
298 299 300 301 302 303 304 305
    }
  } catch (platform::EnforceNotMet& exception) {
    throw std::move(exception);
  } catch (std::exception& ex) {
    PADDLE_THROW(platform::errors::External("%s", ex.what()));
  } catch (...) {
    PADDLE_THROW(platform::errors::Fatal(
        "Custom operator raises an unknown exception in rumtime."));
306 307 308
  }
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
static void RunInferShapeFunc(framework::InferShapeContext* ctx,
                              const paddle::InferShapeFunc& func,
                              const std::vector<std::string>& inputs,
                              const std::vector<std::string>& outputs,
                              const std::vector<std::string>& attrs) {
  std::vector<std::vector<int64_t>> input_shapes;
  std::vector<std::vector<std::vector<int64_t>>> vec_input_shapes;

  VLOG(3) << "Custom Operator: InferShape - get input ddim.";
  for (auto& in_name : inputs) {
    if (detail::IsDuplicableVar(in_name)) {
      OP_INOUT_CHECK(ctx->HasInputs(in_name), "Input", in_name, "Custom");
      auto vec_ddim = ctx->GetInputsDim(in_name);
      std::vector<std::vector<int64_t>> vec_shape;
      vec_shape.reserve(vec_ddim.size());
324 325
      std::transform(vec_ddim.begin(),
                     vec_ddim.end(),
326 327
                     std::back_inserter(vec_shape),
                     [&](const DDim& ddim) -> std::vector<int64_t> {
328
                       return phi::vectorize(ddim);
329 330 331 332 333
                     });
      vec_input_shapes.emplace_back(vec_shape);
    } else {
      OP_INOUT_CHECK(ctx->HasInput(in_name), "Input", in_name, "Custom");
      auto ddim = ctx->GetInputDim(in_name);
334
      input_shapes.emplace_back(phi::vectorize(ddim));
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    }
  }

  std::vector<paddle::any> custom_attrs;
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
      custom_attrs.emplace_back(ctx->Attrs().Get<bool>(attr_name));
    } else if (attr_type_str == "int") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int>(attr_name));
    } else if (attr_type_str == "float") {
      custom_attrs.emplace_back(ctx->Attrs().Get<float>(attr_name));
    } else if (attr_type_str == "int64_t") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int64_t>(attr_name));
    } else if (attr_type_str == "std::string") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::string>(attr_name));
    } else if (attr_type_str == "std::vector<int>") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::vector<int>>(attr_name));
    } else if (attr_type_str == "std::vector<float>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<float>>(attr_name));
    } else if (attr_type_str == "std::vector<int64_t>") {
      // NOTE(chenweihang): InferShape can't support std::vector<int64_t>
      // attr type, because the input type is std::vector<int64_t>, only
      // can use one rule to parse std::vector<int64_t> parameter
      continue;
    } else if (attr_type_str == "std::vector<std::string>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<std::string>>(attr_name));
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
          "`std::vector<float>`, `std::vector<std::string>`, "
          "Please check whether the attribute data type and "
          "data type string are matched.",
          attr_type_str));
    }
  }

  VLOG(3) << "Custom Operator: InferShape - calc output ddim.";
  auto output_shapes = func(input_shapes, vec_input_shapes, custom_attrs);

  VLOG(3) << "Custom Operator: InferShape - set output ddim.";
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      std::vector<DDim> vec_ddim;
      vec_ddim.reserve(output_shapes.size());
387 388
      std::transform(output_shapes.begin(),
                     output_shapes.end(),
389 390
                     std::back_inserter(vec_ddim),
                     [&](const std::vector<int64_t>& shape) -> DDim {
391
                       return phi::make_ddim(shape);
392 393 394
                     });
      ctx->SetOutputsDim(out_name, vec_ddim);
    } else {
395
      ctx->SetOutputDim(out_name, phi::make_ddim(output_shapes[i]));
396 397 398 399
    }
  }
}

400 401 402 403 404 405 406 407 408
//////////////////// Operator Define /////////////////

class CustomOperator : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

  // Dummy infershape
  // Because it is a pure virtual function, it must be implemented
  void InferShape(framework::InferShapeContext* ctx) const override {
409
    VLOG(3) << "Custom Operator: Dummy infer shape of custom operator.";
410 411 412 413 414 415 416 417 418 419 420 421 422
  }

  /**
   * NOTE: [Skip the Kernel Selection]
   * Custom Op only registers one Op kernel on each device, so that the
   * data type selection and promotion that depends on GetExpectedKernelType,
   * as well as the adaptation of various other special situations,
   * need users to implement, to avoid users needs to implement
   * GetExpectedKernelType function when expanding other cases.
   * The RAW type is used here as the data type, indicating that
   * it can only be determined at runtime.
   */
  framework::OpKernelType GetExpectedKernelType(
423
      const framework::ExecutionContext& ctx) const override {
424 425 426 427 428 429 430 431 432
    return framework::OpKernelType(proto::VarType::RAW, ctx.GetPlace());
  }

  /**
   * NOTE: [Skip Input Variable Cast for DataType]
   * Because the kernel data type is RAW, we should skip the cast for
   * data type difference when PrepareData.
   */
  framework::OpKernelType GetKernelTypeForVar(
433 434
      const std::string& var_name,
      const Tensor& tensor,
435
      const OpKernelType& expected_kernel_type) const override {
436
    return OpKernelType(expected_kernel_type.data_type_,
437 438
                        expected_kernel_type.place_,
                        tensor.layout());
439 440 441 442 443 444 445 446 447 448 449 450
  }
};

class CustomOpMaker : public OpProtoAndCheckerMaker {
 public:
  explicit CustomOpMaker(const std::vector<std::string>& inputs,
                         const std::vector<std::string>& outputs,
                         const std::vector<std::string>& attrs)
      : inputs_(inputs), outputs_(outputs), attrs_(attrs) {}

  void Make() override {
    for (auto& in_name : inputs_) {
451 452 453 454 455 456
      if (detail::IsDuplicableVar(in_name)) {
        AddInput(in_name, "The input " + in_name + "of Custom operator.")
            .AsDuplicable();
      } else {
        AddInput(in_name, "The input " + in_name + "of Custom operator.");
      }
457 458
    }
    for (auto& out_name : outputs_) {
459 460 461 462 463 464
      if (detail::IsDuplicableVar(out_name)) {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.")
            .AsDuplicable();
      } else {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.");
      }
465
    }
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
    for (auto& attr : attrs_) {
      auto attr_name_and_type = detail::ParseAttrStr(attr);
      auto attr_name = attr_name_and_type[0];
      auto attr_type_str = attr_name_and_type[1];
      if (attr_type_str == "bool") {
        AddAttr<bool>(attr_name, "custom operator bool attribute.")
            .SetDefault(false);
      } else if (attr_type_str == "int") {
        AddAttr<int>(attr_name, "custom operator int attribute.").SetDefault(1);
      } else if (attr_type_str == "float") {
        AddAttr<float>(attr_name, "custom operator float attribute.")
            .SetDefault(1.0f);
      } else if (attr_type_str == "int64_t") {
        AddAttr<int64_t>(attr_name, "custom operator int64_t attribute.")
            .SetDefault(1);
      } else if (attr_type_str == "std::string") {
        AddAttr<std::string>(attr_name, "custom operator int attribute.")
            .SetDefault("");
      } else if (attr_type_str == "std::vector<int>") {
        AddAttr<std::vector<int>>(attr_name,
                                  "custom operator std::vector<int> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<float>") {
        AddAttr<std::vector<float>>(
            attr_name, "custom operator std::vector<float> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<int64_t>") {
        AddAttr<std::vector<int64_t>>(
            attr_name, "custom operator std::vector<int64_t> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<std::string>") {
        AddAttr<std::vector<std::string>>(
            attr_name, "custom operator std::vector<std::string> attribute.")
            .SetDefault({});
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported `%s` type value as custom attribute now. "
            "Supported data types include `bool`, `int`, `float`, "
            "`int64_t`, `std::string`, `std::vector<int>`, "
505
            "`std::vector<float>`, `std::vector<int64_t>`, "
506 507 508 509 510
            "`std::vector<std::string>`, Please check whether "
            "the attribute data type and data type string are matched.",
            attr_type_str));
      }
    }
511 512 513
    AddComment(R"DOC(
Custom Operator.

514 515 516
According to the Tensor operation function implemented by the user
independently of the framework, it is encapsulated into a framework
operator to adapt to various execution scenarios such as dynamic graph,
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
mode static graph mode, and inference mode.

)DOC");
  }

 private:
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  std::vector<std::string> attrs_;
};

template <typename T>
class CustomGradOpMaker;

template <>
class CustomGradOpMaker<OpDesc> : public SingleGradOpMaker<OpDesc> {
 public:
  explicit CustomGradOpMaker(
535 536
      const OpDesc& fwd_op,
      const std::unordered_set<std::string>& no_grad_set,
537
      std::unordered_map<std::string, std::string>* grad_to_var,
538 539
      const std::vector<BlockDesc*>& grad_block,
      const std::string& name,
540
      const std::vector<std::string>& inputs,
541 542
      const std::vector<std::string>& outputs,
      bool is_double_grad)
543 544 545
      : SingleGradOpMaker<OpDesc>(fwd_op, no_grad_set, grad_to_var, grad_block),
        name_(name),
        inputs_(inputs),
546 547
        outputs_(outputs),
        is_double_grad_(is_double_grad) {}
548 549 550 551 552 553 554 555 556

 protected:
  void Apply(GradOpPtr<OpDesc> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
557
      VLOG(3) << "Custom Operator: GradOpDescMaker - input: " << in_name;
558
      if (!detail::IsGradVar(in_name, is_double_grad_)) {
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
574
      VLOG(3) << "Custom Operator: GradOpDescMaker - output: " << out_name;
575
      if (detail::IsDuplicableVar(out_name)) {
576
        grad_op->SetOutput(
577 578 579
            out_name,
            this->InputGrad(detail::NoGrad(out_name, is_double_grad_),
                            /*drop_empty_grad=*/false));
580
      } else {
581 582 583
        grad_op->SetOutput(
            out_name,
            this->InputGrad(detail::NoGrad(out_name, is_double_grad_)));
584
      }
585
    }
586
    grad_op->SetAttrMap(this->Attrs());
587 588 589 590 591 592
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
593
  bool is_double_grad_{false};
594 595 596 597 598 599 600 601 602 603 604 605
};

template <>
class CustomGradOpMaker<imperative::OpBase>
    : public SingleGradOpMaker<imperative::OpBase> {
 public:
  explicit CustomGradOpMaker(
      const std::string& type,
      const imperative::NameVarBaseMap& var_base_map_in,
      const imperative::NameVarBaseMap& var_base_map_out,
      const AttributeMap& attrs,
      const std::map<std::string, std::string>& inplace_map,
606 607 608 609
      const std::string& name,
      const std::vector<std::string>& inputs,
      const std::vector<std::string>& outputs,
      bool is_double_grad)
610 611 612 613
      : SingleGradOpMaker<imperative::OpBase>(
            type, var_base_map_in, var_base_map_out, attrs, inplace_map),
        name_(name),
        inputs_(inputs),
614 615
        outputs_(outputs),
        is_double_grad_(is_double_grad) {}
616 617 618 619 620 621 622 623 624 625 626 627 628 629

 protected:
  // TODO(chenweihang): The code is duplicated with the previous one, because
  // ere OpMaker's Input, Output and other methods are protected. Putting the
  // function implementation outside the class will cause the method to be
  // uncallable,
  // so it is still implemented in the class for the time being.
  void Apply(GradOpPtr<imperative::OpBase> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
630
      VLOG(3) << "Custom Operator: GradOpBaseMaker - input: " << in_name;
631
      if (!detail::IsGradVar(in_name, is_double_grad_)) {
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
647
      VLOG(3) << "Custom Operator: GradOpBaseMaker - output: " << out_name;
648 649
      grad_op->SetOutput(
          out_name, this->InputGrad(detail::NoGrad(out_name, is_double_grad_)));
650
    }
651
    grad_op->SetAttrMap(this->Attrs());
652 653 654 655 656 657
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
658
  bool is_double_grad_{false};
659 660 661 662
};

//////////// Operator and Kernel Register //////////////

663 664 665
static void RegisterOperatorKernelWithPlace(
    const std::string& name,
    const OperatorWithKernel::OpKernelFunc& op_kernel_func,
666 667
    const proto::VarType::Type type,
    const platform::Place& place) {
668
  OpKernelType key(type, place);
669
  VLOG(3) << "Custom Operator: op kernel key: " << key;
670
  OperatorWithKernel::AllOpKernels()[name][key] = op_kernel_func;
671 672
}

673 674 675 676 677 678
static void RegisterOperatorKernel(const std::string& name,
                                   const paddle::KernelFunc& kernel_func,
                                   const std::vector<std::string>& inputs,
                                   const std::vector<std::string>& outputs,
                                   const std::vector<std::string>& attrs,
                                   void* dso_handle) {
679
  VLOG(3) << "Custom Operator: op name in kernel: " << name;
680 681 682 683 684
  // NOTE [ Dummy Op Kernel Key ]
  // TODO(chenweihang): Because execute engine need get device context based
  // op_kernel_key.place_, so we should register kernel for each
  // device. But this is not entirely correct, if user only give a cpu kernel,
  // but call api in gpu device, it will cause error.
685 686 687
  OperatorWithKernel::OpKernelFunc op_kernel_func;
  if (kernel_func) {
    VLOG(3) << "Register custom operator " << name << " with kernel func";
688 689
    op_kernel_func = [kernel_func, inputs, outputs, attrs](
                         const framework::ExecutionContext& ctx) {
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
      VLOG(3) << "Custom Operator: run custom kernel func in lambda.";
      RunKernelFunc(ctx, kernel_func, inputs, outputs, attrs);
    };
  } else {
    VLOG(3) << "Register custom operator " << name
            << " with raw op kernel func";
    PADDLE_ENFORCE_NOT_NULL(
        dso_handle,
        platform::errors::InvalidArgument(
            "The dso handle must be provided if kernel_func is nullptr."));
    using OpKernelFuncPtr = void(const framework::ExecutionContext&);
    auto symbol_name = "PD_" + name + "_raw_op_kernel_func";
    auto* func = detail::DynLoad<OpKernelFuncPtr>(dso_handle, symbol_name);
    op_kernel_func = func;
  }
705 706
  RegisterOperatorKernelWithPlace(
      name, op_kernel_func, proto::VarType::RAW, platform::CPUPlace());
707
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
708 709
  RegisterOperatorKernelWithPlace(
      name, op_kernel_func, proto::VarType::RAW, platform::CUDAPlace());
710
#endif
711 712
}

713 714
void RegisterOperatorWithMetaInfo(const std::vector<OpMetaInfo>& op_meta_infos,
                                  void* dso_handle) {
715 716 717 718 719 720
  /* Op register */
  OpInfo info;

  auto& base_op_meta = op_meta_infos.front();

  auto op_name = OpMetaInfoHelper::GetOpName(base_op_meta);
721 722

  if (OpInfoMap::Instance().Has(op_name)) {
723
    LOG(WARNING) << "Operator (" << op_name << ") has been registered.";
724 725 726
    return;
  }

727 728 729 730 731 732 733
  auto& op_inputs = OpMetaInfoHelper::GetInputs(base_op_meta);
  auto& op_outputs = OpMetaInfoHelper::GetOutputs(base_op_meta);
  auto& op_attrs = OpMetaInfoHelper::GetAttrs(base_op_meta);
  auto& kernel_fn = OpMetaInfoHelper::GetKernelFn(base_op_meta);
  auto& infer_shape_func = OpMetaInfoHelper::GetInferShapeFn(base_op_meta);
  auto& infer_dtype_func = OpMetaInfoHelper::GetInferDtypeFn(base_op_meta);

734 735
  VLOG(3) << "Custom Operator: forward, op name: " << op_name;
  VLOG(3) << "Custom Operator: forward, op inputs: "
736
          << string::join_strings(op_inputs, ',');
737
  VLOG(3) << "Custom Operator: forward, op outputs: "
738
          << string::join_strings(op_outputs, ',');
739
  VLOG(3) << "Custom Operator: forward, op attrs: "
740
          << string::join_strings(op_attrs, ',');
741 742

  // Op
743 744
  info.creator_ = [](const std::string& op_name,
                     const VariableNameMap& inputs,
745 746 747 748 749 750 751 752 753 754 755 756 757
                     const VariableNameMap& outputs,
                     const AttributeMap& attrs) {
    return new CustomOperator(op_name, inputs, outputs, attrs);
  };

  // OpMaker
  info.proto_ = new proto::OpProto;
  info.proto_->set_type(op_name);

  info.checker_ = new OpAttrChecker();
  CustomOpMaker custom_maker(op_inputs, op_outputs, op_attrs);
  custom_maker(info.proto_, info.checker_);
  PADDLE_ENFORCE_EQ(
758 759
      info.proto_->IsInitialized(),
      true,
760 761
      platform::errors::PreconditionNotMet(
          "Fail to initialize %s's OpProto, because %s is not initialized.",
762 763
          op_name,
          info.proto_->InitializationErrorString()));
764 765

  // InferShape
766 767 768 769
  if (infer_shape_func == nullptr) {
    // use default InferShape
    info.infer_shape_ = [op_inputs, op_outputs](InferShapeContext* ctx) {
      PADDLE_ENFORCE_EQ(
770 771
          op_inputs.size(),
          1UL,
772 773 774
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
775 776 777
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
778 779 780
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));
      PADDLE_ENFORCE_EQ(
781 782
          op_outputs.size(),
          1UL,
783 784 785
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
786 787 788
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
789 790 791
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));

792
      VLOG(3) << "Custom Operator: Default InferShape - share ddim.";
793 794 795
      ctx->ShareDim(op_inputs[0], op_outputs[0]);
    };
  } else {
796 797
    info.infer_shape_ = [op_inputs, op_outputs, op_attrs, infer_shape_func](
                            InferShapeContext* ctx) {
798
      RunInferShapeFunc(ctx, infer_shape_func, op_inputs, op_outputs, op_attrs);
799 800
    };
  }
801 802

  // Infer Dtype
803
  if (infer_dtype_func == nullptr) {
804
    // use default InferDtype
805 806
    info.infer_var_type_ = [op_inputs, op_outputs](InferVarTypeContext* ctx) {
      PADDLE_ENFORCE_EQ(
807 808
          op_inputs.size(),
          1UL,
809 810 811
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
812 813 814
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
815 816 817
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));
      PADDLE_ENFORCE_EQ(
818 819
          op_outputs.size(),
          1UL,
820 821 822
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
823 824 825
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
826 827 828
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));

829
      VLOG(3) << "Custom Operator: InferDtype - share dtype.";
830 831 832 833
      auto dtype = ctx->GetInputDataType(op_inputs[0]);
      ctx->SetOutputDataType(op_outputs[0], dtype);
    };
  } else {
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
    info.infer_var_type_ =
        [op_inputs, op_outputs, infer_dtype_func](InferVarTypeContext* ctx) {
          std::vector<DataType> input_dtypes;
          std::vector<std::vector<DataType>> vec_input_dtypes;

          VLOG(3) << "Custom Operator: InferDtype - get input dtype.";
          for (auto& in_name : op_inputs) {
            if (detail::IsDuplicableVar(in_name)) {
              std::vector<DataType> vec_custom_dtype;
              for (size_t i = 0; i < ctx->InputSize(in_name); ++i) {
                auto dtype = ctx->GetInputDataType(in_name, i);
                vec_custom_dtype.emplace_back(
                    paddle::framework::TransToPhiDataType(dtype));
              }
              vec_input_dtypes.emplace_back(vec_custom_dtype);
            } else {
              auto dtype = ctx->GetInputDataType(in_name);
              input_dtypes.emplace_back(
                  paddle::framework::TransToPhiDataType(dtype));
            }
854
          }
855

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
          VLOG(3) << "Custom Operator: InferDtype - infer output dtype.";
          auto output_dtypes = infer_dtype_func(input_dtypes, vec_input_dtypes);

          VLOG(3) << "Custom Operator: InferDtype - set output dtype.";
          for (size_t i = 0; i < op_outputs.size(); ++i) {
            auto out_name = op_outputs[i];
            if (detail::IsDuplicableVar(out_name)) {
              for (size_t j = 0; j < output_dtypes.size(); ++j) {
                auto dtype =
                    paddle::framework::TransToProtoVarType(output_dtypes[i]);
                ctx->SetOutputDataType(out_name, dtype, j);
              }
            } else {
              ctx->SetOutputDataType(
                  out_name,
                  paddle::framework::TransToProtoVarType(output_dtypes[i]));
            }
873
          }
874
        };
875
  }
876 877

  // Kernel func
878 879
  RegisterOperatorKernel(
      op_name, kernel_fn, op_inputs, op_outputs, op_attrs, dso_handle);
880 881 882 883 884 885 886 887 888

  // If grad op or double grad op exists
  std::string cur_op_name = op_name;
  for (size_t i = 1; i < op_meta_infos.size(); ++i) {
    auto& cur_grad_op = op_meta_infos[i];

    auto& grad_op_name = OpMetaInfoHelper::GetOpName(cur_grad_op);
    auto& grad_op_inputs = OpMetaInfoHelper::GetInputs(cur_grad_op);
    auto& grad_op_outputs = OpMetaInfoHelper::GetOutputs(cur_grad_op);
889
    auto& grad_op_attrs = OpMetaInfoHelper::GetAttrs(cur_grad_op);
890
    auto& grad_kernel_fn = OpMetaInfoHelper::GetKernelFn(cur_grad_op);
891
    auto& grad_infer_shape_fn = OpMetaInfoHelper::GetInferShapeFn(cur_grad_op);
892

893 894
    VLOG(3) << "Custom Operator: backward, op name: " << grad_op_name;
    VLOG(3) << "Custom Operator: backward, op inputs: "
895
            << string::join_strings(grad_op_inputs, ',');
896
    VLOG(3) << "Custom Operator: backward, op outputs: "
897 898
            << string::join_strings(grad_op_outputs, ',');

899 900
    bool is_double_grad = (i == 2);

901
    // GradOpDescMaker
902 903 904 905 906 907
    info.grad_op_maker_ =
        [grad_op_name, grad_op_inputs, grad_op_outputs, is_double_grad](
            const OpDesc& fwd_op,
            const std::unordered_set<std::string>& no_grad_set,
            std::unordered_map<std::string, std::string>* grad_to_var,
            const std::vector<BlockDesc*>& grad_block) {
908 909 910 911 912 913 914 915
          CustomGradOpMaker<paddle::framework::OpDesc> maker(fwd_op,
                                                             no_grad_set,
                                                             grad_to_var,
                                                             grad_block,
                                                             grad_op_name,
                                                             grad_op_inputs,
                                                             grad_op_outputs,
                                                             is_double_grad);
916 917
          return maker();
        };
918 919

    // GradOpBaseMaker
920 921 922 923 924 925 926 927
    info.dygraph_grad_op_maker_ =
        [grad_op_name, grad_op_inputs, grad_op_outputs, is_double_grad](
            const std::string& type,
            const imperative::NameVarBaseMap& var_base_map_in,
            const imperative::NameVarBaseMap& var_base_map_out,
            const framework::AttributeMap& attrs,
            const framework::AttributeMap& default_attrs,
            const std::map<std::string, std::string>& inplace_map) {
928 929 930 931 932 933 934 935 936
          CustomGradOpMaker<paddle::imperative::OpBase> maker(type,
                                                              var_base_map_in,
                                                              var_base_map_out,
                                                              attrs,
                                                              inplace_map,
                                                              grad_op_name,
                                                              grad_op_inputs,
                                                              grad_op_outputs,
                                                              is_double_grad);
937 938 939
          maker.SetDygraphDefaultAttrsMap(default_attrs);
          return maker();
        };
940 941 942 943 944

    /* Grad op register */
    OpInfo grad_info;

    // Grad Op
945 946 947 948 949 950
    grad_info.creator_ = [](const std::string& type,
                            const VariableNameMap& inputs,
                            const VariableNameMap& outputs,
                            const AttributeMap& attrs) {
      return new CustomOperator(type, inputs, outputs, attrs);
    };
951

952
    // Grad InferShape
953
    if (grad_infer_shape_fn == nullptr) {
954 955
      grad_info.infer_shape_ = [grad_op_inputs,
                                grad_op_outputs,
956
                                is_double_grad](InferShapeContext* ctx) {
957 958 959 960 961 962 963 964 965 966
        // 1. if forward input exists, gradient's shape is same with forward
        // input
        // default
        //    [Suitable for most situations]
        // 2. if forward input not exists, and only contains one grad input and
        // output,
        //    use grad input shape as grad output shape
        //    [Suitable for the situation that forward input is not used as
        //    backward input]
        for (auto& out_name : grad_op_outputs) {
967
          auto fwd_name = detail::NoGrad(out_name, is_double_grad);
968 969
          if (detail::IsDuplicableVar(fwd_name)) {
            // Duplicable forward var must as backward input
970 971
            ctx->ShareDim(fwd_name, out_name);
          } else {
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
            if (ctx->HasInput(fwd_name)) {
              ctx->ShareDim(fwd_name, out_name);
            } else {
              PADDLE_ENFORCE_EQ(
                  grad_op_inputs.size() == 1UL && grad_op_outputs.size() == 1UL,
                  true,
                  platform::errors::Unavailable(
                      "Custom grad operator infershape error. "
                      "If a custom grad operator contains only one input and "
                      "only one output, the input shape will be directly set "
                      "to "
                      "the output shape. Otherwise, Please set the forward "
                      "input "
                      "as the grad operator's input or  set the InferShapeFn "
                      "of custom grad operator by "
                      ".SetInferShapeFn(PD_INFER_SHAPE(...))"));
              ctx->ShareDim(grad_op_inputs[0], out_name);
            }
990 991
          }
        }
992 993
      };
    } else {
994 995 996
      grad_info.infer_shape_ = [grad_op_inputs,
                                grad_op_outputs,
                                grad_op_attrs,
997
                                grad_infer_shape_fn](InferShapeContext* ctx) {
998 999 1000 1001 1002
        RunInferShapeFunc(ctx,
                          grad_infer_shape_fn,
                          grad_op_inputs,
                          grad_op_outputs,
                          grad_op_attrs);
1003 1004
      };
    }
1005 1006

    // Kernel func
1007 1008 1009 1010 1011 1012
    RegisterOperatorKernel(grad_op_name,
                           grad_kernel_fn,
                           grad_op_inputs,
                           grad_op_outputs,
                           grad_op_attrs,
                           dso_handle);
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

    // update current info
    OpInfoMap::Instance().Insert(cur_op_name, info);
    cur_op_name = grad_op_name;
    info = grad_info;
  }
  // insert last info
  OpInfoMap::Instance().Insert(cur_op_name, info);
}

void RegisterOperatorWithMetaInfoMap(
1024
    const paddle::OpMetaInfoMap& op_meta_info_map, void* dso_handle) {
1025
  auto& meta_info_map = op_meta_info_map.GetMap();
1026
  VLOG(3) << "Custom Operator: size of op meta info map - "
1027 1028 1029
          << meta_info_map.size();
  // pair: {op_type, OpMetaInfo}
  for (auto& pair : meta_info_map) {
1030
    VLOG(3) << "Custom Operator: pair first -> op name: " << pair.first;
1031
    RegisterOperatorWithMetaInfo(pair.second, dso_handle);
1032 1033 1034 1035 1036 1037
  }
}

////////////////////// User APIs ///////////////////////

// load op api
1038 1039
const std::unordered_map<std::string, std::vector<OpMetaInfo>>&
LoadOpMetaInfoAndRegisterOp(const std::string& dso_name) {
1040
  void* handle = paddle::platform::dynload::GetOpDsoHandle(dso_name);
1041
  VLOG(3) << "load custom_op lib: " << dso_name;
1042 1043 1044 1045
  typedef OpMetaInfoMap& get_op_meta_info_map_t();
  auto* get_op_meta_info_map =
      detail::DynLoad<get_op_meta_info_map_t>(handle, "PD_GetOpMetaInfoMap");
  auto& op_meta_info_map = get_op_meta_info_map();
1046
  RegisterOperatorWithMetaInfoMap(op_meta_info_map, handle);
1047
  return op_meta_info_map.GetMap();
1048 1049 1050 1051
}

}  // namespace framework
}  // namespace paddle