Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
95cceb2d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
95cceb2d
编写于
3月 12, 2021
作者:
C
Chen Weihang
提交者:
GitHub
3月 12, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[CustomOp] Support duplicable op input and output (#31535)
* support duplicable op inout * add costom concat op test
上级
def27bc8
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
670 addition
and
94 deletion
+670
-94
paddle/fluid/extension/include/ext_op_meta_info.h
paddle/fluid/extension/include/ext_op_meta_info.h
+124
-45
paddle/fluid/framework/custom_operator.cc
paddle/fluid/framework/custom_operator.cc
+157
-44
python/paddle/fluid/tests/custom_op/CMakeLists.txt
python/paddle/fluid/tests/custom_op/CMakeLists.txt
+3
-0
python/paddle/fluid/tests/custom_op/concat_and_split.h
python/paddle/fluid/tests/custom_op/concat_and_split.h
+84
-0
python/paddle/fluid/tests/custom_op/custom_concat_op.cc
python/paddle/fluid/tests/custom_op/custom_concat_op.cc
+145
-0
python/paddle/fluid/tests/custom_op/test_custom_concat.py
python/paddle/fluid/tests/custom_op/test_custom_concat.py
+148
-0
python/paddle/fluid/tests/custom_op/test_custom_relu_op_jit.py
...n/paddle/fluid/tests/custom_op/test_custom_relu_op_jit.py
+0
-1
python/paddle/utils/cpp_extension/extension_utils.py
python/paddle/utils/cpp_extension/extension_utils.py
+9
-4
未找到文件。
paddle/fluid/extension/include/ext_op_meta_info.h
浏览文件 @
95cceb2d
...
...
@@ -56,32 +56,48 @@ using Tensor = paddle::Tensor;
///////////////// Util Define and Function ////////////////
inline
std
::
string
Grad
(
const
std
::
string
&
var_name
)
{
constexpr
char
kGradTensorSuffix
[]
=
"@GRAD"
;
constexpr
char
kTensorVectorSuffix
[]
=
"@VECTOR"
;
// Used for Construct Grad Tensor name
inline
std
::
string
Grad
(
const
std
::
string
&
t_name
)
{
std
::
string
result
;
result
.
reserve
(
t_name
.
size
()
+
5U
);
result
+=
t_name
;
result
+=
kGradTensorSuffix
;
return
result
;
}
// Used for Construct std::vector<Tensor> name
inline
std
::
string
Vec
(
const
std
::
string
&
t_name
)
{
std
::
string
result
;
result
.
reserve
(
var_name
.
size
()
+
5
U
);
result
+=
var
_name
;
result
+=
"@GRAD"
;
result
.
reserve
(
t_name
.
size
()
+
7
U
);
result
+=
t
_name
;
result
+=
kTensorVectorSuffix
;
return
result
;
}
////////////////////// Kernel Function (PD_KERNEL) ////////////////////////
// Record Op kernel core function
using
KernelFunc
=
std
::
vector
<
Tensor
>
(
*
)(
std
::
vector
<
Tensor
>
inputs
,
std
::
vector
<
boost
::
any
>
attrs
);
using
KernelFunc
=
std
::
vector
<
Tensor
>
(
*
)(
std
::
vector
<
Tensor
>
inputs
,
std
::
vector
<
std
::
vector
<
Tensor
>>
vec_inputs
,
std
::
vector
<
boost
::
any
>
attrs
);
#define PD_SPECIALIZE_ComputeCallHelper(attr_type) \
template <typename... Tail> \
struct ComputeCallHelper<attr_type, Tail...> { \
template <int in_idx, int attr_idx, typename... PreviousArgs> \
template <int in_idx, int vec_in_idx, int attr_idx, \
typename... PreviousArgs> \
static Return Compute(std::vector<Tensor> inputs, \
std::vector<std::vector<Tensor>> vec_inputs, \
std::vector<boost::any> attrs, \
const PreviousArgs&... pargs) { \
try { \
attr_type arg = boost::any_cast<attr_type>(attrs[attr_idx]); \
return ComputeCallHelper<Tail...>::template Compute<
in_idx,
\
attr_idx + 1>(
\
inputs, attrs, pargs..., arg);
\
return ComputeCallHelper<Tail...>::template Compute<
\
in_idx, vec_in_idx, attr_idx + 1>(inputs, vec_inputs, attrs,
\
pargs..., arg);
\
} catch (boost::bad_any_cast&) { \
PD_THROW( \
"Attribute cast error in custom operator. Expected " #attr_type \
...
...
@@ -99,9 +115,10 @@ struct KernelFuncImpl;
template
<
typename
Return
,
typename
...
Args
,
Return
(
*
impl_fn
)(
Args
...)>
struct
KernelFuncImpl
<
Return
(
*
)(
Args
...),
impl_fn
>
{
static
Return
Compute
(
std
::
vector
<
Tensor
>
inputs
,
std
::
vector
<
std
::
vector
<
Tensor
>>
vec_inputs
,
std
::
vector
<
boost
::
any
>
attrs
)
{
return
ComputeCallHelper
<
Args
...,
TypeTag
<
int
>>::
template
Compute
<
0
,
0
>(
inputs
,
attrs
);
return
ComputeCallHelper
<
Args
...,
TypeTag
<
int
>>::
template
Compute
<
0
,
0
,
0
>(
inputs
,
vec_inputs
,
attrs
);
}
private:
...
...
@@ -111,15 +128,32 @@ struct KernelFuncImpl<Return (*)(Args...), impl_fn> {
// for Tensor input
template
<
typename
...
Tail
>
struct
ComputeCallHelper
<
const
Tensor
&
,
Tail
...
>
{
template
<
int
in_idx
,
int
attr_idx
,
typename
...
PreviousArgs
>
template
<
int
in_idx
,
int
vec_in_idx
,
int
attr_idx
,
typename
...
PreviousArgs
>
static
Return
Compute
(
std
::
vector
<
Tensor
>
inputs
,
std
::
vector
<
std
::
vector
<
Tensor
>>
vec_inputs
,
std
::
vector
<
boost
::
any
>
attrs
,
const
PreviousArgs
&
...
pargs
)
{
static_assert
(
attr_idx
==
0
,
"Input tensor should appear before attributes."
);
const
Tensor
&
arg
=
inputs
[
in_idx
];
return
ComputeCallHelper
<
Tail
...
>::
template
Compute
<
in_idx
+
1
,
attr_idx
>(
inputs
,
attrs
,
pargs
...,
arg
);
return
ComputeCallHelper
<
Tail
...
>::
template
Compute
<
in_idx
+
1
,
vec_in_idx
,
attr_idx
>(
inputs
,
vec_inputs
,
attrs
,
pargs
...,
arg
);
}
};
// for std::vector<Tensor> input
template
<
typename
...
Tail
>
struct
ComputeCallHelper
<
const
std
::
vector
<
Tensor
>&
,
Tail
...
>
{
template
<
int
in_idx
,
int
vec_in_idx
,
int
attr_idx
,
typename
...
PreviousArgs
>
static
Return
Compute
(
std
::
vector
<
Tensor
>
inputs
,
std
::
vector
<
std
::
vector
<
Tensor
>>
vec_inputs
,
std
::
vector
<
boost
::
any
>
attrs
,
const
PreviousArgs
&
...
pargs
)
{
const
std
::
vector
<
Tensor
>&
arg
=
vec_inputs
[
vec_in_idx
];
return
ComputeCallHelper
<
Tail
...
>::
template
Compute
<
in_idx
,
vec_in_idx
+
1
,
attr_idx
>(
inputs
,
vec_inputs
,
attrs
,
pargs
...,
arg
);
}
};
...
...
@@ -140,8 +174,9 @@ struct KernelFuncImpl<Return (*)(Args...), impl_fn> {
// end: base template
template
<
typename
T
>
struct
ComputeCallHelper
<
TypeTag
<
T
>>
{
template
<
int
in_idx
,
int
attr_idx
>
template
<
int
in_idx
,
int
vec_in_idx
,
int
attr_idx
>
static
Return
Compute
(
std
::
vector
<
Tensor
>
inputs
,
std
::
vector
<
std
::
vector
<
Tensor
>>
vec_inputs
,
std
::
vector
<
boost
::
any
>
attrs
,
const
Args
&
...
args
)
{
return
impl_fn
(
args
...);
}
...
...
@@ -155,40 +190,62 @@ struct KernelFuncImpl<Return (*)(Args...), impl_fn> {
// Record Op infershape core function
using
InferShapeFunc
=
std
::
vector
<
std
::
vector
<
int64_t
>>
(
*
)(
std
::
vector
<
std
::
vector
<
int64_t
>>
input_shapes
);
std
::
vector
<
std
::
vector
<
int64_t
>>
input_shapes
,
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>
vec_input_shapes
);
template
<
typename
F
,
F
f
>
struct
InferShapeFuncImpl
;
template
<
typename
Return
,
typename
...
Args
,
Return
(
*
impl_fn
)(
Args
...)>
struct
InferShapeFuncImpl
<
Return
(
*
)(
Args
...),
impl_fn
>
{
static
Return
InferShape
(
std
::
vector
<
std
::
vector
<
int64_t
>>
input_shapes
)
{
return
InferShapeCallHelper
<
Args
...,
TypeTag
<
int
>>::
template
InferShape
<
0
>(
input_shapes
);
static
Return
InferShape
(
std
::
vector
<
std
::
vector
<
int64_t
>>
input_shapes
,
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>
vec_input_shapes
)
{
return
InferShapeCallHelper
<
Args
...,
TypeTag
<
int
>>::
template
InferShape
<
0
,
0
>(
input_shapes
,
vec_input_shapes
);
}
private:
template
<
typename
...
RemainingArgs
>
struct
InferShapeCallHelper
;
// only one type input: std::vector<int64_t>
template
<
typename
...
Tail
>
struct
InferShapeCallHelper
<
std
::
vector
<
int64_t
>
,
Tail
...
>
{
template
<
int
in_idx
,
typename
...
PreviousArgs
>
static
Return
InferShape
(
std
::
vector
<
std
::
vector
<
int64_t
>>
input_shapes
,
const
PreviousArgs
&
...
pargs
)
{
template
<
int
in_idx
,
int
vec_in_idx
,
typename
...
PreviousArgs
>
static
Return
InferShape
(
std
::
vector
<
std
::
vector
<
int64_t
>>
input_shapes
,
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>
vec_input_shapes
,
const
PreviousArgs
&
...
pargs
)
{
std
::
vector
<
int64_t
>
arg
=
input_shapes
[
in_idx
];
return
InferShapeCallHelper
<
Tail
...
>::
template
InferShape
<
in_idx
+
1
>(
input_shapes
,
pargs
...,
arg
);
return
InferShapeCallHelper
<
Tail
...
>::
template
InferShape
<
in_idx
+
1
,
vec_in_idx
>(
input_shapes
,
vec_input_shapes
,
pargs
...,
arg
);
}
};
template
<
typename
...
Tail
>
struct
InferShapeCallHelper
<
std
::
vector
<
std
::
vector
<
int64_t
>>
,
Tail
...
>
{
template
<
int
in_idx
,
int
vec_in_idx
,
typename
...
PreviousArgs
>
static
Return
InferShape
(
std
::
vector
<
std
::
vector
<
int64_t
>>
input_shapes
,
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>
vec_input_shapes
,
const
PreviousArgs
&
...
pargs
)
{
std
::
vector
<
std
::
vector
<
int64_t
>>
arg
=
vec_input_shapes
[
vec_in_idx
];
return
InferShapeCallHelper
<
Tail
...
>::
template
InferShape
<
in_idx
,
vec_in_idx
+
1
>(
input_shapes
,
vec_input_shapes
,
pargs
...,
arg
);
}
};
// end: base template
template
<
typename
T
>
struct
InferShapeCallHelper
<
TypeTag
<
T
>>
{
template
<
int
in_idx
>
static
Return
InferShape
(
std
::
vector
<
std
::
vector
<
int64_t
>>
input_shapes
,
const
Args
&
...
args
)
{
template
<
int
in_idx
,
int
vec_in_idx
>
static
Return
InferShape
(
std
::
vector
<
std
::
vector
<
int64_t
>>
input_shapes
,
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>
vec_input_shapes
,
const
Args
&
...
args
)
{
return
impl_fn
(
args
...);
}
};
...
...
@@ -200,41 +257,63 @@ struct InferShapeFuncImpl<Return (*)(Args...), impl_fn> {
/////////////// InferDataType Function (PD_INFER_DTYPE) ///////////////
// Record Op Infer dtype core function
using
InferDtypeFunc
=
std
::
vector
<
DataType
>
(
*
)(
std
::
vector
<
DataType
>
input_dtypes
);
using
InferDtypeFunc
=
std
::
vector
<
DataType
>
(
*
)(
std
::
vector
<
DataType
>
input_dtypes
,
std
::
vector
<
std
::
vector
<
DataType
>>
vec_input_dtypes
);
template
<
typename
F
,
F
f
>
struct
InferDtypeFuncImpl
;
template
<
typename
Return
,
typename
...
Args
,
Return
(
*
impl_fn
)(
Args
...)>
struct
InferDtypeFuncImpl
<
Return
(
*
)(
Args
...),
impl_fn
>
{
static
Return
InferDtype
(
std
::
vector
<
DataType
>
input_dtypes
)
{
return
InferDtypeCallHelper
<
Args
...,
TypeTag
<
int
>>::
template
InferDtype
<
0
>(
input_dtypes
);
static
Return
InferDtype
(
std
::
vector
<
DataType
>
input_dtypes
,
std
::
vector
<
std
::
vector
<
DataType
>>
vec_input_dtypes
)
{
return
InferDtypeCallHelper
<
Args
...,
TypeTag
<
int
>>::
template
InferDtype
<
0
,
0
>(
input_dtypes
,
vec_input_dtypes
);
}
private:
template
<
typename
...
RemainingArgs
>
struct
InferDtypeCallHelper
;
// Only one type input now: DataType
template
<
typename
...
Tail
>
struct
InferDtypeCallHelper
<
DataType
,
Tail
...
>
{
template
<
int
in_idx
,
typename
...
PreviousArgs
>
static
Return
InferDtype
(
std
::
vector
<
DataType
>
input_dtypes
,
const
PreviousArgs
&
...
pargs
)
{
template
<
int
in_idx
,
int
vec_in_idx
,
typename
...
PreviousArgs
>
static
Return
InferDtype
(
std
::
vector
<
DataType
>
input_dtypes
,
std
::
vector
<
std
::
vector
<
DataType
>>
vec_input_dtypes
,
const
PreviousArgs
&
...
pargs
)
{
DataType
arg
=
input_dtypes
[
in_idx
];
return
InferDtypeCallHelper
<
Tail
...
>::
template
InferDtype
<
in_idx
+
1
>(
input_dtypes
,
pargs
...,
arg
);
return
InferDtypeCallHelper
<
Tail
...
>::
template
InferDtype
<
in_idx
+
1
,
vec_in_idx
>(
input_dtypes
,
vec_input_dtypes
,
pargs
...,
arg
);
}
};
template
<
typename
...
Tail
>
struct
InferDtypeCallHelper
<
std
::
vector
<
DataType
>
,
Tail
...
>
{
template
<
int
in_idx
,
int
vec_in_idx
,
typename
...
PreviousArgs
>
static
Return
InferDtype
(
std
::
vector
<
DataType
>
input_dtypes
,
std
::
vector
<
std
::
vector
<
DataType
>>
vec_input_dtypes
,
const
PreviousArgs
&
...
pargs
)
{
std
::
vector
<
DataType
>
arg
=
vec_input_dtypes
[
vec_in_idx
];
return
InferDtypeCallHelper
<
Tail
...
>::
template
InferDtype
<
in_idx
,
vec_in_idx
+
1
>(
input_dtypes
,
vec_input_dtypes
,
pargs
...,
arg
);
}
};
// end: base template
template
<
typename
T
>
struct
InferDtypeCallHelper
<
TypeTag
<
T
>>
{
template
<
int
in_idx
>
static
Return
InferDtype
(
std
::
vector
<
DataType
>
input_dtypes
,
const
Args
&
...
args
)
{
template
<
int
in_idx
,
int
vec_in_idx
>
static
Return
InferDtype
(
std
::
vector
<
DataType
>
input_dtypes
,
std
::
vector
<
std
::
vector
<
DataType
>>
vec_input_dtypes
,
const
Args
&
...
args
)
{
return
impl_fn
(
args
...);
}
};
...
...
paddle/fluid/framework/custom_operator.cc
浏览文件 @
95cceb2d
...
...
@@ -27,7 +27,6 @@ limitations under the License. */
#include "paddle/fluid/extension/include/ext_tensor.h"
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/c/c_api.h"
#include "paddle/fluid/framework/custom_tensor_utils.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/op_meta_info_helper.h"
...
...
@@ -63,6 +62,11 @@ inline bool IsGradVar(const std::string& var_name) {
return
var_name
.
rfind
(
suffix
)
!=
std
::
string
::
npos
;
}
inline
bool
IsDuplicableVar
(
const
std
::
string
&
var_name
)
{
std
::
string
suffix
=
kTensorVectorSuffix
;
return
var_name
.
rfind
(
suffix
)
!=
std
::
string
::
npos
;
}
inline
std
::
string
NoGrad
(
const
std
::
string
&
var_name
)
{
std
::
string
suffix
=
kGradVarSuffix
;
return
var_name
.
substr
(
0
,
var_name
.
size
()
-
kGradVarSuffixSize
);
...
...
@@ -103,19 +107,47 @@ static void RunKernelFunc(const framework::ExecutionContext& ctx,
const
std
::
vector
<
std
::
string
>&
attrs
)
{
VLOG
(
1
)
<<
"Custom Operator: Start run KernelFunc."
;
std
::
vector
<
paddle
::
Tensor
>
custom_ins
;
std
::
vector
<
std
::
vector
<
paddle
::
Tensor
>>
custom_vec_ins
;
for
(
auto
&
in_name
:
inputs
)
{
VLOG
(
1
)
<<
"Custom Operator: input name - "
<<
in_name
;
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
in_name
);
PADDLE_ENFORCE_NOT_NULL
(
x
,
platform
::
errors
::
NotFound
(
"Input tensor (%s) is nullptr."
,
in_name
));
PADDLE_ENFORCE_EQ
(
x
->
IsInitialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Input tensor (%s) is not initialized."
));
auto
custom_in
=
paddle
::
Tensor
(
CustomTensorUtils
::
ConvertInnerPlaceToEnumPlace
(
x
->
place
()));
CustomTensorUtils
::
ShareDataFrom
(
static_cast
<
const
void
*>
(
x
),
custom_in
);
CustomTensorUtils
::
SetTensorCurrentStream
(
&
custom_in
,
ctx
.
GetPlace
());
custom_ins
.
emplace_back
(
custom_in
);
if
(
detail
::
IsDuplicableVar
(
in_name
))
{
// return const std::vector<const Tensor*>
auto
vec_x
=
ctx
.
MultiInput
<
Tensor
>
(
in_name
);
PADDLE_ENFORCE_NE
(
vec_x
.
empty
(),
true
,
platform
::
errors
::
NotFound
(
"Input vector<tensor> (%s) is empty."
,
in_name
));
std
::
vector
<
paddle
::
Tensor
>
custom_vec_in
;
for
(
size_t
i
=
0
;
i
<
vec_x
.
size
();
++
i
)
{
auto
*
x
=
vec_x
[
i
];
PADDLE_ENFORCE_NOT_NULL
(
x
,
platform
::
errors
::
NotFound
(
"The %d-th tensor in input vector<tensor> (%s) is nullptr."
,
i
,
in_name
));
PADDLE_ENFORCE_EQ
(
x
->
IsInitialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"The %d-th tensor in input vector<tensor> (%s) "
"is not initialized."
,
i
,
in_name
));
auto
custom_t
=
paddle
::
Tensor
(
CustomTensorUtils
::
ConvertInnerPlaceToEnumPlace
(
x
->
place
()));
CustomTensorUtils
::
ShareDataFrom
(
static_cast
<
const
void
*>
(
x
),
custom_t
);
CustomTensorUtils
::
SetTensorCurrentStream
(
&
custom_t
,
ctx
.
GetPlace
());
custom_vec_in
.
emplace_back
(
custom_t
);
}
custom_vec_ins
.
emplace_back
(
custom_vec_in
);
}
else
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
in_name
);
PADDLE_ENFORCE_NOT_NULL
(
x
,
platform
::
errors
::
NotFound
(
"Input tensor (%s) is nullptr."
,
in_name
));
PADDLE_ENFORCE_EQ
(
x
->
IsInitialized
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Input tensor (%s) is not initialized."
,
in_name
));
auto
custom_in
=
paddle
::
Tensor
(
CustomTensorUtils
::
ConvertInnerPlaceToEnumPlace
(
x
->
place
()));
CustomTensorUtils
::
ShareDataFrom
(
static_cast
<
const
void
*>
(
x
),
custom_in
);
CustomTensorUtils
::
SetTensorCurrentStream
(
&
custom_in
,
ctx
.
GetPlace
());
custom_ins
.
emplace_back
(
custom_in
);
}
}
std
::
vector
<
boost
::
any
>
custom_attrs
;
...
...
@@ -153,14 +185,34 @@ static void RunKernelFunc(const framework::ExecutionContext& ctx,
}
}
VLOG
(
1
)
<<
"Run ComputeFunc."
;
VLOG
(
1
)
<<
"
Custom Operator:
Run ComputeFunc."
;
try
{
auto
outs
=
func
(
custom_ins
,
custom_attrs
);
auto
outs
=
func
(
custom_ins
,
custom_
vec_ins
,
custom_
attrs
);
VLOG
(
1
)
<<
"Custom Operator: Share outputs into ExecutionContext."
;
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
auto
*
true_out
=
ctx
.
Output
<
Tensor
>
(
outputs
[
i
]);
CustomTensorUtils
::
ShareDataTo
(
outs
.
at
(
i
),
true_out
);
auto
out_name
=
outputs
[
i
];
if
(
detail
::
IsDuplicableVar
(
out_name
))
{
PADDLE_ENFORCE
(
i
==
0UL
&&
outputs
.
size
()
==
1UL
,
platform
::
errors
::
PreconditionNotMet
(
"If custom operator's outputs contains `paddle::Vec("
")` type, "
"it only can hold one output."
));
auto
vec_true_outs
=
ctx
.
MultiOutput
<
Tensor
>
(
out_name
);
PADDLE_ENFORCE_EQ
(
vec_true_outs
.
size
(),
outs
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The number of element in custom operator outputs is wrong, "
"expected contains %d Tensors, but actually contains %d "
"Tensors."
,
vec_true_outs
.
size
(),
outs
.
size
()));
for
(
size_t
j
=
0
;
j
<
vec_true_outs
.
size
();
++
j
)
{
CustomTensorUtils
::
ShareDataTo
(
outs
.
at
(
j
),
vec_true_outs
.
at
(
j
));
}
}
else
{
auto
*
true_out
=
ctx
.
Output
<
Tensor
>
(
out_name
);
CustomTensorUtils
::
ShareDataTo
(
outs
.
at
(
i
),
true_out
);
}
}
}
catch
(
platform
::
EnforceNotMet
&
exception
)
{
throw
std
::
move
(
exception
);
...
...
@@ -221,10 +273,20 @@ class CustomOpMaker : public OpProtoAndCheckerMaker {
void
Make
()
override
{
for
(
auto
&
in_name
:
inputs_
)
{
AddInput
(
in_name
,
"The input "
+
in_name
+
"of Custom operator."
);
if
(
detail
::
IsDuplicableVar
(
in_name
))
{
AddInput
(
in_name
,
"The input "
+
in_name
+
"of Custom operator."
)
.
AsDuplicable
();
}
else
{
AddInput
(
in_name
,
"The input "
+
in_name
+
"of Custom operator."
);
}
}
for
(
auto
&
out_name
:
outputs_
)
{
AddOutput
(
out_name
,
"The output "
+
out_name
+
"of Custom Operator."
);
if
(
detail
::
IsDuplicableVar
(
out_name
))
{
AddOutput
(
out_name
,
"The output "
+
out_name
+
"of Custom Operator."
)
.
AsDuplicable
();
}
else
{
AddOutput
(
out_name
,
"The output "
+
out_name
+
"of Custom Operator."
);
}
}
for
(
auto
&
attr
:
attrs_
)
{
auto
attr_name_and_type
=
detail
::
ParseAttrStr
(
attr
);
...
...
@@ -331,7 +393,13 @@ class CustomGradOpMaker<OpDesc> : public SingleGradOpMaker<OpDesc> {
}
for
(
auto
&
out_name
:
outputs_
)
{
VLOG
(
1
)
<<
"Custom Operator: GradOpDescMaker - output: "
<<
out_name
;
grad_op
->
SetOutput
(
out_name
,
this
->
InputGrad
(
detail
::
NoGrad
(
out_name
)));
if
(
detail
::
IsDuplicableVar
(
out_name
))
{
grad_op
->
SetOutput
(
out_name
,
this
->
InputGrad
(
detail
::
NoGrad
(
out_name
),
/*drop_empty_grad=*/
false
));
}
else
{
grad_op
->
SetOutput
(
out_name
,
this
->
InputGrad
(
detail
::
NoGrad
(
out_name
)));
}
}
grad_op
->
SetAttrMap
(
this
->
Attrs
());
}
...
...
@@ -493,9 +561,9 @@ void RegisterOperatorWithMetaInfo(
platform
::
errors
::
Unavailable
(
"Your custom operator contains multiple inputs. "
"We only allow a custom operator that contains only one input "
"and "
"
only one output without setting the InferShapeFn. At this time,
"
"the
input shape will be directly set to the
output shape.
\n
"
"and
only one output without setting the InferShapeFn.
"
"
At this time, the input shape will be directly set to
"
"the output shape.
\n
"
"Please set the InferShapeFn of custom "
"operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"
));
PADDLE_ENFORCE_EQ
(
...
...
@@ -503,9 +571,9 @@ void RegisterOperatorWithMetaInfo(
platform
::
errors
::
Unavailable
(
"Your custom operator contains multiple outputs. "
"We only allow a custom operator that contains only one input "
"and "
"
only one output without setting the InferShapeFn. At this time,
"
"the
input shape will be directly set to the
output shape.
\n
"
"and
only one output without setting the InferShapeFn.
"
"
At this time, the input shape will be directly set to
"
"the output shape.
\n
"
"Please set the InferShapeFn of custom "
"operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"
));
...
...
@@ -516,21 +584,46 @@ void RegisterOperatorWithMetaInfo(
info
.
infer_shape_
=
[
op_inputs
,
op_outputs
,
infer_shape_func
](
InferShapeContext
*
ctx
)
{
std
::
vector
<
std
::
vector
<
int64_t
>>
input_shapes
;
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>
vec_input_shapes
;
VLOG
(
1
)
<<
"Custom Operator: InferShape - get input ddim."
;
for
(
auto
&
in_name
:
op_inputs
)
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
in_name
),
"Input"
,
in_name
,
"Custom"
);
auto
ddim
=
ctx
->
GetInputDim
(
in_name
);
input_shapes
.
emplace_back
(
framework
::
vectorize
(
ddim
));
if
(
detail
::
IsDuplicableVar
(
in_name
))
{
OP_INOUT_CHECK
(
ctx
->
HasInputs
(
in_name
),
"Input"
,
in_name
,
"Custom"
);
auto
vec_ddim
=
ctx
->
GetInputsDim
(
in_name
);
std
::
vector
<
std
::
vector
<
int64_t
>>
vec_shape
;
vec_shape
.
reserve
(
vec_ddim
.
size
());
std
::
transform
(
vec_ddim
.
begin
(),
vec_ddim
.
end
(),
std
::
back_inserter
(
vec_shape
),
[
&
](
const
DDim
&
ddim
)
->
std
::
vector
<
int64_t
>
{
return
framework
::
vectorize
(
ddim
);
});
vec_input_shapes
.
emplace_back
(
vec_shape
);
}
else
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
in_name
),
"Input"
,
in_name
,
"Custom"
);
auto
ddim
=
ctx
->
GetInputDim
(
in_name
);
input_shapes
.
emplace_back
(
framework
::
vectorize
(
ddim
));
}
}
VLOG
(
1
)
<<
"Custom Operator: InferShape - calc output ddim."
;
auto
output_shapes
=
infer_shape_func
(
input_shapes
);
auto
output_shapes
=
infer_shape_func
(
input_shapes
,
vec_input_shapes
);
VLOG
(
1
)
<<
"Custom Operator: InferShape - set output ddim."
;
for
(
size_t
i
=
0
;
i
<
op_outputs
.
size
();
++
i
)
{
ctx
->
SetOutputDim
(
op_outputs
[
i
],
framework
::
make_ddim
(
output_shapes
[
i
]));
auto
out_name
=
op_outputs
[
i
];
if
(
detail
::
IsDuplicableVar
(
out_name
))
{
std
::
vector
<
DDim
>
vec_ddim
;
vec_ddim
.
reserve
(
output_shapes
.
size
());
std
::
transform
(
output_shapes
.
begin
(),
output_shapes
.
end
(),
std
::
back_inserter
(
vec_ddim
),
[
&
](
const
std
::
vector
<
int64_t
>&
shape
)
->
DDim
{
return
framework
::
make_ddim
(
shape
);
});
ctx
->
SetOutputsDim
(
out_name
,
vec_ddim
);
}
else
{
ctx
->
SetOutputDim
(
out_name
,
framework
::
make_ddim
(
output_shapes
[
i
]));
}
}
};
}
...
...
@@ -544,9 +637,9 @@ void RegisterOperatorWithMetaInfo(
platform
::
errors
::
Unavailable
(
"Your custom operator contains multiple inputs. "
"We only allow a custom operator that contains only one input "
"and "
"
only one output without setting the InferDtypeFn. At this time,
"
"the
input dtype will be directly set to the
output dtype.
\n
"
"and
only one output without setting the InferDtypeFn.
"
"
At this time, the input dtype will be directly set to
"
"the output dtype.
\n
"
"Please set the InferDtypeFn of custom "
"operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"
));
PADDLE_ENFORCE_EQ
(
...
...
@@ -554,9 +647,9 @@ void RegisterOperatorWithMetaInfo(
platform
::
errors
::
Unavailable
(
"Your custom operator contains multiple outputs. "
"We only allow a custom operator that contains only one input "
"and "
"
only one output without setting the InferDtypeFn. At this time,
"
"the
input dtype will be directly set to the
output dtype.
\n
"
"and
only one output without setting the InferDtypeFn.
"
"
At this time, the input dtype will be directly set to
"
"the output dtype.
\n
"
"Please set the InferDtypeFn of custom "
"operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"
));
...
...
@@ -568,22 +661,42 @@ void RegisterOperatorWithMetaInfo(
info
.
infer_var_type_
=
[
op_inputs
,
op_outputs
,
infer_dtype_func
](
InferVarTypeContext
*
ctx
)
{
std
::
vector
<
DataType
>
input_dtypes
;
std
::
vector
<
std
::
vector
<
DataType
>>
vec_input_dtypes
;
VLOG
(
1
)
<<
"Custom Operator: InferDtype - get input dtype."
;
for
(
auto
&
in_name
:
op_inputs
)
{
auto
dtype
=
ctx
->
GetInputDataType
(
in_name
);
input_dtypes
.
emplace_back
(
CustomTensorUtils
::
ConvertInnerDTypeToEnumDType
(
dtype
));
if
(
detail
::
IsDuplicableVar
(
in_name
))
{
std
::
vector
<
DataType
>
vec_custom_dtype
;
for
(
size_t
i
=
0
;
i
<
ctx
->
InputSize
(
in_name
);
++
i
)
{
auto
dtype
=
ctx
->
GetInputDataType
(
in_name
,
i
);
vec_custom_dtype
.
emplace_back
(
CustomTensorUtils
::
ConvertInnerDTypeToEnumDType
(
dtype
));
}
vec_input_dtypes
.
emplace_back
(
vec_custom_dtype
);
}
else
{
auto
dtype
=
ctx
->
GetInputDataType
(
in_name
);
input_dtypes
.
emplace_back
(
CustomTensorUtils
::
ConvertInnerDTypeToEnumDType
(
dtype
));
}
}
VLOG
(
1
)
<<
"Custom Operator: InferDtype - infer output dtype."
;
auto
output_dtypes
=
infer_dtype_func
(
input_dtypes
);
auto
output_dtypes
=
infer_dtype_func
(
input_dtypes
,
vec_input_dtypes
);
VLOG
(
1
)
<<
"Custom Operator: InferDtype - set output dtype."
;
for
(
size_t
i
=
0
;
i
<
op_outputs
.
size
();
++
i
)
{
ctx
->
SetOutputDataType
(
op_outputs
[
i
],
CustomTensorUtils
::
ConvertEnumDTypeToInnerDType
(
output_dtypes
[
i
]));
auto
out_name
=
op_outputs
[
i
];
if
(
detail
::
IsDuplicableVar
(
out_name
))
{
for
(
size_t
j
=
0
;
j
<
output_dtypes
.
size
();
++
j
)
{
auto
dtype
=
CustomTensorUtils
::
ConvertEnumDTypeToInnerDType
(
output_dtypes
[
i
]);
ctx
->
SetOutputDataType
(
out_name
,
dtype
,
j
);
}
}
else
{
ctx
->
SetOutputDataType
(
out_name
,
CustomTensorUtils
::
ConvertEnumDTypeToInnerDType
(
output_dtypes
[
i
]));
}
}
};
}
...
...
python/paddle/fluid/tests/custom_op/CMakeLists.txt
浏览文件 @
95cceb2d
...
...
@@ -23,6 +23,9 @@ set_tests_properties(test_multi_out_jit PROPERTIES TIMEOUT 120)
py_test
(
test_custom_attrs_jit SRCS test_custom_attrs_jit.py
)
set_tests_properties
(
test_custom_attrs_jit PROPERTIES TIMEOUT 120
)
py_test
(
test_custom_concat SRCS test_custom_concat.py
)
set_tests_properties
(
test_custom_concat PROPERTIES TIMEOUT 120
)
py_test
(
test_check_abi SRCS test_check_abi.py
)
cc_test
(
test_check_error SRCS test_check_error.cc DEPS gtest
)
...
...
python/paddle/fluid/tests/custom_op/concat_and_split.h
0 → 100644
浏览文件 @
95cceb2d
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iostream>
#include <vector>
#include "paddle/extension.h"
int64_t
GetRows
(
std
::
vector
<
int64_t
>
shape
,
int64_t
axis
)
{
int64_t
rows
=
1
;
for
(
int64_t
i
=
0
;
i
<
axis
;
++
i
)
{
rows
*=
shape
[
i
];
}
return
rows
;
}
std
::
vector
<
int64_t
>
GetCols
(
const
std
::
vector
<
paddle
::
Tensor
>&
ins
,
int64_t
rows
,
int64_t
*
cols
)
{
std
::
vector
<
int64_t
>
cols_vec
(
ins
.
size
());
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
++
i
)
{
int64_t
t_cols
=
ins
[
i
].
size
()
/
rows
;
*
cols
+=
t_cols
;
cols_vec
[
i
]
=
t_cols
;
}
return
cols_vec
;
}
template
<
typename
data_t
>
void
ConcatCpuKernel
(
const
std
::
vector
<
paddle
::
Tensor
>&
ins
,
paddle
::
Tensor
*
out
,
int64_t
axis
)
{
size_t
num
=
ins
.
size
();
int64_t
out_rows
=
GetRows
(
ins
[
0
].
shape
(),
axis
);
int64_t
out_cols
=
0
;
auto
ins_cols
=
GetCols
(
ins
,
out_rows
,
&
out_cols
);
auto
*
out_data
=
out
->
mutable_data
<
data_t
>
();
int64_t
col_idx
=
0
;
for
(
size_t
i
=
0
;
i
<
num
;
++
i
)
{
int64_t
col_len
=
ins_cols
[
i
];
auto
*
in_data
=
ins
[
i
].
data
<
data_t
>
();
for
(
int
j
=
0
;
j
<
out_rows
;
++
j
)
{
std
::
memcpy
(
out_data
+
j
*
out_cols
+
col_idx
,
in_data
+
j
*
col_len
,
sizeof
(
data_t
)
*
col_len
);
}
col_idx
+=
col_len
;
}
}
template
<
typename
data_t
>
void
SplitCpuKernel
(
const
paddle
::
Tensor
&
in
,
const
std
::
vector
<
paddle
::
Tensor
>&
ref_ins
,
std
::
vector
<
paddle
::
Tensor
>*
outs
,
int64_t
axis
)
{
size_t
num
=
outs
->
size
();
int64_t
in_rows
=
GetRows
(
ref_ins
[
0
].
shape
(),
axis
);
int64_t
in_cols
=
0
;
auto
out_cols
=
GetCols
(
ref_ins
,
in_rows
,
&
in_cols
);
for
(
size_t
i
=
0
;
i
<
in_rows
;
++
i
)
{
auto
*
in_data
=
in
.
data
<
data_t
>
()
+
i
*
in_cols
;
int64_t
col_idx
=
0
;
for
(
size_t
j
=
0
;
j
<
num
;
++
j
)
{
int64_t
col_len
=
out_cols
[
j
];
auto
*
out_data
=
outs
->
at
(
j
).
mutable_data
<
data_t
>
()
+
i
*
col_len
;
std
::
memcpy
(
out_data
,
in_data
+
col_idx
,
sizeof
(
data_t
)
*
col_len
);
col_idx
+=
col_len
;
}
}
}
python/paddle/fluid/tests/custom_op/custom_concat_op.cc
0 → 100644
浏览文件 @
95cceb2d
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <vector>
#include "concat_and_split.h" // NOLINT
#include "paddle/extension.h"
#define CHECK_INPUT(x) \
PD_CHECK(x.place() == paddle::PlaceType::kCPU, #x " must be a CPU Tensor.")
int64_t
ComputeAxis
(
int64_t
axis
,
int64_t
rank
)
{
PD_CHECK
(
axis
>=
-
rank
&&
axis
<
rank
,
"The axis is excepted to be in range of ["
,
-
rank
,
", "
,
rank
,
"]."
);
if
(
axis
<
0
)
{
axis
=
axis
+
rank
;
}
return
axis
>
0
?
axis
:
0
;
}
std
::
vector
<
int64_t
>
ComputeOutShape
(
std
::
vector
<
std
::
vector
<
int64_t
>>
in_shapes
,
int64_t
axis
)
{
size_t
n
=
in_shapes
.
size
();
auto
out_shape
=
in_shapes
[
0
];
size_t
zero_dim_size
=
out_shape
.
size
();
for
(
size_t
i
=
1
;
i
<
n
;
++
i
)
{
PD_CHECK
(
in_shapes
[
i
].
size
()
==
out_shape
.
size
(),
"Input dimension must be same."
);
for
(
size_t
j
=
0
;
j
<
zero_dim_size
;
++
j
)
{
if
(
j
==
axis
)
{
out_shape
[
axis
]
+=
in_shapes
[
i
][
j
];
}
else
{
PD_CHECK
(
in_shapes
[
0
][
j
]
==
in_shapes
[
i
][
j
],
"The "
,
j
,
"-th dimension of input must be same."
);
}
}
}
return
out_shape
;
}
std
::
vector
<
paddle
::
Tensor
>
ConcatForwardDynamicAxis
(
const
std
::
vector
<
paddle
::
Tensor
>&
inputs
,
const
paddle
::
Tensor
&
axis_t
)
{
// check inputs
PD_CHECK
(
inputs
.
size
()
>=
1
,
"No Tensor need to be concat."
);
for
(
auto
&
t
:
inputs
)
{
CHECK_INPUT
(
t
);
}
CHECK_INPUT
(
axis_t
);
// compute output shape
int64_t
rank
=
static_cast
<
int64_t
>
(
inputs
[
0
].
shape
().
size
());
int64_t
axis
=
axis_t
.
data
<
int64_t
>
()[
0
];
axis
=
ComputeAxis
(
axis
,
rank
);
std
::
vector
<
std
::
vector
<
int64_t
>>
in_shapes
;
for
(
auto
&
t
:
inputs
)
{
in_shapes
.
emplace_back
(
t
.
shape
());
}
auto
out_shape
=
ComputeOutShape
(
in_shapes
,
axis
);
// create output
auto
out
=
paddle
::
Tensor
(
paddle
::
PlaceType
::
kCPU
);
out
.
reshape
(
out_shape
);
// calc
PD_DISPATCH_FLOATING_AND_INTEGRAL_TYPES
(
inputs
[
0
].
type
(),
"ConcatCpuKernel"
,
([
&
]
{
ConcatCpuKernel
<
data_t
>
(
inputs
,
&
out
,
axis
);
}));
return
{
out
};
}
std
::
vector
<
paddle
::
Tensor
>
ConcatBackwardDynamicAxis
(
const
std
::
vector
<
paddle
::
Tensor
>&
inputs
,
const
paddle
::
Tensor
&
grad_out
,
const
paddle
::
Tensor
&
axis_t
)
{
// check input
PD_CHECK
(
inputs
.
size
()
>=
1
,
"No Tensor need to be concat."
);
for
(
auto
&
t
:
inputs
)
{
CHECK_INPUT
(
t
);
}
CHECK_INPUT
(
axis_t
);
CHECK_INPUT
(
grad_out
);
// compate axis
int64_t
rank
=
static_cast
<
int64_t
>
(
inputs
[
0
].
shape
().
size
());
int64_t
axis
=
axis_t
.
data
<
int64_t
>
()[
0
];
axis
=
ComputeAxis
(
axis
,
rank
);
// create outputs
std
::
vector
<
paddle
::
Tensor
>
grad_inputs
;
for
(
auto
&
t
:
inputs
)
{
auto
grad
=
paddle
::
Tensor
(
paddle
::
PlaceType
::
kCPU
);
grad
.
reshape
(
t
.
shape
());
grad_inputs
.
emplace_back
(
grad
);
}
// calc
PD_DISPATCH_FLOATING_AND_INTEGRAL_TYPES
(
grad_out
.
type
(),
"SplitCpuKernel"
,
([
&
]
{
SplitCpuKernel
<
data_t
>
(
grad_out
,
inputs
,
&
grad_inputs
,
axis
);
}));
return
grad_inputs
;
}
std
::
vector
<
std
::
vector
<
int64_t
>>
ConcatInferShapeDynamicAxis
(
std
::
vector
<
std
::
vector
<
int64_t
>>
input_shapes
,
std
::
vector
<
int64_t
>
axis_shape
)
{
return
{
std
::
vector
<
int64_t
>
(
input_shapes
[
0
].
size
(),
-
1
)};
}
std
::
vector
<
paddle
::
DataType
>
ConcatInferDtypeDynamicAxis
(
std
::
vector
<
paddle
::
DataType
>
input_dtypes
,
paddle
::
DataType
axis_dtype
)
{
return
{
input_dtypes
[
0
]};
}
PD_BUILD_OP
(
custom_concat
)
.
Inputs
({
paddle
::
Vec
(
"X"
),
"Axis"
})
.
Outputs
({
"Out"
})
.
SetKernelFn
(
PD_KERNEL
(
ConcatForwardDynamicAxis
))
.
SetInferShapeFn
(
PD_INFER_SHAPE
(
ConcatInferShapeDynamicAxis
))
.
SetInferDtypeFn
(
PD_INFER_DTYPE
(
ConcatInferDtypeDynamicAxis
));
PD_BUILD_GRAD_OP
(
custom_concat
)
.
Inputs
({
paddle
::
Vec
(
"X"
),
paddle
::
Grad
(
"Out"
),
"Axis"
})
.
Outputs
({
paddle
::
Grad
(
paddle
::
Vec
(
"X"
))})
.
SetKernelFn
(
PD_KERNEL
(
ConcatBackwardDynamicAxis
));
python/paddle/fluid/tests/custom_op/test_custom_concat.py
0 → 100644
浏览文件 @
95cceb2d
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
unittest
import
numpy
as
np
import
paddle
import
paddle.static
as
static
from
paddle.utils.cpp_extension
import
load
,
get_build_directory
from
paddle.utils.cpp_extension.extension_utils
import
run_cmd
from
utils
import
paddle_includes
,
extra_cc_args
,
extra_nvcc_args
# Because Windows don't use docker, the shared lib already exists in the
# cache dir, it will not be compiled again unless the shared lib is removed.
file
=
'{}
\\
custom_relu_module_jit
\\
custom_relu_module_jit.pyd'
.
format
(
get_build_directory
())
if
os
.
name
==
'nt'
and
os
.
path
.
isfile
(
file
):
cmd
=
'del {}'
.
format
(
file
)
run_cmd
(
cmd
,
True
)
if
os
.
name
==
'nt'
:
test_include
=
"..
\\
python
\\
paddle
\\
fluid
\\
tests
\\
custom_op"
else
:
test_include
=
"../python/paddle/fluid/tests/custom_op"
paddle_includes
.
append
(
test_include
)
custom_ops
=
load
(
name
=
'custom_concat_jit'
,
sources
=
[
'custom_concat_op.cc'
],
extra_include_paths
=
paddle_includes
,
# add for Coverage CI
extra_cxx_cflags
=
extra_cc_args
,
# test for cc flags
extra_cuda_cflags
=
extra_nvcc_args
,
# test for nvcc flags
verbose
=
True
)
def
concat_dynamic
(
func
,
device
,
dtype
,
np_inputs
,
axis_v
):
paddle
.
set_device
(
device
)
inputs
=
[
paddle
.
to_tensor
(
x
,
dtype
=
dtype
,
place
=
device
,
stop_gradient
=
False
)
for
x
in
np_inputs
]
axis
=
paddle
.
full
(
shape
=
[
1
],
dtype
=
'int64'
,
fill_value
=
axis_v
)
out
=
func
(
inputs
,
axis
)
out
.
stop_gradient
=
False
out
.
backward
()
grad_inputs
=
[
x
.
grad
for
x
in
inputs
]
return
out
.
numpy
(),
grad_inputs
def
concat_static
(
func
,
device
,
dtype
,
np_inputs
,
axis_v
):
paddle
.
enable_static
()
paddle
.
set_device
(
device
)
with
static
.
scope_guard
(
static
.
Scope
()):
with
static
.
program_guard
(
static
.
Program
()):
x1
=
static
.
data
(
name
=
"x1"
,
shape
=
[
2
,
3
],
dtype
=
dtype
)
x2
=
static
.
data
(
name
=
"x2"
,
shape
=
[
2
,
3
],
dtype
=
dtype
)
axis
=
paddle
.
full
(
shape
=
[
1
],
dtype
=
'int64'
,
fill_value
=
axis_v
)
x1
.
stop_gradient
=
False
x2
.
stop_gradient
=
False
out
=
func
([
x1
,
x2
],
axis
)
# mean only support float, so here use sum
sum_out
=
paddle
.
sum
(
out
)
static
.
append_backward
(
sum_out
)
exe
=
static
.
Executor
()
exe
.
run
(
static
.
default_startup_program
())
out_v
,
x1_grad_v
,
x2_grad_v
=
exe
.
run
(
static
.
default_main_program
(),
feed
=
{
"x1"
:
np_inputs
[
0
].
astype
(
dtype
),
"x2"
:
np_inputs
[
1
].
astype
(
dtype
),
"axis"
:
axis
},
fetch_list
=
[
out
.
name
,
x1
.
name
+
"@GRAD"
,
x2
.
name
+
"@GRAD"
])
paddle
.
disable_static
()
return
out_v
,
x1_grad_v
,
x2_grad_v
class
TestCustomConcatDynamicAxisJit
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
dtypes
=
[
'float32'
,
'float64'
,
'int32'
,
'int64'
]
self
.
devices
=
[
'cpu'
]
self
.
np_inputs
=
[
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]]),
np
.
array
([[
11
,
12
,
13
],
[
14
,
15
,
16
]])
]
self
.
axises
=
[
0
,
1
]
def
test_dynamic
(
self
):
for
device
in
self
.
devices
:
for
dtype
in
self
.
dtypes
:
for
axis
in
self
.
axises
:
out
,
grad_inputs
=
concat_dynamic
(
custom_ops
.
custom_concat
,
device
,
dtype
,
self
.
np_inputs
,
axis
)
pd_out
,
pd_grad_inputs
=
concat_dynamic
(
paddle
.
concat
,
device
,
dtype
,
self
.
np_inputs
,
axis
)
self
.
assertTrue
(
np
.
array_equal
(
out
,
pd_out
),
"custom op out: {},
\n
paddle api out: {}"
.
format
(
out
,
pd_out
))
for
x_grad
,
pd_x_grad
in
zip
(
grad_inputs
,
pd_grad_inputs
):
self
.
assertTrue
(
np
.
array_equal
(
x_grad
,
pd_x_grad
),
"custom op x grad: {},
\n
paddle api x grad: {}"
.
format
(
x_grad
,
pd_x_grad
))
def
test_static
(
self
):
for
device
in
self
.
devices
:
for
dtype
in
self
.
dtypes
:
for
axis
in
self
.
axises
:
out
,
x1_grad
,
x2_grad
=
concat_static
(
custom_ops
.
custom_concat
,
device
,
dtype
,
self
.
np_inputs
,
axis
)
pd_out
,
pd_x1_grad
,
pd_x2_grad
=
concat_static
(
paddle
.
concat
,
device
,
dtype
,
self
.
np_inputs
,
axis
)
self
.
assertTrue
(
np
.
array_equal
(
out
,
pd_out
),
"custom op out: {},
\n
paddle api out: {}"
.
format
(
out
,
pd_out
))
self
.
assertTrue
(
np
.
array_equal
(
x1_grad
,
pd_x1_grad
),
"custom op x1_grad: {},
\n
paddle api x1_grad: {}"
.
format
(
x1_grad
,
pd_x1_grad
))
self
.
assertTrue
(
np
.
array_equal
(
x2_grad
,
pd_x2_grad
),
"custom op x2_grad: {},
\n
paddle api x2_grad: {}"
.
format
(
x2_grad
,
pd_x2_grad
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/custom_op/test_custom_relu_op_jit.py
浏览文件 @
95cceb2d
...
...
@@ -13,7 +13,6 @@
# limitations under the License.
import
os
import
subprocess
import
unittest
import
paddle
import
numpy
as
np
...
...
python/paddle/utils/cpp_extension/extension_utils.py
浏览文件 @
95cceb2d
...
...
@@ -781,13 +781,18 @@ def _get_api_inputs_str(op_name):
in_names
,
out_names
,
attr_names
=
parse_op_info
(
op_name
)
# e.g: x, y, z
param_names
=
in_names
+
attr_names
params_str
=
','
.
join
([
p
.
lower
()
for
p
in
param_names
])
# NOTE(chenweihang): we add suffix `@VECTOR` for std::vector<Tensor> input,
# but the string contains `@` cannot used as argument name, so we split
# input name by `@`, and only use first substr as argument
params_str
=
','
.
join
([
p
.
split
(
"@"
)[
0
].
lower
()
for
p
in
param_names
])
# e.g: {'X': x, 'Y': y, 'Z': z}
ins_str
=
"{%s}"
%
','
.
join
(
[
"'{}' : {}"
.
format
(
in_name
,
in_name
.
lower
())
for
in_name
in
in_names
])
ins_str
=
"{%s}"
%
','
.
join
([
"'{}' : {}"
.
format
(
in_name
,
in_name
.
split
(
"@"
)[
0
].
lower
())
for
in_name
in
in_names
])
# e.g: {'num': n}
attrs_str
=
"{%s}"
%
","
.
join
([
"'{}' : {}"
.
format
(
attr_name
,
attr_name
.
lower
())
"'{}' : {}"
.
format
(
attr_name
,
attr_name
.
split
(
"@"
)[
0
].
lower
())
for
attr_name
in
attr_names
])
# e.g: ['Out', 'Index']
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录