engine.py 67.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16
import logging
17 18
import random
import numpy as np
19 20 21
from collections import defaultdict

import paddle
22
import paddle.utils as utils
23

Z
zhaoyingli 已提交
24
from paddle import fluid, static
25
from paddle.metric import Metric
26
from paddle.static import InputSpec
27
from paddle.fluid import core
28
from paddle.fluid import Variable
29
from paddle.fluid.layers.utils import flatten
30
from paddle.fluid.executor import global_scope, _to_name_str
31
from paddle.fluid.framework import Operator, _non_static_mode
32 33
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
34
from paddle.distributed import fleet
35

Z
zhaoyingli 已提交
36
from .callbacks import config_callbacks
37
from .converter import Converter
38
from .helper import ProgramHelper
39
from .cluster import Cluster, get_default_cluster
40 41
from .planner_v2 import Planner
from .parallelizer_v2 import Parallelizer
42 43
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
44 45 46 47
from .dist_loader import (
    DistributedDataLoaderFromGenerator,
    DistributedDataLoader,
)
Z
zhaoyingli 已提交
48
from .utils import to_list, get_dist_attr, get_lr
49
from .process_group import new_process_group, get_all_process_groups
50
from .dist_context import DistributedContext, get_default_distributed_context
51
from .strategy import Strategy
52
from .interface import CollectionNames, get_collection
Z
zhaoyingli 已提交
53
from ..utils.log_utils import get_logger
54 55
from .utils import initialize_pg_in_full_mode
from .cost.estimate_cost import get_cost_from_engine
56 57 58


class Engine:
59
    """
60 61
    An Engine object can provide the full power of auto parallel to users.
    With the help of it, users can easily obtain the abilities of the
62 63 64 65 66 67 68
    distributed training and inference. It also support the dynamic graph and
    static graph at the same time.

    Args:
        model (paddle.nn.Layer, optional): The model is an instance of
            paddle.nn.Layer.
        loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer`
69 70
            instance or any callable function taken the predicted values and
            ground truth values as input. It can be None when there is no loss.
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
            Default: None.
        optimizer (Optimizer|None, optional): The optimizer need to be set in training
            and should be None in eval and predict mode. Default: None.
        metrics (Metric|list[Metric]|None, optional): If metrics is set, all
            metrics will be calculated and output in train/eval mode. Default: None.
        cluster (Cluster|None, optional): The cluster represents the topology information
            about the used physical devices. Default: None. (Unused for now)
        strategy (Strategy|None, optional): The strategy is used to configure the
        parallelization and optimization behaviors. Default: None.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.vision.transforms as T
87
            from paddle.distributed.fleet import auto
88 89 90 91 92 93 94 95 96 97
            from paddle.vision.datasets import MNIST

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = MNIST(mode='train', transform=transform)
            valid_dataset = MNIST(mode='test', transform=transform)

            model = paddle.vision.models.LeNet()
98
            loss = paddle.nn.CrossEntropyLoss()
99 100 101 102
            optimizer = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=model.parameters())
            metrics = paddle.metric.Accuracy(topk=(1, 2))

103 104
            engine = auto.Engine(model, loss, optimizer, metrics)
            # fit
105 106 107
            engine.fit(train_dataset,
                       epochs=2,
                       batch_size=64)
108
            # evaluate
109 110 111 112 113 114 115
            engine.evaluate(valid_dataset,
                            batch_size=64)
            # predict
            engine.predict(valid_dataset,
                           batch_size=64)
            # save
            engine.save("./my_model")
116
            # load
117 118 119
            engine.load("./my_model")

    """
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    def __init__(
        self,
        model=None,
        loss=None,
        optimizer=None,
        metrics=None,
        cluster=None,
        strategy=None,
    ):

        if (
            model
            and not isinstance(model, paddle.nn.Layer)
            and not callable(model)
        ):
136 137 138 139 140 141 142
            raise TypeError(
                "'model must be sub classes of `paddle.nn.Layer` or any callable function."
            )
        self._model = model
        self._loss = loss

        if optimizer and not isinstance(
143 144 145
            optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer),
        ):
146 147
            raise TypeError(
                "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
148 149
                " or `paddle.fluid.optimizer.Optimizer`."
            )
150 151 152 153
        self._optimizer = self._validate_opt(optimizer)

        metrics = metrics or []
        for metric in to_list(metrics):
154 155 156
            assert isinstance(
                metric, Metric
            ), "{} is not sub class of Metric".format(metric.__class__.__name__)
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        self._metrics = to_list(metrics)

        if cluster and not isinstance(cluster, Cluster):
            raise TypeError(
                "'cluster' must be the object or class `paddle.distributed.auto_parallel.Cluster`"
            )
        self._cluster = cluster or get_default_cluster()

        if strategy and not isinstance(strategy, Strategy):
            raise TypeError(
                "'strategy' must be object of class `paddle.distributed.auto_parallel.Strategy`"
            )
        self._strategy = strategy or Strategy()

        if os.getenv("POD_NAME"):
172 173 174
            print(
                "Distribute training by paddle.distributed.launch", flush=True
            )
175
            fleet.init(is_collective=True)
176

177
        self._executor = None
178 179 180
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
181

182
        self._logger = get_logger(logging.INFO)
183

184 185
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
186
        self._orig_dist_context = get_default_distributed_context()
187
        self._dist_contexts = {}
188 189
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
190 191 192 193
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
194
        self._planners = {}
195 196
        self._has_prepared = {"train": False, "eval": False, "predict": False}
        self._has_prepared_reader = {
197 198
            "train": False,
            "eval": False,
199
            "predict": False,
200
        }
201 202 203 204
        self._inputs_spec = []
        self._labels_spec = []
        self._inputs = []
        self._labels = []
205

206 207
        self._skip_build = False
        self._outside_dataloader = False
208
        self._planned_mode = None
209 210
        self._dygraph_mode = False
        self._tuning = self._strategy.tuning
211
        self._losses = None
212

Z
zhaoyingli 已提交
213 214
        self.history = None

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    def _prepare_data_spec(self, data, split, batch_size):
        inputs_spec = []
        labels_spec = []
        if isinstance(data, paddle.io.IterableDataset):
            if split is None:
                inputs, labels = next(iter(data))
            else:
                sample = next(iter(data))
                inputs = sample[:split]
                labels = sample[split:]
        elif isinstance(data, paddle.io.Dataset):
            if split is None:
                inputs, labels = data[0]
            else:
                sample = data[0]
                inputs = sample[:split]
                labels = sample[split:]
        else:
            raise ValueError(
234 235 236 237
                "Data should be a Dataset or IterableDatset, but received {}.".format(
                    type(data).__name__
                )
            )
238 239 240 241
        inputs = to_list(inputs)
        labels = to_list(labels)

        num_shards = self._strategy.dataset.num_shards
242

243 244 245 246 247 248 249 250 251 252 253 254 255 256
        def _adjust_item_spec(num_shards, spec):
            if num_shards > 1 and len(spec.shape) > 1:
                spec.shape[0] = spec.shape[0] * num_shards

        def _infer_item_spec(item, name, batch_size, specs):
            if isinstance(item, np.ndarray):
                spec = InputSpec.from_numpy(item, name)
                if batch_size is None:
                    _adjust_item_spec(num_shards, spec)
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
            elif isinstance(item, (Variable, core.VarBase, core.eager.Tensor)):
                spec = InputSpec.from_tensor(item, name)
257
                _adjust_item_spec(num_shards, spec)
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
                if batch_size is None:
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
            else:
                specs.append(InputSpec([batch_size], type(item), name))

        if inputs is not None:
            for i, item in enumerate(inputs):
                assert item is not None, "Receive None input."
                name = "input" + str(i)
                _infer_item_spec(item, name, batch_size, inputs_spec)
        if labels is not None:
            for i, item in enumerate(labels):
                assert item is not None, "Receive None input."
                name = "label" + str(i)
                _infer_item_spec(item, name, batch_size, labels_spec)

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        return inputs_spec, labels_spec

280 281 282
    def _prepare_data_tensor(
        self, inputs_spec, labels_spec, inputs=None, labels=None
    ):
283 284 285 286 287
        if _non_static_mode() or self._dygraph_mode:
            return None, None
        inputs_spec = inputs_spec if inputs_spec else []
        labels_spec = labels_spec if labels_spec else []
        if inputs_spec:
288 289 290 291 292
            assert isinstance(
                inputs_spec, list
            ), "inputs should be list, but received {}".format(
                type(inputs_spec)
            )
293 294 295
            if inputs is None:
                inputs = [s._create_feed_layer() for s in inputs_spec]
            else:
296 297 298
                assert isinstance(
                    inputs, list
                ), "inputs should be list, but received {}".format(type(inputs))
299 300 301 302
                for input_spec, input in zip(inputs_spec, inputs):
                    if input_spec.shape != input.shape:
                        input.desc.set_shape(input_spec.shape)
        if labels_spec:
303 304 305 306 307
            assert isinstance(
                labels_spec, list
            ), "labels should be list, but received {}".format(
                type(labels_spec)
            )
308 309 310
            if labels is None:
                labels = [s._create_feed_layer() for s in labels_spec]
            else:
311 312 313
                assert isinstance(
                    labels, list
                ), "labels should be list, but received {}".format(type(labels))
314 315 316 317 318 319 320 321 322 323 324 325
                for label_spec, label in zip(labels_spec, labels):
                    if label_spec.shape != label.shape:
                        label.desc.set_shape(label_spec.shape)
        return inputs, labels

    def _prepare_reader(self):
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_context = self._dist_contexts[self._mode]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
326 327 328
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        ]
        # remove the first three ops if multiple run fit/evaluate/predict
        if dist_main_block.ops[0].type == 'create_py_reader':
            for i in range(len(related_reader_ops)):
                if dist_main_block.ops[0].type in related_reader_ops:
                    dist_main_block._remove_op(0, sync=False)
        dist_main_block._sync_with_cpp()
        # Step 1: find the reader ops
        reader_op_indices = []
        for idx, op in enumerate(dist_main_block.ops):
            if op.type in related_reader_ops:
                reader_op_indices.append(idx)
        # Step 2: insert the new reader ops to cpp
        new_reader_ops = []
        for idx in reversed(reader_op_indices):
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(dist_main_block.ops[idx].desc)
346 347 348
            new_op = Operator(
                dist_main_block, new_op_desc, type=new_op_desc.type()
            )
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
            new_reader_ops.append(new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        # Step 3: insert the new reader ops to python
        for new_op in new_reader_ops:
            dist_main_block.ops.insert(0, new_op)
        for i in range(len(reader_op_indices)):
            reader_op_indices[i] += len(reader_op_indices)
        # Step 4: remove the old reader ops from python and cpp
        for idx in reversed(reader_op_indices):
            op = dist_main_block.ops.pop(idx)
            dist_main_block.desc._remove_op(idx, idx + 1)
        dist_main_block._sync_with_cpp()
        self._has_prepared_reader[self._mode] = True

    def _prepare_feed(self, data, user_feeds, mode):
        feeds = {}
        if data is not None:
            if isinstance(data, (list, tuple)):
                if len(data) == 1 and isinstance(data[0], dict):
                    for name, data in data[0].items():
                        feeds[name] = data
                else:
                    raise ValueError("Unsupported data {}".format(data))
            elif isinstance(data, dict):
                for name, data in data.items():
                    feeds[name] = data
            else:
                raise ValueError("Unsupported data {}".format(data))
378
        if user_feeds is not None:
379 380 381 382 383
            assert isinstance(
                user_feeds, dict
            ), "user_feeds must be a dict, but receive {}".format(
                type(user_feeds).__name__
            )
384 385
            for name, data in user_feeds.items():
                feeds[name] = data
386 387
        return feeds

388
    def _prepare_fetch(self, user_fetches, mode):
389
        if user_fetches is not None:
390 391 392 393 394
            assert isinstance(
                user_fetches, list
            ), "user_fetches must be a list, but receive {}".format(
                type(user_fetches).__name__
            )
395
        fetch_names = []
396
        fetch_indices = []
397

398 399
        def _process_fetch_group(group_name, var_list):
            group_indices = []
400
            for var in var_list:
401 402 403 404 405 406
                # Remove duplicate var_names
                if self._is_local_var(var):
                    var_name = _to_name_str(var)
                    if var_name not in fetch_names:
                        fetch_names.append(var_name)
                    group_indices.append(fetch_names.index(var_name))
407 408
            if not group_indices:
                fetch_names.append([])
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
            fetch_indices.append(group_indices)

        if mode != "predict":
            _process_fetch_group("loss", self._fetch_vars[mode]["loss"])
        if mode != "predict":
            metrics = self._fetch_vars[mode]["metrics"]
            for i, var_list in enumerate(metrics):
                _process_fetch_group("metrics_" + str(i), var_list)
        if mode == "predict":
            _process_fetch_group("outputs", self._fetch_vars[mode]["outputs"])
        user_fetches_collection = [
            item[1] for item in get_collection(CollectionNames.FETCHES)
        ]
        var_list = (user_fetches_collection or []) + (user_fetches or [])
        _process_fetch_group("fetches", var_list)
        return fetch_names, fetch_indices

426 427 428 429 430 431 432 433 434 435
    def _prepare_logger(
        self,
        outs,
        epoch=None,
        step=None,
        lr=None,
        fetch_names=None,
        fetch_indices=None,
        mode=None,
    ):
Z
zhaoyingli 已提交
436
        logs = {}
437
        if epoch is not None:
Z
zhaoyingli 已提交
438
            logs["epoch"] = epoch
439
        if step is not None:
Z
zhaoyingli 已提交
440
            logs["step"] = step + 1
441
        if lr is not None:
Z
zhaoyingli 已提交
442
            logs["lr"] = lr
443 444
        group_idx = 0
        if mode != "predict":
Z
zhaoyingli 已提交
445
            # logging loss
446
            loss_indices = fetch_indices[group_idx]
Z
zhaoyingli 已提交
447
            assert len(loss_indices) <= 1
448
            for idx in loss_indices:
Z
zhaoyingli 已提交
449
                logs["loss"] = outs[idx][0]
450
            group_idx += 1
Z
zhaoyingli 已提交
451
            # logging metrics
452 453 454 455 456 457 458 459 460 461 462
            metric_vars = self._fetch_vars[mode]["metrics"]
            if metric_vars:
                for metric in self._metrics:
                    metrics_indices = fetch_indices[group_idx]
                    metric_out = []
                    for idx in metrics_indices:
                        metric_out.append(outs[idx])
                    if metric_out:
                        metric.update(*metric_out)
                        results = metric.accumulate()
                        for i, res in enumerate(to_list(results)):
Z
zhaoyingli 已提交
463
                            logs[metric.name()[i]] = res
464
                    group_idx += 1
Z
zhaoyingli 已提交
465 466 467 468 469 470 471
        # logging outputs
        elif mode == "predict":
            outputs_indices = fetch_indices[group_idx]
            logs_out = {}
            for idx in outputs_indices:
                logs_out["out%d" % (idx)] = outs[idx]
            logs["outputs"] = logs_out
472 473
            group_idx += 1
        # logging user fetches
Z
zhaoyingli 已提交
474 475 476
        collect_fetches = get_collection(CollectionNames.FETCHES)
        logs_fetch = {}
        for name, var in collect_fetches:
477 478
            if var.name in fetch_names:
                idx = fetch_names.index(var.name)
Z
zhaoyingli 已提交
479 480 481
                logs_fetch[name or var.name] = outs[idx]
        logs["fetches"] = logs_fetch
        return logs
482

483 484 485 486 487 488 489 490 491 492 493
    def _prepare_program(self, mode):
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)
        # Do the parallel process
        self._parallel(mode)
        # Init comm and startup program
        self._initialize(mode)
        self._has_prepared[mode] = True

494
    def _build(self, mode):
495
        if _non_static_mode() or self._dygraph_mode:
496
            paddle.disable_static()
497 498 499
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

500 501
            inputs_spec = self._inputs_spec
            labels_spec = self._labels_spec if self._labels_spec else []
502 503 504
            self.program_helper = ProgramHelper(
                self._model, self._loss, self._metrics, inputs_spec, labels_spec
            )
505
            # build forward main program
506
            self.program_helper.build_program(mode)
507

508 509 510
            self.concrete_program = self.program_helper.concrete_program
            serial_main_prog = self.program_helper.main_program
            serial_startup_prog = self.program_helper.startup_program
511

512 513 514 515
            inputs = self.program_helper.input_vars
            outputs = self.program_helper.output_vars
            labels = self.program_helper.label_vars
            losses = self.program_helper.loss_vars
516
            self._losses = losses
517
            metrics = self.program_helper.metric_vars
518

519 520 521
            self._inputs = inputs
            self._labels = labels

522
            paddle.enable_static()
523 524 525 526 527 528
        else:
            # build program in static mode
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

529
            outputs = []
530 531
            losses = []
            metrics = []
532 533
            inputs = self._inputs if self._inputs else []
            labels = self._labels if self._labels else []
534 535
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
536
            if not self._skip_build:
537 538 539
                with static.program_guard(
                    serial_main_prog, serial_startup_prog
                ), utils.unique_name.guard():
540 541 542
                    outputs = to_list(self._model(*inputs))
                    if mode != "predict" and self._loss:
                        losses = to_list(self._loss(*(outputs + labels)))
543
                        self._losses = losses
544 545 546 547

                    if mode != "predict" and (outputs or labels):
                        for metric in self._metrics:
                            metrics.append(
548 549
                                to_list(metric.compute(*(outputs + labels)))
                            )
550 551
            else:
                losses = to_list(self._loss)
552
                self.losses = losses
553 554 555 556 557 558 559 560 561 562 563 564 565

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True

        feed_vars = {"inputs": inputs, "labels": labels}

        fetch_vars = {
            "outputs": flatten(outputs),
            "loss": losses,
566
            "metrics": metrics,
567 568
        }

569 570 571
        if mode != "train":
            serial_main_prog = serial_main_prog.clone(for_test=True)

572
        self._set_recompute_ckpts()
573
        self._dist_contexts[mode] = DistributedContext(
574 575 576 577 578 579 580 581 582
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
            losses,
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
583
        self._dist_contexts[mode].gradient_scale = self._strategy.gradient_scale
584

585 586 587
    def _optimization_tuning(self, mode, dataset, batch_size):
        if not self._tuning.enable:
            raise ValueError("Please set `tuning.enable=True`.")
588

589 590 591 592 593 594 595 596
        assert mode == "train"
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)

        dataset.dp_world_size = self._dp_world_sizes
        dataset.dp_rank = self._dp_ranks
597 598

        from .tuner.optimization_tuner import OptimizationTuner
599 600 601 602 603 604 605 606 607 608

        self._optimization_tuner = OptimizationTuner(
            self._tuning.to_dict(),
            self._dist_contexts[mode],
            dataset,
            self._inputs_spec,
            self._labels_spec,
            batch_size=batch_size,
            rank=self._cur_rank,
        )
609 610 611

        self._optimization_tuner.tune()

612
        if self._tuning.run_after_tuning:
613 614
            # update the strategy
            self._dist_contexts[
615 616
                mode
            ]._strategy = self._optimization_tuner.get_best_config()
617

618 619 620 621 622 623
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

624 625
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
626

627 628 629 630
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
631
        # TODO: check this feed_list
632 633 634 635 636
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

637 638
        self._dp_world_sizes = []
        self._dp_ranks = []
639 640
        for feed_var in feed_list:
            dp_world_size, dp_rank = self._get_input_split_info(
641 642
                feed_var, self._dist_contexts[mode]
            )
643 644
            self._dp_world_sizes.append(dp_world_size)
            self._dp_ranks.append(dp_rank)
645

646
    def _parallel(self, mode, all_ranks=False):
647 648 649
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
650 651 652
        parallelizer = Parallelizer(
            mode, self._planners[mode].completer, self._dist_contexts[mode]
        )
653 654 655 656
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
657 658

    def _init_dist_context(self, mode):
659
        # Init dist_context['mode'] with the first planned dist_context
660 661 662 663 664 665 666 667 668 669
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
670 671 672 673 674 675 676 677
                assert (
                    op.type == ref_op.type
                ), "'{}' mode op '{}' is different with '{}' op '{}'. ".format(
                    mode, op.type, ref_mode, ref_op.type
                )
                ref_op_dist_attr = (
                    ref_dist_context.get_op_dist_attr_for_program(ref_op)
                )
678 679 680
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
681
        # Get the current content from the distributed context
682
        self._serial_main_progs[mode] = self._dist_contexts[
683 684
            mode
        ].serial_main_program
685
        self._serial_startup_progs[mode] = self._dist_contexts[
686 687
            mode
        ].serial_startup_program
688
        self._dist_main_progs[mode] = self._dist_contexts[
689 690
            mode
        ].dist_main_programs
691
        self._dist_startup_progs[mode] = self._dist_contexts[
692 693
            mode
        ].dist_startup_programs
694 695
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
Z
zhaoyingli 已提交
696
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
697

698 699 700 701
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
C
caozhou 已提交
702 703
            cur_rank = self._cur_rank
            # NOTE: After the implementation of the unified dynamic and static communication group initialization mode in the future, the initialization logic of full mode will be removed because port occupation error may occur.
704 705 706 707
            if self._strategy.auto_mode == "full":
                initialize_pg_in_full_mode(all_process_groups, cur_rank)
            else:
                for process_group in all_process_groups:
C
caozhou 已提交
708
                    if cur_rank not in process_group.ranks:
709 710
                        continue
                    process_group.instantiate()
711

712 713 714
        place = _get_device()
        if isinstance(place, fluid.CUDAPlace):
            place = fluid.CUDAPlace(ParallelEnv().dev_id)
715

716 717 718 719 720
        if self._strategy.seed:
            paddle.seed(self._strategy.seed + self._dp_ranks[0])
            np.random.seed(self._strategy.seed + self._dp_ranks[0])
            random.seed(self._strategy.seed + self._dp_ranks[0])

721
        if self._dygraph_mode:
722 723 724
            dist_context = self._dist_contexts[mode]
            dist_main_program = self._dist_main_progs[mode][self._cur_rank]
            self.program_helper.init(dist_main_program, place, dist_context)
725

726
        if self._executor is None:
727
            self._executor = paddle.static.Executor(place)
728 729 730 731 732 733 734 735 736 737
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
738

739
            if hasattr(self, "_state_dict") and hasattr(self, "_dist_attr"):
740 741 742
                self._set_state_dict(
                    mode, self._strict, self._state_dict, self._dist_attr
                )
743 744

        if self._strategy.reinit:
Z
zhaoyingli 已提交
745
            self._logger.info("NOTE: parameters will be re-initialized.")
746 747 748
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            self._executor.run(dist_startup_prog)

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
    def fit(
        self,
        train_data,
        train_sample_split=None,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        valid_data=None,
        valid_sample_split=None,
        valid_freq=1,
        valid_steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
767 768 769 770 771 772 773 774
        """
        Trains the model for a fixed number of epochs. If `valid_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            train_sample_split (int, optional): Each sample of the train dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
775
                more than two items, train_sample_split specifies how to split these items into
776
                input and label. The items before it are input and the left are label. Default: None.
777
            batch_size (int, optional): The batch size of train_data and valid_data if provided.
778 779 780
                The user's data will be used directly without batching if set to None. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            steps_per_epoch (int, optional): The total number of steps (batches of samples)
781
                is executed in one epoch before stating the next one. If None, it is equal to
782 783
                the number samples in your dataset divided by the batch size. Default: None.
            valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for
784
                evaluation at the end of epoch. No evaluation will be done if set to None.
785
                Default: None. (Unsupported for now)
786
            valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
787 788
                how many training epochs before a new evaluation is performed. Default: 1.
            valid_sample_split (int, optional): Only relevant if valid_data is provided.
789 790
                Each sample of the valid dataset is assumed to be a (input, label) pair
                by default and has two items. If each sample has more than two items,
791 792 793
                valid_sample_split specifies how to split these items into input and label.
                The items before it are input and the left are label. Default: None.
            valid_steps (int, optional): Only relevant if valid_data is provided.
794 795
                It is the total number of steps (batches of samples) to draw before
                stopping validation at the end of every epoch. If None, validation will run until the
796 797 798 799
                `valid_data` dataset is exhausted. The validation will start from the
                beginning of the dataset at each epoch. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
800
                0. Default None.
801 802 803 804 805 806 807 808 809 810 811 812
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
813
                from paddle.distributed.fleet import auto
814 815 816 817 818 819 820 821 822
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
823
                loss = paddle.nn.CrossEntropyLoss()
824 825 826 827
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

828
                engine = auto.Engine(model, loss, optimizer, metrics)
829 830 831 832
                engine.fit(train_dataset,
                           epochs=2,
                           batch_size=64)
        """
833 834
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
835 836
            train_data, train_sample_split, batch_size
        )
837
        self._inputs, self._labels = self._prepare_data_tensor(
838 839
            self._inputs_spec, self._labels_spec
        )
840 841
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
842
        else:
843
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
844

845 846 847
        assert (
            self._mode in self._dist_main_progs
        ), "train model is not ready, please call `engine._prepare_program('train')` first."
Z
zhaoyingli 已提交
848

849 850 851 852 853 854 855
        train_dataloader = self._prepare_dataloader_from_generator(
            dataset=train_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
856 857
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
858

859
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
Z
zhaoyingli 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885

        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            epochs=epochs,
            steps=train_dataloader._steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(),
            acc_step=self._k_steps,
        )

        cbks.on_begin('train')
        for epoch in range(epochs):
            logs = {}
            cbks.on_epoch_begin(epoch)
            for step, _ in enumerate(train_dataloader):
                cbks.on_batch_begin('train', step, logs)
                try:
                    outs = self._executor.run(
                        self.main_program,
                        fetch_list=fetch_names,
                        use_program_cache=self._strategy.use_cache,
886 887
                        return_numpy=self._strategy.return_numpy,
                    )
Z
zhaoyingli 已提交
888 889 890
                except core.EOFException:
                    break
                lr = get_lr(self._optimizer)
891 892 893 894 895 896 897 898 899
                logs = self._prepare_logger(
                    outs,
                    epoch,
                    step,
                    lr,
                    fetch_names,
                    fetch_indices,
                    self._mode,
                )
Z
zhaoyingli 已提交
900 901 902
                cbks.on_batch_end('train', step, logs)

            if valid_data and (epoch + 1) % valid_freq == 0:
903 904 905 906 907 908 909 910 911 912
                val_logs = self.evaluate(
                    valid_data,
                    valid_sample_split,
                    batch_size,
                    valid_steps,
                    log_freq,
                    collate_fn,
                    callbacks,
                    verbose,
                )
Z
zhaoyingli 已提交
913
                val_logs = {
914
                    "val_" + name: val for name, val in val_logs.items()
Z
zhaoyingli 已提交
915 916 917 918 919 920 921 922 923 924
                }
                logs.update(val_logs)
                self._switch_mode("train")
            else:
                self._reset_metrics()

            cbks.on_epoch_end(epoch, logs)

        cbks.on_end('train', logs)
        return self.history
925

926 927 928 929 930 931 932 933 934 935 936
    def evaluate(
        self,
        valid_data,
        valid_sample_split=None,
        batch_size=1,
        steps=None,
        log_freq=10,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
937 938 939 940
        """
        Evaluate the loss and metrics of the model on evaluation data.

        Args:
941 942
            valid_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            valid_sample_split (int, optional): Each sample of the eval dataset is assumed
943
                to be a (input, label) pair by default and has two items. If each sample has
944
                more than two items, valid_sample_split specifies how to split these items into
945
                input and label. The items before it are input and the left are label. Default: None.
946
            batch_size (int, optional): The batch size of valid_data. The user's data will
947
                be used directly without batching if set to None. Default: 1.
948 949
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
950 951 952 953 954
                The evaluation will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
955
                during evaluating. Default: None. (Unused for now)
956 957 958 959 960 961 962 963 964 965

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
966
                from paddle.distributed.fleet import auto
967 968 969 970 971 972 973 974 975
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()
976
                loss = paddle.nn.CrossEntropyLoss()
977 978
                metrics = paddle.metric.Accuracy(topk=(1, 2))

979
                engine = auto.Engine(model, loss, metrics=metrics)
980 981 982
                engine.evaluate(valid_dataset, batch_size=64)

        """
983 984
        self._mode = 'eval'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
985 986
            valid_data, valid_sample_split, batch_size
        )
987
        self._inputs, self._labels = self._prepare_data_tensor(
988 989
            self._inputs_spec, self._labels_spec
        )
990 991
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
992
        else:
993
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
994

995 996 997
        assert (
            self._mode in self._dist_main_progs
        ), "eval model is not ready, please call `engine._prepare_program('eval')` first."
998 999 1000 1001 1002 1003
        valid_dataloader = self._prepare_dataloader_from_generator(
            dataset=valid_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1004 1005
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1006

1007
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1008

Z
zhaoyingli 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(),
        )

        eval_steps = valid_dataloader._steps
1019 1020 1021
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
Z
zhaoyingli 已提交
1022
        logs = {}
1023
        for step, _ in enumerate(valid_dataloader):
Z
zhaoyingli 已提交
1024
            cbks.on_batch_begin('eval', step, logs)
1025
            try:
1026 1027
                outs = self._executor.run(
                    self.main_program,
1028
                    fetch_list=fetch_names,
1029
                    use_program_cache=self._strategy.use_cache,
1030 1031
                    return_numpy=self._strategy.return_numpy,
                )
1032
            except core.EOFException:
1033
                break
1034 1035 1036
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1037 1038
            cbks.on_batch_end('eval', step, logs)
        cbks.on_end('eval', logs)
1039
        self._reset_metrics()
Z
zhaoyingli 已提交
1040
        return logs
1041

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
    def predict(
        self,
        test_data,
        test_sample_split=None,
        batch_size=1,
        steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1052 1053 1054 1055 1056 1057 1058
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            test_sample_split (int, optional): Each sample of the test dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
1059
                more than two items, test_sample_split specifies how to split these items into
1060 1061 1062
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of test_data. The user's data will
                be used directly without batching if set to None. Default: 1.
1063 1064
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
                The predict will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during testing. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1081
                from paddle.distributed.fleet import auto
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()

1092
                engine = auto.Engine(model)
1093 1094
                engine.predict(valid_dataset, batch_size=64)
        """
1095 1096
        self._mode = 'predict'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1097 1098
            test_data, test_sample_split, batch_size
        )
1099
        self._inputs, self._labels = self._prepare_data_tensor(
1100 1101
            self._inputs_spec, self._labels_spec
        )
1102 1103
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1104
        else:
1105
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1106

1107 1108 1109
        assert (
            self._mode in self._dist_main_progs
        ), "predict model is not ready, please call `engine._prepare_program('predict')` first."
Z
zhaoyingli 已提交
1110

1111 1112 1113 1114 1115 1116
        test_dataloader = self._prepare_dataloader_from_generator(
            dataset=test_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1117 1118
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1119

1120
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1121

Z
zhaoyingli 已提交
1122 1123 1124 1125 1126
        outputs = []
        cbks = config_callbacks(callbacks, engine=self, verbose=verbose)
        test_steps = test_dataloader._steps
        cbks.on_begin('predict', {'steps': test_steps})
        logs = {}
1127
        for step, _ in enumerate(test_dataloader):
Z
zhaoyingli 已提交
1128
            cbks.on_batch_begin('predict', step, logs)
1129
            try:
1130 1131
                outs = self._executor.run(
                    self.main_program,
1132
                    fetch_list=fetch_names,
1133
                    use_program_cache=self._strategy.use_cache,
1134 1135
                    return_numpy=self._strategy.return_numpy,
                )
1136
            except core.EOFException:
1137
                break
1138 1139 1140
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1141 1142 1143 1144 1145
            cbks.on_batch_end('predict', step, logs)
            outputs.append(list(logs["outputs"].values()))
        cbks.on_end('predict', logs)
        return outputs

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
    def dataloader(
        self,
        dataset,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
        sample_split=1,
        mode=None,
    ):
1163 1164 1165
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1166 1167
            dataset, sample_split, batch_size
        )
1168
        self._inputs, self._labels = self._prepare_data_tensor(
1169 1170
            self._inputs_spec, self._labels_spec
        )
1171 1172
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1173
        else:
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
            self._switch_mode(self._mode)
        dataloader = self._prepare_dataloader(
            dataset,
            return_list=False,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            collate_fn=collate_fn,
            num_workers=num_workers,
            use_buffer_reader=use_buffer_reader,
            use_shared_memory=use_shared_memory,
            timeout=timeout,
            worker_init_fn=worker_init_fn,
            epochs=epochs,
1188 1189
            steps_per_epoch=steps_per_epoch,
        )
1190 1191
        return dataloader

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    def dataloader_from_generator(
        self,
        dataset,
        capacity=70,
        use_double_buffer=True,
        iterable=True,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
        sample_split=1,
        mode=None,
    ):
1207 1208 1209
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1210 1211
            dataset, sample_split, batch_size
        )
1212
        self._inputs, self._labels = self._prepare_data_tensor(
1213 1214
            self._inputs_spec, self._labels_spec
        )
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
        dataloader = self._prepare_dataloader_from_generator(
            dataset=dataset,
            capacity=capacity,
            use_double_buffer=use_double_buffer,
            iterable=iterable,
            return_list=False,
            use_multiprocess=use_multiprocess,
            drop_last=drop_last,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
1230 1231
            collate_fn=collate_fn,
        )
1232 1233
        return dataloader

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
    def prepare(
        self,
        inputs_spec=None,
        labels_spec=None,
        inputs=None,
        labels=None,
        main_program=None,
        startup_program=None,
        mode=None,
    ):
1244 1245 1246 1247
        if mode is not None:
            self.to_mode(mode)
        if inputs or labels:
            self._skip_build = True
1248 1249
            self._inputs_spec = inputs_spec
            self._labels_spec = labels_spec
1250
            self._inputs, self._labels = self._prepare_data_tensor(
1251 1252
                self._inputs_spec, self._labels_spec, inputs, labels
            )
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
            self._orig_main_prog = main_program
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            self._orig_startup_prog = startup_program
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
            if not self._has_prepared[self._mode]:
                self._prepare_program(self._mode)
            else:
                self._switch_mode(self._mode)
        elif inputs_spec or labels_spec:
1264 1265
            self._inputs_spec = inputs_spec
            self._labels_spec = labels_spec
1266 1267
            self._outside_dataloader = True
            self._inputs, self._labels = self._prepare_data_tensor(
1268 1269
                self._inputs_spec, self._labels_spec
            )
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
            self._orig_main_prog = main_program
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            self._orig_startup_prog = startup_program
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
            if not self._has_prepared[self._mode]:
                self._prepare_program(self._mode)
            else:
                self._switch_mode(self._mode)
        else:
1281 1282 1283
            assert (
                self._inputs_spec and self._labels_spec
            ), "Please call the dataloader(...) before calling prepare(...)"
1284

1285
    def run(self, data=None, feed=None, fetch_list=None, mode=None):
1286 1287 1288 1289
        if mode is not None:
            self.to_mode(mode)
        feed_dict = self._prepare_feed(data, feed, self._mode)
        fetch_names, fetch_indices = self._prepare_fetch(fetch_list, self._mode)
1290 1291 1292 1293
        if (
            self._outside_dataloader
            and not self._has_prepared_reader[self._mode]
        ):
1294
            self._prepare_reader()
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
        outs = self._executor.run(
            self.main_program,
            feed=feed_dict,
            fetch_list=fetch_names,
            use_program_cache=self._strategy.use_cache,
            return_numpy=self._strategy.return_numpy,
        )
        logs = self._prepare_logger(
            outs, None, None, None, fetch_names, fetch_indices, self._mode
        )
Z
zhaoyingli 已提交
1305
        return logs
1306

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
    def _prepare_dataloader(
        self,
        dataset,
        return_list=True,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
    ):
1323

1324
        if self._strategy.gradient_merge and batch_size is not None:
1325 1326 1327 1328 1329
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1330
            batch_size //= self._k_steps
1331

1332 1333 1334
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
        dist_context = self._dist_contexts[self._mode]
1335
        dist_main_block = dist_main_prog.global_block()
1336

1337 1338 1339 1340
        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1341 1342
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
1343 1344 1345 1346
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
1347 1348 1349 1350
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)
1351 1352

        # insert read op at the end of program
1353
        places = paddle.static.cuda_places()
1354
        with static.program_guard(dist_main_prog, dist_startup_prog):
1355
            dataloader = DistributedDataLoader(
1356
                dataset,
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
                feed_list=feed_list,
                places=places,
                return_list=return_list,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last,
                collate_fn=collate_fn,
                num_workers=num_workers,
                use_buffer_reader=use_buffer_reader,
                use_shared_memory=use_shared_memory,
                timeout=timeout,
                worker_init_fn=worker_init_fn,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                split_data=self._strategy.split_data,
1372
                data_parallel_world_size=self._dp_world_sizes,
1373 1374
                data_parallel_rank=self._dp_ranks,
            )
1375

1376 1377
        return dataloader

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
    def _prepare_dataloader_from_generator(
        self,
        dataset,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
    ):
1392 1393

        if self._strategy.gradient_merge and batch_size is not None:
1394 1395 1396 1397 1398
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
            batch_size //= self._k_steps

        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
        dist_context = self._dist_contexts[self._mode]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)

        places = paddle.static.cuda_places()
        with static.program_guard(dist_main_prog, dist_startup_prog):
            dataloader = DistributedDataLoaderFromGenerator(
                dataset=dataset,
                feed_list=feed_list,
                capacity=capacity,
                use_double_buffer=use_double_buffer,
                iterable=iterable,
                return_list=return_list,
                use_multiprocess=use_multiprocess,
                drop_last=drop_last,
                places=places,
                batch_size=batch_size,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                collate_fn=collate_fn,
                split_data=self._strategy.split_data,
                data_parallel_world_size=self._dp_world_sizes,
1439 1440
                data_parallel_rank=self._dp_ranks,
            )
1441 1442 1443 1444 1445 1446
        self._prepare_reader()
        return dataloader

    def _tune(self, tune_data, tune_sample_split=None, batch_size=1):
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1447 1448
            tune_data, tune_sample_split, batch_size
        )
1449
        self._inputs, self._labels = self._prepare_data_tensor(
1450 1451
            self._inputs_spec, self._labels_spec
        )
1452 1453
        self._optimization_tuning(self._mode, tune_data, batch_size)

1454 1455
    def _validate_spec(self, specs):
        specs = to_list(specs)
1456
        self._k_steps = self._strategy.gradient_merge.k_steps
1457 1458 1459 1460 1461
        if specs is not None:
            for i, spec in enumerate(specs):
                assert isinstance(spec, InputSpec)
                if spec.name is None:
                    raise ValueError(
1462 1463 1464 1465
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
1466
                if self._k_steps > 1:
1467
                    shape = list(spec.shape)
1468 1469 1470 1471 1472
                    assert (
                        shape[0] % self._k_steps == 0
                    ), "Requires batch_size[{}] to be divisible by k_steps[{}].".format(
                        spec.shape[0], self._k_steps
                    )
1473
                    shape[0] //= self._k_steps
1474
                    spec.shape = shape
1475 1476
        return specs

1477 1478 1479 1480
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

1481 1482
    def _get_input_split_info(self, var, dist_context):
        # deduce how the input data is split among the cluster
1483 1484 1485 1486 1487 1488 1489
        from .utils import _get_comm_group, _get_corresponding_rank

        tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        process_mesh = tensor_dist_attr.process_mesh
        dims_mapping = tensor_dist_attr.dims_mapping

        if self._cur_rank not in process_mesh.processes:
1490 1491 1492
            rank_id = _get_corresponding_rank(
                dist_context, process_mesh, self._cur_rank
            )
1493 1494 1495 1496 1497
        else:
            rank_id = self._cur_rank

        batch_size_axis = dims_mapping[0]
        if batch_size_axis > -1 and process_mesh.topology[batch_size_axis] > 1:
1498 1499 1500 1501 1502 1503
            group_ranks = _get_comm_group(
                process_mesh.processes,
                process_mesh.topology,
                batch_size_axis,
                rank_id,
            )
1504 1505
            return len(group_ranks), group_ranks.index(rank_id)

1506
        return 1, 0
1507

1508 1509 1510 1511
    def _set_recompute_ckpts(self):
        # NOTE hack to enable recompute in engine api for GPT-3
        # TODO support more PaddleNLP/CV models here

1512
        recompute = self._strategy.recompute
1513 1514

        # extract ckpts by specific model
1515
        if isinstance(self._model, paddle.nn.Layer):
1516 1517 1518 1519 1520 1521
            if hasattr(
                self._model, "gpt"
            ) and self._model.__class__.__name__ in [
                'GPTForPretraining',
                'GPTForPretrainingAuto',
            ]:
1522
                exact_ckpts = self._model.gpt.checkpoints
1523
            else:
1524
                exact_ckpts = recompute.checkpoints
1525
        else:
1526
            exact_ckpts = recompute.checkpoints
1527 1528

        # modify strategy
1529 1530
        if recompute.enable:
            recompute.checkpoints = exact_ckpts[:]
1531
            logs = {
1532
                'Model Class': self._model.__class__.__name__,
1533
                'Applied Recompute ckpts': exact_ckpts,
1534 1535 1536
            }
            self._logger.info(logs)

1537
    def _validate_opt(self, optimizer):
1538 1539 1540
        if optimizer is not None:
            optimizer._parameter_list = None
            optimizer._param_groups = None
1541 1542
        return optimizer

1543 1544 1545 1546
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

Z
zhaoyingli 已提交
1547 1548 1549 1550 1551 1552
    def _metrics_name(self):
        metrics_name = ['loss'] if self._loss else []
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

1553
    def _switch_mode(self, mode):
1554
        self.to_mode(mode)
Z
zhaoyingli 已提交
1555
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
1556

1557
    def to_mode(self, mode):
1558 1559 1560 1561 1562
        assert mode in [
            "train",
            "eval",
            "predict",
        ], "mode {} should be one of ['train', 'eval', 'predict']".format(mode)
1563 1564
        self._mode = mode

1565 1566 1567 1568 1569 1570 1571 1572 1573
    def _set_state_dict(self, mode, strict, state_dict, dist_attr):
        program = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
        cur_dist_attr = get_dist_attr(program, dist_context)
        converter = Converter(state_dict, dist_attr, cur_dist_attr)
        state_dict = converter.convert(strict=strict)
        program.set_state_dict(state_dict)

    def save(self, path, training=True):
1574 1575
        """
        Saves the model, parameters, optimizer state to path.
1576 1577 1578 1579 1580 1581 1582
        If `training` is set to False, only inference model will be saved.

        Args:
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
            training (bool, optional): Whether to save for training. If not, save
1583
                for inference only. If `training` is set to True, the optimizer state
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
                will be saved. Otherwise, only the model and parameters are saved.
                This function will silently overwrite existing file at the target
                location. Default: True.

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1596
                from paddle.distributed.fleet import auto
1597 1598 1599 1600 1601 1602 1603 1604 1605
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1606
                loss = paddle.nn.CrossEntropyLoss()
1607 1608 1609 1610
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1611
                engine = auto.Engine(model, loss, optimizer, metrics)
1612 1613 1614 1615
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
1616

1617
        """
1618
        if training:
Z
zhaoyingli 已提交
1619 1620 1621 1622
            assert self._mode in self._serial_main_progs
            serial_program = self._serial_main_progs[self._mode]
            dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
            dist_context = self._dist_contexts[self._mode]
1623 1624 1625 1626 1627 1628
            self._saver.save(
                path,
                serial_program=serial_program,
                dist_main_program=dist_main_prog,
                dist_context=dist_context,
            )
1629
        else:
Z
zhaoyingli 已提交
1630 1631 1632 1633
            assert "predict" in self._dist_main_progs
            feed_vars = self._feed_vars["predict"]['inputs']
            fetch_vars = self._fetch_vars["predict"]['outputs']
            dist_main_prog = self._dist_main_progs["predict"][self._cur_rank]
1634 1635 1636 1637 1638 1639 1640
            self._saver.save_inference_model(
                path,
                feed_vars,
                fetch_vars,
                self._executor,
                program=dist_main_prog,
            )
1641

1642 1643 1644 1645 1646 1647
    def load(self, path, strict=True, load_optimizer=True):
        """
        Load the stored model, parameters and optimizer states.

        Args:
            path (str): The prefix of files storing the model states and
1648
                optimizer states.
1649 1650 1651
            strict (bool, optional): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1652
                mismatch shape). Default: True.
1653
            load_optimizer (bool, optional): If True, the stored optimizer
1654
                states is restored. Otherwise, the optimizer states is initialized
1655
                from scratch. Default: True.
1656 1657 1658 1659 1660 1661 1662 1663 1664

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1665
                from paddle.distributed.fleet import auto
1666 1667 1668 1669 1670 1671 1672 1673 1674
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1675
                loss = paddle.nn.CrossEntropyLoss()
1676 1677 1678 1679
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1680
                engine = auto.Engine(model, loss, optimizer, metrics)
1681 1682 1683 1684 1685
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
                engine.load("./my_model")
1686

1687 1688 1689
        """
        self._strict = strict
        self._state_dict, self._dist_attr = self._saver.load(
1690 1691
            path, load_optimizer
        )
1692
        return self._state_dict, self._dist_attr
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
    def cost(self, inputs_spec=None, labels_spec=None, mode="train"):
        """
        Get and Print cost, including memory of every rank,
        max memory among all ranks, and the global cost of one step based on
        communication cost(computation cost is 0 by default).
        In the future, the flops information of every rank and global cost including
        computation cost will be added.

        Args:
            inputs_spec(InputSpec): The specification of inputs. Default: None.
            labels_spec(InputSpec): The specification of labels. Default: None.
            mode (str): The engine mode must be in ["train", "predict", "eval"]. Default: "train".

        Returns:
            Return the global execution time (ms) and max memory (B).

        """
        # Check parallel mode
        if self._strategy.auto_mode == "full":
            print(
                "The cost will be calcudated in the search process when the auto mode is full."
            )
            return

        # Check mode
        accepted_modes = ["train", "predict", "eval"]
        if mode not in accepted_modes:
1721 1722 1723 1724 1725
            raise ValueError(
                "The mode {} is not in accepted modes {}".format(
                    mode, accepted_modes
                )
            )
1726 1727 1728 1729 1730
        self.to_mode(mode)

        if inputs_spec is not None:
            self._inputs_spec, self._labels_spec = inputs_spec, labels_spec
            self._inputs, self._labels = self._prepare_data_tensor(
1731 1732
                self._inputs_spec, self._labels_spec
            )
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
            self._build(mode)
            self._plan(mode)
        else:
            if _non_static_mode() or self._dygraph_mode:
                raise ValueError(
                    "Please call `engine._prepare_program('mode')` firstly when in the static graph mode."
                )

        # Estimate the exec cost and max memory
        global_cost, max_memory = get_cost_from_engine(self, mode)

        return global_cost.time, max_memory

1746 1747
    @property
    def main_program(self):
1748
        return self._dist_main_progs[self._mode][self._cur_rank]
1749 1750 1751

    @property
    def startup_program(self):
1752
        return self._dist_startup_progs[self._mode][self._cur_rank]
1753 1754 1755

    @property
    def dist_context(self):
1756
        return self._dist_contexts[self._mode]
1757 1758 1759

    @property
    def serial_main_program(self):
1760
        return self._serial_main_progs[self._mode]
1761 1762 1763

    @property
    def serial_startup_program(self):
1764
        return self._serial_startup_progs[self._mode]
1765 1766 1767

    @property
    def fetch_vars(self):
1768
        return self._fetch_vars[self._mode]
1769 1770 1771

    @property
    def inputs(self):
1772
        return self._inputs
1773 1774 1775

    @property
    def labels(self):
1776
        return self._labels