optimizer.py 60.0 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from collections import defaultdict

18 19
import numpy as np

20
import paddle
21
import paddle.autograd as imperative_base
22
from paddle import _C_ops
23
from paddle.fluid import core
24 25
from paddle.fluid.framework import (
    Variable,
26 27
    _current_expected_place,
    _in_eager_without_dygraph_check,
28 29
    default_main_program,
    device_guard,
30
    in_dygraph_mode,
31 32
    name_scope,
)
M
MRXLT 已提交
33

34
from ..fluid import framework, unique_name
35
from ..fluid.backward import _get_no_grad_set_name, append_backward
36
from ..fluid.framework import Parameter, program_guard
M
MRXLT 已提交
37
from ..fluid.layer_helper import LayerHelper
38
from .lr import LRScheduler
M
MRXLT 已提交
39

40 41
__all__ = []

M
MRXLT 已提交
42

43
@framework.static_only
44 45 46 47 48 49 50 51
def append_backward_new(
    loss_list,
    parameter_list=None,
    no_grad_set=None,
    callbacks=None,
    checkpoints=None,
    distop_context=None,
):
52
    from paddle.incubate.autograd.primx import Transform, orig2prim
53

54
    program = default_main_program()
55 56 57
    assert (
        program.num_blocks == 1
    ), "The append_backward_new interface is designed to process only one block."
58
    block = program.current_block()
59
    for el in loss_list:
60 61 62
        assert (
            el.block == block
        ), 'variable in loss_list should be in current block of main program'
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

    orig2prim(block)
    ad = Transform(block)
    if parameter_list is None:
        parameter_list = program.global_block().all_parameters()
    param_dot, loss_dot = ad.linearize(parameter_list, loss_list)
    loss_bar, param_bar = ad.transpose(loss_dot, param_dot)

    # remove param_dot and their constructor ops
    op_indexes = []
    for var in param_dot:
        if var is not None:
            op_index = block.ops.index(var.op)
            assert op_index >= 0
            op_indexes.append(op_index)

    ad.erase_ops(sorted(op_indexes))
    ad.erase_dots(param_dot)

    if len(parameter_list) == 1:
        params_and_grads = [(parameter_list, param_bar)]
    else:
        params_and_grads = []
        for i, param in enumerate(parameter_list):
            params_and_grads.append((param, param_bar[i]))
    return params_and_grads


91
class Optimizer:
92
    r"""Optimizer Base class.
M
MRXLT 已提交
93 94 95 96 97 98

    Define the common interface of an optimizer.
    User should not use this class directly,
    but need to use one of it's implementation.

    Args:
99 100
        learning_rate (float|LRScheduler): The learning rate used to update ``Parameter``.
            It can be a float value or any subclass of ``LRScheduler`` .
101
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
102 103 104 105
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
106
            The default value is None in static graph mode, at this time all parameters will be updated.
M
MRXLT 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of \
            some derived class of ``GradientClipBase`` . There are three cliping strategies \
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , \
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    Returns:
123 124
       Base class for optimizer.

M
MRXLT 已提交
125 126 127 128 129 130
    Examples:
        .. code-block:: python

            #Take the subclass adam as an example
            import paddle
            linear = paddle.nn.Linear(10, 10)
131
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
M
MRXLT 已提交
132 133 134 135
            out = linear(inp)
            loss = paddle.mean(out)
            adam = paddle.optimizer.Adam(learning_rate=0.1,
                    parameters=linear.parameters())
R
Roc 已提交
136
            loss.backward()
M
MRXLT 已提交
137 138 139
            adam.step()
            adam.clear_grad()

140
            #Take the subclass sgd as an example
141
            #optimize parameters in linear_1 and linear2 in different options.
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            sgd = paddle.optimizer.SGD(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
158
                weight_decay=0.01)
R
Roc 已提交
159
            loss.backward()
160 161 162
            sgd.step()
            sgd.clear_grad()

M
MRXLT 已提交
163 164
    """

165
    @imperative_base.no_grad()
166 167 168 169 170 171 172 173
    def __init__(
        self,
        learning_rate,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
174

175 176 177 178
        if parameters is not None:
            # paddle.Tensor is also iterable, so here we don't check whether
            # the input is iterable, if the input is paddle.Tensor, the
            # list(paddle.Tensor) will be a error value
179
            if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)):
180 181
                raise TypeError(
                    "`parameters` argument given to the optimizer should be "
182 183 184 185
                    "an iterable of paddle Tensors, but got argument type is `{}`.".format(
                        type(parameters)
                    )
                )
186 187 188 189
            if isinstance(parameters, dict):
                raise TypeError(
                    "`parameters` argument should not get dict type, "
                    "if parameter groups is needed, please set `parameters`"
190 191
                    " as list of dict"
                )
192 193 194 195
            self._parameter_list = list(parameters)
        else:
            self._parameter_list = None

M
MRXLT 已提交
196
        self._name = name
J
Jiabin Yang 已提交
197
        if framework._non_static_mode():
M
MRXLT 已提交
198 199 200 201 202
            if self._parameter_list is None:
                raise AttributeError(
                    "parameters argument given to the Optimizer should not be None in dygraph mode."
                )
            if weight_decay is not None:
203 204
                if not isinstance(self._parameter_list[0], dict):
                    for param in self._parameter_list:
205 206 207 208
                        if (
                            hasattr(param, 'regularizer')
                            and param.regularizer is not None
                        ):
209 210 211
                            logging.info(
                                "If regularizer of a Parameter has been set by 'paddle.ParamAttr' or 'static.WeightNormParamAttr' already. "
                                "The weight_decay[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
212 213
                                % weight_decay.__str__()
                            )
214 215
                            break

216
        if not isinstance(learning_rate, (float, LRScheduler)):
217
            raise TypeError(
218 219 220
                "learning rate should be float or LRScheduler, got %s here"
                % type(learning_rate)
            )
M
MRXLT 已提交
221
        if grad_clip is not None:
222
            if not isinstance(grad_clip, paddle.nn.clip.GradientClipBase):
M
MRXLT 已提交
223 224 225 226 227
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
        if isinstance(weight_decay, float):
            from ..fluid.regularizer import L2Decay
228

M
MRXLT 已提交
229 230 231 232 233
            self.regularization = L2Decay(weight_decay)
        else:
            self.regularization = weight_decay
        self._grad_clip = grad_clip
        self._learning_rate = learning_rate
L
Leo Chen 已提交
234

M
MRXLT 已提交
235
        self._dtype = None
L
Leo Chen 已提交
236 237
        # Infer the dtype form parameter
        if self._parameter_list:
238 239
            if isinstance(self._parameter_list[0], dict):
                for param_group in self._parameter_list:
240 241 242
                    assert (
                        'params' in param_group
                    ), 'params should be set in parameters if parameter groups are optimized in different options'
243 244 245
                self._dtype = self._parameter_list[0]['params'][0].dtype
            else:
                self._dtype = self._parameter_list[0].dtype
L
Leo Chen 已提交
246

M
MRXLT 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259
        # each program should have a independent learning rate
        # program -> tensor(learning_rate)
        self._learning_rate_map = dict()
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra tensors associated with the parameters
        # to train. These tensors are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
        self.helper = None
        self._opti_name_list = []
        self._accumulators_holder = {}
        self._param_device_map = dict()
        self.clear_gradients = self.clear_grad
260 261
        self._default_dict = {
            'weight_decay': self.regularization,
262
            'grad_clip': self._grad_clip,
263 264 265 266 267 268 269 270
        }

        self._param_groups = []
        if self._parameter_list and isinstance(self._parameter_list[0], dict):
            for param_group in self._parameter_list:
                self._add_param_group(param_group.copy())
        else:
            self._param_groups = self._parameter_list
M
MRXLT 已提交
271

272
        # NOTE: Multi Tensor: Pass in all parameters and gradients to the op kernel of the Optimizer at one time for updating for dygraph mode.
Z
zhangbo9674 已提交
273
        # Optimizer support list: [ paddle.optimizer.Momentum, paddle.optimizer.Adam].
274 275
        self._use_multi_tensor = None

276
        self._param_dict = self._create_multi_tensor_dict()
277 278 279 280 281
        self._auxiliary_vars = {}

    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

282 283 284 285 286 287 288
    def _create_multi_tensor_dict(self):
        n = len(self._param_groups) if self._param_groups is not None else 1
        return {
            'FP32_LODTensor': [[] for _ in range(n)],
            'FP16_LODTensor': [[] for _ in range(n)],
        }

289 290 291
    def _get_auxiliary_var(self, key):
        return self._auxiliary_vars.get(key, None)

M
MRXLT 已提交
292 293 294
    @framework.dygraph_only
    def state_dict(self):
        '''
295
        Get state dict information from optimizer. It contain all the tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be include in state dict.
M
MRXLT 已提交
296 297
        If the optimizer never be called(minimize function), the state_dict is empty.

298
        Args:
M
MRXLT 已提交
299 300 301 302
            None

        Returns:
            state_dict(dict) : dict contains all the Tensor used by optimizer
303

M
MRXLT 已提交
304 305 306 307
        Examples:
            .. code-block:: python

                import paddle
M
MRXLT 已提交
308
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
309 310 311 312 313 314 315 316 317

                adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
                state_dict = adam.state_dict()

        '''
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
318 319 320 321
        # if has master weight and then save master weight
        if hasattr(self, "_master_weights"):
            if len(self._master_weights) != 0:
                state_dict["master_weights"] = self._master_weights
M
MRXLT 已提交
322
        # global step if use lr decay
323
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
324 325 326 327 328 329
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
        return state_dict

    @framework.dygraph_only
    def set_state_dict(self, state_dict):
        '''
330
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LRScheduler have been used, global_step will be changed.
M
MRXLT 已提交
331

332
        Args:
M
MRXLT 已提交
333 334 335
            state_dict(dict) : Dict contains all the Tensor needed by optimizer
        Return:
            None
336

M
MRXLT 已提交
337 338 339 340 341
        Examples:
            .. code-block:: python

                import paddle

342
                emb = paddle.nn.Embedding(10, 10)
M
MRXLT 已提交
343

344 345
                layer_state_dict = emb.state_dict()
                paddle.save(layer_state_dict, "emb.pdparams")
M
MRXLT 已提交
346

347
                scheduler = paddle.optimizer.lr.NoamDecay(
348 349 350 351 352 353
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
                opt_state_dict = adam.state_dict()
                paddle.save(opt_state_dict, "adam.pdopt")
M
MRXLT 已提交
354

355
                opti_state_dict = paddle.load("adam.pdopt")
M
MRXLT 已提交
356 357 358
                adam.set_state_dict(opti_state_dict)

        '''
359
        if isinstance(self._learning_rate, LRScheduler):
360
            self._learning_rate.set_state_dict(state_dict["LR_Scheduler"])
M
MRXLT 已提交
361

362
        # NOTE: exclude learning rate scheduler's state from
363 364 365 366
        # _accumulators_holder.
        state_dict = state_dict.copy()
        if "LR_Scheduler" in state_dict:
            state_dict.pop("LR_Scheduler")
367 368 369 370
        if "master_weights" in state_dict:
            if hasattr(self, "_master_weights"):
                self._master_weights = state_dict["master_weights"]
            state_dict.pop("master_weights")
M
MRXLT 已提交
371 372 373
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
374 375 376
                assert (
                    var_tmp.name in state_dict
                ), "optimizer Tensor {} not found".format(var_tmp.name)
M
MRXLT 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389
                var = var_tmp.value()
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, core.VarBase):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
390 391 392 393 394 395 396 397 398 399 400
                    raise RuntimeError(
                        "State dict type {} not supprt".format(
                            str(type(load_para))
                        )
                    )

                assert (
                    model_np.shape == load_para_np.shape
                ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                    model_np.name, model_np.shape, load_para_np.shape
                )
M
MRXLT 已提交
401

402 403 404 405 406
                assert (
                    model_np.dtype == load_para_np.dtype
                ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                    model_np.name, model_np.dtype, load_para_np.dtype
                )
M
MRXLT 已提交
407 408 409 410 411 412 413

                tensor.set(load_para_np, framework._current_expected_place())

    def get_opti_var_name_list(self):
        return self._opti_name_list

    def _create_global_learning_rate(self):
414
        # lr var can't be float16 or bfloat16, for pure fp16 or bf16 training, should extra handle the dtype for lr
415 416 417 418 419 420
        _lr_dtype = (
            paddle.get_default_dtype() if self._dtype is None else self._dtype
        )
        _lr_dtype = (
            paddle.float32
            if (
421 422 423 424 425 426 427 428
                (
                    paddle.get_default_dtype() != "float16"
                    and _lr_dtype == paddle.float16
                )
                or (
                    paddle.get_default_dtype() != "bfloat16"
                    and _lr_dtype == paddle.bfloat16
                )
429 430 431
            )
            else _lr_dtype
        )
432
        if isinstance(self._learning_rate, LRScheduler):
433 434 435 436 437
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
438 439 440 441 442 443 444
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
                    dtype=_lr_dtype,
                )
445 446 447
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
M
MRXLT 已提交
448

449
                self._learning_rate_map[
450 451
                    framework.default_main_program()
                ] = lr_var
M
MRXLT 已提交
452

453 454
            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
455 456
                lr_var,
                initializer=paddle.nn.initializer.Constant(value=lr_value),
457
            )
458 459 460
        elif isinstance(self._learning_rate, float):
            # only create global lr_var once
            lr = self._global_learning_rate()
M
MRXLT 已提交
461 462 463
            if isinstance(lr, framework.Variable):
                return
            else:
464 465
                self._learning_rate_map[
                    framework.default_main_program()
466
                ] = paddle.static.create_global_var(
467 468 469
                    name=unique_name.generate("learning_rate"),
                    shape=[1],
                    value=float(self._learning_rate),
470
                    dtype=_lr_dtype,
471 472
                    persistable=True,
                )
M
MRXLT 已提交
473 474 475 476 477

    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
478

479
        Set the value of the learning rate manually in the optimizer. If the optimizer use LRScheduler,
M
MRXLT 已提交
480 481 482
        this API cannot be invoked, because it will lead to conflict.

        Args:
M
MRXLT 已提交
483
            value (float): the value of learning rate
M
MRXLT 已提交
484 485 486

        Returns:
            None
487

M
MRXLT 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(10, 10)

                adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

                # set learning rate manually by python float value
                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6

        """
510
        if not isinstance(value, (int, float)):
M
MRXLT 已提交
511
            raise TypeError(
512
                "The type of 'value' in optimizer.set_lr must be float, but received %s."
513 514
                % (type(value))
            )
515
        if isinstance(self._learning_rate, LRScheduler):
M
MRXLT 已提交
516
            raise RuntimeError(
517
                "optimizer's learning rate can't be LRScheduler when invoke this API, because this will lead to conflict."
M
MRXLT 已提交
518
            )
519 520 521
        self._learning_rate = float(value)
        current_lr = self._global_learning_rate()
        if current_lr is not None:
522 523
            if in_dygraph_mode():
                place = _current_expected_place()
524 525 526 527 528 529 530
                _C_ops.full_(
                    current_lr,
                    list(current_lr.shape),
                    float(value),
                    current_lr.dtype,
                    place,
                )
531 532
            else:
                global_block = framework.default_main_program().global_block()
533 534 535 536 537 538 539 540 541 542
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value),
                    },
                    stop_gradient=True,
                )
M
MRXLT 已提交
543 544 545

    def get_lr(self):
        """
546
        Get current learning rate of optimizer.
547 548
        If 'LRScheduler' is not used, the return value is all the same.
        If 'LRScheduler' is used, the return value is the current scheduled learing rete.
M
MRXLT 已提交
549

M
MRXLT 已提交
550
        Returns:
551
            float: The current learning rate of optimizer.
M
MRXLT 已提交
552 553 554 555

        Examples:
            .. code-block:: python

556
                # train on default dynamic graph mode
M
MRXLT 已提交
557
                import paddle
558 559 560 561 562 563 564 565 566 567 568
                import numpy as np
                emb = paddle.nn.Embedding(10, 3)

                ## example1: LRScheduler is not used, return the same value is all the same
                adam = paddle.optimizer.Adam(0.01, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.01
                    adam.step()
M
MRXLT 已提交
569

570 571 572 573 574 575 576 577
                ## example2: StepDecay is used, return the scheduled learning rate
                scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                adam = paddle.optimizer.Adam(scheduler, parameters = emb.parameters())
                for batch in range(10):
                    input = paddle.randint(low=0, high=5, shape=[5])
                    out = emb(input)
                    out.backward()
                    print("Learning rate of step{}: {}".format(batch, adam.get_lr())) # 0.5->0.05...
M
MRXLT 已提交
578
                    adam.step()
579
                    scheduler.step()
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598

                # train on static graph mode
                paddle.enable_static()
                main_prog = paddle.static.Program()
                start_prog = paddle.static.Program()
                with paddle.static.program_guard(main_prog, start_prog):
                    x = paddle.static.data(name='x', shape=[None, 10])
                    z = paddle.static.nn.fc(x, 100)
                    loss = paddle.mean(z)
                    scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.5, step_size=2, gamma=0.1)
                    adam = paddle.optimizer.Adam(learning_rate=scheduler)
                    adam.minimize(loss)

                exe = paddle.static.Executor()
                exe.run(start_prog)
                for batch in range(10):
                    print("Learning rate of step{}: {}", adam.get_lr())     # 0.5->0.05->0.005...
                    out = exe.run(main_prog, feed={'x': np.random.randn(3, 10).astype('float32')})
                    scheduler.step()
M
MRXLT 已提交
599 600 601 602 603

        """
        if isinstance(self._learning_rate, float):
            return self._learning_rate
        else:
604
            return self._learning_rate()
M
MRXLT 已提交
605 606 607 608 609 610 611 612 613 614 615

    def _global_learning_rate(self, program=None):
        """
        get global decayed learning rate
        :return:
        """
        if program is None:
            program = framework.default_main_program()
        return self._learning_rate_map.get(program, None)

    def _append_optimize_op(self, block, param_and_grad):
616
        """append optimize operator to block and return all the added optimize_op"""
M
MRXLT 已提交
617 618 619 620 621 622 623
        raise NotImplementedError(
            "Class \"Optimizer\" connot be used directly as an optimizer, please use its subclasses such as \"Adam\""
        )

    def _create_param_lr(self, param_and_grad):
        # create learning rate tensor for every parameter
        param = param_and_grad[0]
624 625 626 627
        if hasattr(param, 'optimize_attr'):
            param_lr = param.optimize_attr['learning_rate']
            if type(param_lr) == Variable:
                return param_lr
M
MRXLT 已提交
628
            else:
629 630 631 632
                if param_lr == 1.0:
                    return self._global_learning_rate()
                else:
                    with default_main_program()._lr_schedule_guard(
633 634
                        is_with_opt=True
                    ), framework.name_scope('scale_with_param_lr'):
635 636 637
                        return self._global_learning_rate() * param_lr
        else:
            return self._global_learning_rate()
M
MRXLT 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    def _finish_update(self, block, parameters_and_grads):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer

        Returns:
            None
        """
        pass

661 662 663 664 665 666 667 668 669 670
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
M
MRXLT 已提交
671 672 673 674 675 676 677 678 679 680 681
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss tensor is present
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be added
            dtype: data type of the accumulator tensor
            fill_value: value to initialize the accumulator tensor
        """
        if self._name is not None:
            name = self._name + "_" + name
682 683 684 685
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
J
Jiabin Yang 已提交
686
            if framework._non_static_mode():
M
MRXLT 已提交
687
                return self._accumulators[name][param.name]
688 689
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
690 691 692
                    name, param.name
                )
            )
693
        if shape is None:
M
MRXLT 已提交
694 695 696 697 698 699 700 701 702 703 704
            shape = param.shape
        assert isinstance(self.helper, LayerHelper)

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype or param.dtype,
705
            type=core.VarDesc.VarType.LOD_TENSOR
706 707
            if framework._in_eager_without_dygraph_check()
            else (param.type if type is None else type),
M
MRXLT 已提交
708
            shape=shape,
709 710
            belong_to_optimizer=True,
        )
M
MRXLT 已提交
711 712
        if device is None:
            device = self._get_device_for_param(param.name)
713

W
wanghuancoder 已提交
714 715 716 717
        if (
            in_dygraph_mode()
            and (device == 'cpu' or isinstance(device, core.CPUPlace))
            and (not core.is_compiled_with_xpu())
718 719 720 721 722 723 724
        ):
            _C_ops.full_(
                var,
                var.shape,
                str(float(fill_value)),
                var.dtype,
                core.CPUPlace(),
725
            )
726 727 728
        else:
            with device_guard(device):
                self.helper.set_variable_initializer(
729 730 731 732
                    var,
                    initializer=paddle.nn.initializer.Constant(
                        value=float(fill_value)
                    ),
733
                )
M
MRXLT 已提交
734

J
Jiabin Yang 已提交
735
        if framework._non_static_mode():
M
MRXLT 已提交
736
            if len(self._accumulators_holder) > 0:
737 738 739 740 741
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
M
MRXLT 已提交
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
                var.set_value(self._accumulators_holder[var_name])

        self._accumulators[name][param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter tensor for which accumulator is to be fetched

        Returns:
            accumulator tensor for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
759 760 761 762
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
763 764
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
765 766 767
                    name, param.name
                )
            )
M
MRXLT 已提交
768 769 770 771
        return self._accumulators[name][param.name]

    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
772
            if param_and_grad[0].stop_gradient is False:
M
MRXLT 已提交
773 774
                param_name = param_and_grad[0].name
                ops = target_block.ops
775 776
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
MRXLT 已提交
777 778 779 780 781
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
782 783
                            device_attr_name
                        )
M
MRXLT 已提交
784 785 786 787 788 789 790 791
                        break

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

792 793 794
    def _create_optimization_pass(
        self, parameters_and_grads, param_group_idx=0
    ):
M
MRXLT 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
        """Add optimization operators to update gradients to tensors.

        Args:
          parameters_and_grads(list(tuple(Tensor, Tensor))):
            a list of (tensor, gradient) pair to update.

        Returns:
          return_op_list: a list of operators that will complete one step of
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
        """
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
        # for parameters and extend _finish_update method to add custom ops.

        # Allways called under program_guard use global block as loss block
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

        global_block = framework.default_main_program().global_block()
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
822 823 824
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
M
MRXLT 已提交
825
            target_block = framework.default_main_program().blocks[
826 827
                current_block.backward_block_idx
            ]
M
MRXLT 已提交
828 829 830

        start = len(target_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
831

M
MRXLT 已提交
832 833
        self._create_global_learning_rate()

Z
zhangbo9674 已提交
834 835
        # NOTE: Multi Tensor support [ Momentum, Adam ] for dygraph mode
        if self._use_multi_tensor and self.__class__.__name__ in [
836 837
            'Momentum',
            'Adam',
Z
zhangbo9674 已提交
838
        ]:
839
            if (
840 841 842
                len(self._param_dict['FP32_LODTensor'][param_group_idx]) == 0
                and len(self._param_dict['FP16_LODTensor'][param_group_idx])
                == 0
843
            ):
844
                if isinstance(parameters_and_grads, list):
845
                    assert param_group_idx == 0
846 847 848 849 850 851 852
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads
                            if not p[0].stop_gradient
                        ],
853
                        param_group_idx,
854
                    )
855 856
                else:
                    self._update_param_group(parameters_and_grads)
857 858 859 860 861 862 863
                    self._multi_tensor_init(
                        target_block,
                        [
                            p[0]
                            for p in parameters_and_grads['params']
                            if not p[0].stop_gradient
                        ],
864
                        param_group_idx,
865
                    )
J
Jiabin Yang 已提交
866
            if framework._non_static_mode():
867
                self._append_optimize_multi_tensor_op(
868 869 870
                    target_block,
                    parameters_and_grads,
                    param_group_idx=param_group_idx,
871
                )
872
            else:
873 874 875
                self._update_param_device_map(
                    parameters_and_grads, target_block
                )
876 877 878
                # NOTE: Multi Tensor requires all parameters to be in the same device and program.
                # param_grad_list = [p_0,g_0,p_1,g_1,....]
                param_grad_list = []
879
                for param_and_grad in parameters_and_grads:
880 881 882 883
                    if (
                        not param_and_grad[0].stop_gradient
                        and param_and_grad[1] is not None
                    ):
884 885 886
                        param_grad_list.append(param_and_grad[0])
                        param_grad_list.append(param_and_grad[1])
                with param_grad_list[0].block.program._optimized_guard(
887 888
                    param_grad_list
                ), name_scope("optimizer"):
889 890 891
                    device = self._get_device_for_param(param_grad_list[0].name)
                    with device_guard(device):
                        self._append_optimize_multi_tensor_op(
892 893 894
                            target_block,
                            parameters_and_grads,
                            param_group_idx=param_group_idx,
895
                        )
896
        else:
J
Jiabin Yang 已提交
897
            if not framework._non_static_mode():
898 899 900 901 902 903 904 905
                params_grads_device_map = (
                    parameters_and_grads['params']
                    if isinstance(parameters_and_grads, dict)
                    else parameters_and_grads
                )
                self._update_param_device_map(
                    params_grads_device_map, target_block
                )
906

907
            if isinstance(parameters_and_grads, list):
908 909 910 911 912 913 914 915
                self._create_accumulators(
                    target_block,
                    [
                        p[0]
                        for p in parameters_and_grads
                        if not p[0].stop_gradient
                    ],
                )
916
            else:
917 918
                params_acc_dict = parameters_and_grads.copy()
                params_acc_dict['params'] = [
919 920
                    p[0]
                    for p in params_acc_dict['params']
921 922 923 924
                    if not p[0].stop_gradient
                ]
                self._create_accumulators(target_block, params_acc_dict)

J
Jiabin Yang 已提交
925
            if framework._non_static_mode():
926 927 928 929
                found_inf = self._get_auxiliary_var('found_inf')
                if found_inf:
                    if isinstance(found_inf, core.eager.Tensor):
                        self._set_auxiliary_var('found_inf', True)
930
                else:
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
                    if isinstance(found_inf, core.eager.Tensor):
                        self._set_auxiliary_var('found_inf', False)
                    if isinstance(parameters_and_grads, list):
                        for param_and_grad in parameters_and_grads:
                            if param_and_grad[1] is None:
                                continue
                            if param_and_grad[0].stop_gradient is False:
                                self._append_optimize_op(
                                    target_block, param_and_grad
                                )
                    else:
                        for param_and_grad in parameters_and_grads['params']:
                            if param_and_grad[1] is None:
                                continue
                            if param_and_grad[0].stop_gradient is False:
                                param_grad_dict = dict()
                                param_grad_dict['params'] = param_and_grad
                                param_grad_dict.update(
                                    {
                                        k: v
                                        for k, v in parameters_and_grads.items()
                                        if k != 'params'
                                    }
                                )
                                self._append_optimize_op(
                                    target_block, param_grad_dict
                                )
958 959
            else:
                for param_and_grad in parameters_and_grads:
960 961
                    if param_and_grad[1] is None:
                        continue
962
                    with param_and_grad[0].block.program._optimized_guard(
963 964
                        param_and_grad
                    ), name_scope("optimizer"):
965
                        if param_and_grad[0].stop_gradient is False:
966
                            device = self._get_device_for_param(
967 968
                                param_and_grad[0].name
                            )
969 970
                            with device_guard(device):
                                optimize_op = self._append_optimize_op(
971 972
                                    target_block, param_and_grad
                                )
M
MRXLT 已提交
973 974 975 976 977 978 979 980 981 982 983

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(target_block, parameters_and_grads)

        end = len(target_block.ops)
        return target_block._slice_ops(start, end)

    def _append_dgc_ops(self, param_and_grad):
        pass

984 985 986 987 988 989 990 991
    def backward(
        self,
        loss,
        startup_program=None,
        parameters=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
MRXLT 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
        """
        The first part of ``minimize``, do auto-diff to append backward operations for
        the current program.

        Args:
            loss (Tensor): ``loss`` tensor to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.

        Return:
            list: list of (param, grad) tensor pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.

        Examples:
            .. code-block:: python

                import paddle
1017 1018
                x = paddle.arange(26, dtype="float32").reshape([2, 13])

M
MRXLT 已提交
1019
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1020
                # This can be any optimizer supported by dygraph.
1021
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1022
                                            parameters = linear.parameters())
1023
                out = linear(x)
M
MRXLT 已提交
1024 1025 1026 1027 1028
                out.backward()
                adam.step()
                adam.clear_grad()
        """
        act_no_grad_set = None
J
Jiabin Yang 已提交
1029
        if framework._non_static_mode():
M
MRXLT 已提交
1030 1031 1032 1033
            pass
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)

L
Leo Chen 已提交
1034 1035 1036 1037
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

1038
        if framework.in_dygraph_mode():
1039
            parameter_list = parameters if parameters else self._parameter_list
1040

1041 1042 1043 1044 1045 1046 1047
            # It is very time-consuming to call c++ functions in a loop on the python side.
            # We put this part of the code on the c++ side to improve the speed in eager mode.
            params_grads = []
            grads = core.eager.get_all_grads(parameter_list)
            for index, grad in enumerate(grads):
                if grad is not None:
                    params_grads.append((parameter_list[index], grad))
M
MRXLT 已提交
1048 1049
        else:
            if callbacks is None:
1050
                callbacks = [paddle.nn.clip.error_clip_callback]
M
MRXLT 已提交
1051
            else:
1052
                assert isinstance(callbacks, list)
M
MRXLT 已提交
1053
            program = loss.block.program
1054 1055
            assert len(loss.shape) == 1 and loss.shape[0] == 1, (
                "The loss.shape should be (1L,), but the current loss.shape is {}. "
M
MRXLT 已提交
1056
                "Maybe that you should call paddle.mean to process the current loss.".format(
1057 1058 1059 1060
                    loss.shape
                )
            )
            parameter_list = parameters if parameters else self._parameter_list
M
MRXLT 已提交
1061
            with program_guard(program, startup_program):
1062
                from paddle.incubate.autograd.utils import prim_enabled
1063

1064
                if prim_enabled():
1065 1066 1067
                    params_grads = append_backward_new(
                        [loss], parameter_list, act_no_grad_set, callbacks
                    )
1068
                else:
1069 1070 1071
                    params_grads = append_backward(
                        loss, parameter_list, act_no_grad_set, callbacks
                    )
M
MRXLT 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle

1093
                inp = paddle.uniform([10, 10], dtype="float32", min=-0.1, max=0.1)
M
MRXLT 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
                linear = paddle.nn.Linear(10, 10)
                out = linear(inp)
                loss = paddle.mean(out)
                optimizer = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters())
                params_grads = optimizer.backward(loss)
                optimizer.apply_gradients(params_grads)

        """

        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        # 'optimizer(grad_clip)' or 'set_gradient_clip'
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:

1111
            params_grads = paddle.nn.clip.append_gradient_clip_ops(params_grads)
M
MRXLT 已提交
1112 1113

        # Add regularization if any
1114 1115 1116
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
M
MRXLT 已提交
1117 1118 1119 1120

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

1121 1122 1123
    def _apply_optimize(
        self, loss, startup_program, params_grads, param_group_idx=0
    ):
M
MRXLT 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Tensor): loss tensor to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameters`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
J
Jiabin Yang 已提交
1135
        if framework._non_static_mode():
1136 1137 1138 1139
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1140 1141 1142
                if isinstance(params_grads, list):
                    if self._grad_clip is not None:
                        params_grads = self._grad_clip(params_grads)
1143
                    params_grads = self.append_regularization_ops(
1144 1145
                        params_grads, self.regularization
                    )
1146 1147 1148
                else:
                    grad_clip = params_grads['grad_clip']
                    if grad_clip is not None:
1149
                        params_grads['params'] = grad_clip(
1150 1151
                            params_grads['params']
                        )
1152

1153
                    params_grads['params'] = self.append_regularization_ops(
1154 1155
                        params_grads['params'], self.regularization
                    )
1156 1157 1158
                optimize_ops = self._create_optimization_pass(
                    params_grads, param_group_idx=param_group_idx
                )
M
MRXLT 已提交
1159
        else:
1160
            assert param_group_idx == 0
M
MRXLT 已提交
1161 1162 1163 1164 1165
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

1166
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1167
        """Create and add backward regularization Operators
1168

1169 1170 1171
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1172
        if grad is None or (
1173 1174 1175 1176 1177 1178
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

1189
        if framework.in_dygraph_mode():
Y
YuanRisheng 已提交
1190
            return _C_ops.add_n([grad, regularization_term])
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
        else:
            new_grad = grad
            if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
                # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
                # the grad's type and name will be changed. But the gradient's name
                # is used in ParallelExecutor Reduce mode, so I add a flag for
                # the new_grad here.
                new_grad = grad.block.create_var(
                    name=grad.name + core.kNewGradSuffix(),
                    dtype=param.dtype,
                    shape=param.shape,
                    lod_level=param.lod_level,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                )
1205

1206 1207 1208
            inputs = {"X": [grad, regularization_term]}
            outputs = {"Out": [new_grad]}
            grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1209

1210
            return new_grad
1211

1212 1213 1214
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1215
        r"""Create and add backward regularization Operators
1216

1217 1218 1219 1220
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1221

1222 1223 1224 1225 1226
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1227

1228 1229 1230
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1231

1232 1233 1234 1235
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
J
Jiabin Yang 已提交
1236
        if framework._non_static_mode():
1237
            for param, grad in parameters_and_grads:
1238
                new_grad = self._create_regularization_of_grad(
1239 1240
                    param, grad, regularization
                )
1241 1242 1243 1244 1245
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1246 1247 1248 1249 1250
                    if (
                        not repeate_regularizer
                        and param.regularizer is not None
                        and regularization is not None
                    ):
1251 1252 1253 1254
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1255 1256
                            % regularization.__str__()
                        )
1257 1258
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1259 1260
                            param, grad, regularization
                        )
1261 1262 1263
                        params_and_grads.append((param, new_grad))
        return params_and_grads

M
MRXLT 已提交
1264 1265 1266
    def _get_no_grad_set(self, loss, no_grad_set=None):
        no_grad_set = _get_no_grad_set_name(no_grad_set)
        parameters = loss.block.program.global_block().all_parameters()
1267
        param_no_trainable = set(
1268 1269
            [param.name for param in parameters if param.stop_gradient is True]
        )
M
MRXLT 已提交
1270 1271 1272 1273 1274 1275
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

    @framework.dygraph_only
1276
    def clear_grad(self, set_to_zero=True):
M
MRXLT 已提交
1277 1278
        """
        Clear the gradients of all optimized parameters for model.
1279 1280

        If not, new gradient will accumulat on previous gradient.
1281 1282

        There are two method to clear grad: set_to_zero or delete grad.
1283

1284 1285
        Args:
            set_to_zero (bool, optional): If set grads to zero or not, default is True.
1286

M
MRXLT 已提交
1287 1288
        Returns:
            None
1289

M
MRXLT 已提交
1290 1291 1292 1293
        Examples:
            .. code-block:: python

                import paddle
1294

1295
                a = paddle.arange(26, dtype="float32").reshape([2, 13])
M
MRXLT 已提交
1296
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1297
                # This can be any optimizer supported by dygraph.
1298
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
M
MRXLT 已提交
1299 1300 1301 1302 1303 1304 1305
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()

        """
1306
        param_list = []
1307
        if self._parameter_list is None or not isinstance(
1308 1309
            self._parameter_list[0], dict
        ):
1310 1311
            for p in self._parameter_list:
                if not p.stop_gradient:
1312
                    param_list.append(p)
1313 1314 1315 1316
        else:
            for param_group in self._param_groups:
                for p in param_group['params']:
                    if not p.stop_gradient:
1317
                        param_list.append(p)
1318

J
Jiabin Yang 已提交
1319
        if _in_eager_without_dygraph_check():
1320
            for p in param_list:
1321
                p.clear_gradient(set_to_zero)
1322 1323
        else:
            core.clear_gradients(param_list, set_to_zero)
M
MRXLT 已提交
1324

1325
    @imperative_base.no_grad()
1326 1327 1328
    def minimize(
        self, loss, startup_program=None, parameters=None, no_grad_set=None
    ):
M
MRXLT 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
        """
        Add operations to minimize ``loss`` by updating ``parameters``.

        Args:
            loss (Tensor): A ``Tensor`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameters``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
            parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) tensor pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1347 1348
            In static graph mode, the returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
M
MRXLT 已提交
1349 1350 1351 1352
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
            .. code-block:: python
1353

M
MRXLT 已提交
1354
                import paddle
M
MRXLT 已提交
1355
                linear = paddle.nn.Linear(10, 10)
1356 1357
                input = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
                out = linear(input)
M
MRXLT 已提交
1358 1359 1360 1361 1362 1363 1364 1365
                loss = paddle.mean(out)

                beta1 = paddle.to_tensor([0.9], dtype="float32")
                beta2 = paddle.to_tensor([0.99], dtype="float32")

                adam = paddle.optimizer.Adam(learning_rate=0.1,
                        parameters=linear.parameters(),
                        weight_decay=0.01)
R
Roc 已提交
1366
                loss.backward()
M
MRXLT 已提交
1367 1368 1369
                adam.minimize(loss)
                adam.clear_grad()

M
MRXLT 已提交
1370 1371 1372
        """
        assert isinstance(loss, Variable), "The loss should be an Tensor."

1373
        parameter_list = parameters if parameters else self._parameter_list
1374

1375 1376 1377 1378 1379 1380
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameters=parameter_list,
            no_grad_set=no_grad_set,
        )
M
MRXLT 已提交
1381

1382 1383 1384
        optimize_ops = self._apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
MRXLT 已提交
1385 1386 1387

        return optimize_ops, params_grads

1388
    @imperative_base.no_grad()
M
MRXLT 已提交
1389 1390 1391
    @framework.dygraph_only
    def step(self):
        """
M
MRXLT 已提交
1392
        Execute the optimizer and update parameters once.
1393

M
MRXLT 已提交
1394 1395 1396 1397 1398 1399 1400
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
1401

1402
                a = paddle.arange(26, dtype="float32").reshape([2, 13])
M
MRXLT 已提交
1403
                linear = paddle.nn.Linear(13, 5)
M
MRXLT 已提交
1404
                # This can be any optimizer supported by dygraph.
1405
                adam = paddle.optimizer.Adam(learning_rate = 0.01,
1406
                                        parameters = linear.parameters())
M
MRXLT 已提交
1407 1408 1409 1410 1411
                out = linear(a)
                out.backward()
                adam.step()
                adam.clear_grad()
        """
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

        if not isinstance(self._param_groups[0], dict):
            params_grads = []
            for param in self._param_groups:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
                    params_grads.append((param, grad_var))

1422
            self._apply_optimize(
1423 1424 1425 1426
                loss=None,
                startup_program=None,
                params_grads=params_grads,
                param_group_idx=0,
1427
            )
1428 1429 1430

        else:
            # optimize parameters in groups
1431
            for idx, param_group in enumerate(self._param_groups):
1432 1433 1434 1435 1436 1437 1438 1439
                params_grads = defaultdict(lambda: list())
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
1440 1441 1442
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
1443 1444 1445 1446
                    loss=None,
                    startup_program=None,
                    params_grads=params_grads,
                    param_group_idx=idx,
1447
                )
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462

    def _add_param_group(self, param_group):
        """
        Add a param group to parameter_list.

        Args:
            param_group (dict): The group of Tensors to be optimzed with
            different optimization options.
        """
        params = param_group['params']
        if isinstance(params, Parameter):
            param_group['params'] = [params]
        elif isinstance(params, set):
            raise TypeError(
                "optimizer parameters should be in ordered collections,"
1463 1464
                "but received set, please use list instead."
            )
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
        else:
            param_group['params'] = list(params)

        # Update optimization options for each groups
        for k, v in self._default_dict.items():
            param_group.setdefault(k, v)

        param_set = set()
        for group in self._param_groups:
            param_set.update(set(group['params']))

        if not param_set.isdisjoint(set(param_group['params'])):
            raise ValueError(
1478 1479
                "some parameters appear in more than one parameter group"
            )
1480 1481 1482 1483 1484

        for param in param_group['params']:
            weight_decay = param_group['weight_decay']
            if isinstance(weight_decay, float):
                from ..fluid.regularizer import L2Decay
1485

1486 1487 1488 1489
                regularization = L2Decay(weight_decay)
            else:
                regularization = weight_decay
            param.regularizer = regularization
W
wangguanzhong 已提交
1490
            param.optimize_attr['learning_rate'] = param_group.get(
1491 1492
                'learning_rate', 1.0
            )
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

        self._param_groups.append(param_group)

    def _update_param_group(self, parameters):
        """
        Update the param group with new entry
        Args:
            parameters (dict): The extra group of Tensors to be optimzed with
            different optimization options. Only used in child class.
        """
        pass
1504 1505

    @framework.dygraph_only
1506
    def _multi_tensor_init(self, target_block, parameters, param_group_idx):
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.

        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        pass

    @framework.dygraph_only
1518
    def _append_optimize_multi_tensor_op(
1519
        self, target_block, parameters_and_grads, param_group_idx
1520
    ):
1521
        """
1522 1523 1524
        For Multi Tensor, append optimize merged_operator to block.
        """
        pass
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

    def _is_dtype_fp16_or_bf16(self, dtype):
        """
        check the dtype is fp16 or the dtype is bf16
        :param dtype: instance of core.VarDesc.VarType
        :return: True if dtype is one of fp16 or bf16, False otherwise
        """
        assert isinstance(
            dtype, core.VarDesc.VarType
        ), "The dtype should be an instance of core.VarDesc.VarType."
        return (
            dtype == core.VarDesc.VarType.FP16
            or dtype == core.VarDesc.VarType.BF16
        )