Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
382e9a06
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
382e9a06
编写于
1月 30, 2023
作者:
W
wanghuancoder
提交者:
GitHub
1月 30, 2023
1
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine amp scaler found_inf (#49864)
* refine _found_inf
上级
320958eb
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
142 addition
and
97 deletion
+142
-97
python/paddle/amp/grad_scaler.py
python/paddle/amp/grad_scaler.py
+25
-17
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/hybrid_parallel_gradscaler.py
...ptimizers/dygraph_optimizer/hybrid_parallel_gradscaler.py
+3
-5
python/paddle/distributed/fleet/meta_parallel/sharding/group_sharded_utils.py
...buted/fleet/meta_parallel/sharding/group_sharded_utils.py
+11
-6
python/paddle/distributed/fleet/scaler.py
python/paddle/distributed/fleet/scaler.py
+10
-5
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+12
-5
python/paddle/optimizer/adam.py
python/paddle/optimizer/adam.py
+23
-18
python/paddle/optimizer/adamw.py
python/paddle/optimizer/adamw.py
+1
-2
python/paddle/optimizer/lamb.py
python/paddle/optimizer/lamb.py
+2
-2
python/paddle/optimizer/momentum.py
python/paddle/optimizer/momentum.py
+24
-13
python/paddle/optimizer/optimizer.py
python/paddle/optimizer/optimizer.py
+31
-24
未找到文件。
python/paddle/amp/grad_scaler.py
浏览文件 @
382e9a06
...
...
@@ -18,7 +18,7 @@ from enum import Enum
import
numpy
as
np
from
paddle
import
_legacy_C_ops
from
paddle
import
_
C_ops
,
_
legacy_C_ops
from
paddle.fluid
import
core
,
in_dygraph_mode
from
paddle.fluid.data_feeder
import
check_type
from
paddle.fluid.dygraph
import
to_variable
...
...
@@ -228,11 +228,9 @@ class AmpScaler:
optimize_ops
,
params_grads
=
(
None
,
None
)
if
self
.
_found_inf
:
self
.
_cache_founf_inf
=
True
else
:
optimize_ops
,
params_grads
=
optimizer
.
minimize
(
*
args
,
**
kwargs
)
self
.
_cache_founf_inf
=
False
optimizer
.
_set_auxiliary_var
(
'found_inf'
,
self
.
_found_inf
)
optimize_ops
,
params_grads
=
optimizer
.
minimize
(
*
args
,
**
kwargs
)
self
.
_cache_founf_inf
=
optimizer
.
_get_auxiliary_var
(
'found_inf'
)
if
self
.
_use_dynamic_loss_scaling
:
# uopdate the scale
...
...
@@ -330,6 +328,9 @@ class AmpScaler:
param_grads_fp16
,
self
.
_temp_found_inf_fp16
,
)
self
.
_found_inf
=
_C_ops
.
bitwise_or
(
self
.
_found_inf
,
self
.
_temp_found_inf_fp16
)
if
len
(
param_grads_bf16
):
_legacy_C_ops
.
check_finite_and_unscale
(
param_grads_bf16
,
...
...
@@ -338,6 +339,9 @@ class AmpScaler:
param_grads_bf16
,
self
.
_temp_found_inf_bf16
,
)
self
.
_found_inf
=
_C_ops
.
bitwise_or
(
self
.
_found_inf
,
self
.
_temp_found_inf_bf16
)
if
len
(
param_grads_fp32
):
_legacy_C_ops
.
check_finite_and_unscale
(
param_grads_fp32
,
...
...
@@ -346,6 +350,9 @@ class AmpScaler:
param_grads_fp32
,
self
.
_temp_found_inf_fp32
,
)
self
.
_found_inf
=
_C_ops
.
bitwise_or
(
self
.
_found_inf
,
self
.
_temp_found_inf_fp32
)
else
:
if
len
(
param_grads_fp16
):
_legacy_C_ops
.
check_finite_and_unscale
(
...
...
@@ -354,6 +361,9 @@ class AmpScaler:
param_grads_fp16
,
self
.
_temp_found_inf_fp16
,
)
self
.
_found_inf
=
_C_ops
.
bitwise_or
(
self
.
_found_inf
,
self
.
_temp_found_inf_fp16
)
if
len
(
param_grads_bf16
):
_legacy_C_ops
.
check_finite_and_unscale
(
param_grads_bf16
,
...
...
@@ -361,6 +371,9 @@ class AmpScaler:
param_grads_bf16
,
self
.
_temp_found_inf_bf16
,
)
self
.
_found_inf
=
_C_ops
.
bitwise_or
(
self
.
_found_inf
,
self
.
_temp_found_inf_bf16
)
if
len
(
param_grads_fp32
):
_legacy_C_ops
.
check_finite_and_unscale
(
param_grads_fp32
,
...
...
@@ -368,12 +381,9 @@ class AmpScaler:
param_grads_fp32
,
self
.
_temp_found_inf_fp32
,
)
self
.
_found_inf
=
(
self
.
_temp_found_inf_fp16
or
self
.
_temp_found_inf_bf16
or
self
.
_temp_found_inf_fp32
)
self
.
_found_inf
=
_C_ops
.
bitwise_or
(
self
.
_found_inf
,
self
.
_temp_found_inf_fp32
)
optimizer_state
[
"state"
]
=
OptimizerState
.
UNSCALED
...
...
@@ -761,11 +771,9 @@ class GradScaler(AmpScaler):
if
optimizer_state
[
"state"
]
is
OptimizerState
.
INIT
:
self
.
_unscale
(
optimizer
)
if
self
.
_found_inf
:
self
.
_cache_founf_inf
=
True
else
:
optimizer
.
step
()
self
.
_cache_founf_inf
=
False
optimizer
.
_set_auxiliary_var
(
'found_inf'
,
self
.
_found_inf
)
optimizer
.
step
()
self
.
_cache_founf_inf
=
optimizer
.
_get_auxiliary_var
(
'found_inf'
)
optimizer_state
[
"state"
]
=
OptimizerState
.
STEPPED
...
...
python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/hybrid_parallel_gradscaler.py
浏览文件 @
382e9a06
...
...
@@ -41,11 +41,9 @@ class HybridParallelGradScaler:
optimize_ops
,
params_grads
=
(
None
,
None
)
if
self
.
_found_inf
:
self
.
_cache_founf_inf
=
True
else
:
optimize_ops
,
params_grads
=
optimizer
.
minimize
(
*
args
,
**
kwargs
)
self
.
_cache_founf_inf
=
False
optimizer
.
_set_auxiliary_var
(
'found_inf'
,
self
.
_found_inf
)
optimize_ops
,
params_grads
=
optimizer
.
minimize
(
*
args
,
**
kwargs
)
self
.
_cache_founf_inf
=
optimizer
.
_get_auxiliary_var
(
'found_inf'
)
if
self
.
_use_dynamic_loss_scaling
:
self
.
_update
()
...
...
python/paddle/distributed/fleet/meta_parallel/sharding/group_sharded_utils.py
浏览文件 @
382e9a06
...
...
@@ -19,10 +19,10 @@ from types import MethodType
import
numpy
as
np
import
paddle
from
paddle
import
_legacy_C_ops
from
paddle
import
_
C_ops
,
_
legacy_C_ops
from
paddle.common_ops_import
import
dygraph_only
from
paddle.fluid
import
core
from
paddle.fluid.dygraph
import
to_variable
from
paddle.framework
import
core
from
paddle.nn
import
clip
...
...
@@ -231,6 +231,9 @@ def GroupShardedScaler(scaler):
param_grads_fp16
,
temp_found_inf_fp16
,
)
self
.
_found_inf
=
_C_ops
.
bitwise_or
(
self
.
_found_inf
,
temp_found_inf_fp16
)
if
len
(
param_grads_fp32
):
_legacy_C_ops
.
check_finite_and_unscale
(
param_grads_fp32
,
...
...
@@ -238,15 +241,17 @@ def GroupShardedScaler(scaler):
param_grads_fp32
,
temp_found_inf_fp32
,
)
self
.
_found_inf
=
_C_ops
.
bitwise_or
(
self
.
_found_inf
,
temp_found_inf_fp32
)
self
.
_found_inf
=
1
if
temp_found_inf_fp16
or
temp_found_inf_fp32
else
0
is_found_inf
=
paddle
.
to_tensor
([
self
.
_found_inf
],
dtype
=
"int32"
)
self
.
_found_inf
=
self
.
_found_inf
.
cast
(
"int32"
)
paddle
.
distributed
.
all_reduce
(
is_found_inf
,
op
=
paddle
.
distributed
.
ReduceOp
.
SUM
,
group
=
None
self
.
_found_inf
,
op
=
paddle
.
distributed
.
ReduceOp
.
MAX
,
group
=
None
)
self
.
_found_inf
=
is_found_inf
.
numpy
()[
0
]
self
.
_found_inf
=
self
.
_found_inf
.
cast
(
"bool"
)
scaler
.
_unscale
=
MethodType
(
unscale_method
,
scaler
)
return
scaler
...
...
python/paddle/distributed/fleet/scaler.py
浏览文件 @
382e9a06
...
...
@@ -17,7 +17,7 @@ from types import MethodType
import
numpy
as
np
import
paddle
from
paddle
import
_legacy_C_ops
from
paddle
import
_
C_ops
,
_
legacy_C_ops
from
paddle.distributed
import
fleet
from
paddle.fluid.dygraph
import
to_variable
from
paddle.framework
import
core
...
...
@@ -73,6 +73,9 @@ def distributed_scaler(scaler):
param_grads_fp16
,
temp_found_inf_fp16
,
)
self
.
_found_inf
=
_C_ops
.
bitwise_or
(
self
.
_found_inf
,
temp_found_inf_fp16
)
if
len
(
param_grads_fp32
):
_legacy_C_ops
.
check_finite_and_unscale
(
param_grads_fp32
,
...
...
@@ -80,17 +83,19 @@ def distributed_scaler(scaler):
param_grads_fp32
,
temp_found_inf_fp32
,
)
self
.
_found_inf
=
_C_ops
.
bitwise_or
(
self
.
_found_inf
,
temp_found_inf_fp32
)
self
.
_found_inf
=
1
if
temp_found_inf_fp16
or
temp_found_inf_fp32
else
0
is_found_inf
=
paddle
.
to_tensor
([
self
.
_found_inf
],
dtype
=
"int32"
)
self
.
_found_inf
=
self
.
_found_inf
.
cast
(
"int32"
)
# TODO(shenliang03) Since dp allreduce in the optimizer is
# after the gradscaler, check_finite needs to synchronize global
# information. In the future, we should use check_group to speed.
paddle
.
distributed
.
all_reduce
(
is
_found_inf
,
op
=
paddle
.
distributed
.
ReduceOp
.
MAX
,
group
=
None
self
.
_found_inf
,
op
=
paddle
.
distributed
.
ReduceOp
.
MAX
,
group
=
None
)
self
.
_found_inf
=
is_found_inf
.
numpy
()[
0
]
self
.
_found_inf
=
self
.
_found_inf
.
cast
(
"bool"
)
# Only data_parallel doesn't need to modify scaler
fleet_env
=
fleet
.
fleet
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
382e9a06
...
...
@@ -893,11 +893,18 @@ class Optimizer:
self
.
_create_global_learning_rate
()
if
in_dygraph_mode
():
for
param_and_grad
in
parameters_and_grads
:
if
param_and_grad
[
1
]
is
None
:
continue
if
param_and_grad
[
0
].
trainable
is
True
:
self
.
_append_optimize_op
(
target_block
,
param_and_grad
)
found_inf
=
self
.
_get_auxiliary_var
(
'found_inf'
)
if
found_inf
:
if
isinstance
(
found_inf
,
core
.
eager
.
Tensor
):
self
.
_set_auxiliary_var
(
'found_inf'
,
True
)
else
:
if
isinstance
(
found_inf
,
core
.
eager
.
Tensor
):
self
.
_set_auxiliary_var
(
'found_inf'
,
False
)
for
param_and_grad
in
parameters_and_grads
:
if
param_and_grad
[
1
]
is
None
:
continue
if
param_and_grad
[
0
].
trainable
is
True
:
self
.
_append_optimize_op
(
target_block
,
param_and_grad
)
else
:
for
param_and_grad
in
parameters_and_grads
:
if
param_and_grad
[
1
]
is
None
:
...
...
python/paddle/optimizer/adam.py
浏览文件 @
382e9a06
...
...
@@ -360,8 +360,6 @@ class Adam(Optimizer):
# create the adam optimize op
if
framework
.
in_dygraph_mode
():
found_inf
=
self
.
_get_auxiliary_var
(
'found_inf'
)
_beta1
=
(
self
.
_beta1
if
not
isinstance
(
self
.
_beta1
,
Variable
)
...
...
@@ -382,7 +380,7 @@ class Adam(Optimizer):
beta1_pow_acc
,
beta2_pow_acc
,
master_weight
,
found_inf
,
None
,
_beta1
,
_beta2
,
self
.
_epsilon
,
...
...
@@ -693,21 +691,28 @@ class Adam(Optimizer):
if
master_weight
is
not
None
else
None
)
_
,
_
,
_
,
_
,
_
,
_
=
_C_ops
.
merged_adam_
(
self
.
_param_dict
[
key
][
param_group_idx
],
grad_dict
[
key
],
lr_dict
[
key
],
self
.
_moment1_dict
[
key
][
param_group_idx
],
self
.
_moment2_dict
[
key
][
param_group_idx
],
self
.
_beta1_pow_acc_dict
[
key
][
param_group_idx
],
self
.
_beta2_pow_acc_dict
[
key
][
param_group_idx
],
master_weight
,
_beta1
,
_beta2
,
self
.
_epsilon
,
find_master
,
False
,
)
found_inf
=
self
.
_get_auxiliary_var
(
'found_inf'
)
if
found_inf
:
if
isinstance
(
found_inf
,
core
.
eager
.
Tensor
):
self
.
_set_auxiliary_var
(
'found_inf'
,
True
)
else
:
if
isinstance
(
found_inf
,
core
.
eager
.
Tensor
):
self
.
_set_auxiliary_var
(
'found_inf'
,
False
)
_
,
_
,
_
,
_
,
_
,
_
=
_C_ops
.
merged_adam_
(
self
.
_param_dict
[
key
][
param_group_idx
],
grad_dict
[
key
],
lr_dict
[
key
],
self
.
_moment1_dict
[
key
][
param_group_idx
],
self
.
_moment2_dict
[
key
][
param_group_idx
],
self
.
_beta1_pow_acc_dict
[
key
][
param_group_idx
],
self
.
_beta2_pow_acc_dict
[
key
][
param_group_idx
],
master_weight
,
_beta1
,
_beta2
,
self
.
_epsilon
,
find_master
,
False
,
)
else
:
inputs
=
{
"Param"
:
self
.
_param_dict
[
key
][
param_group_idx
],
...
...
python/paddle/optimizer/adamw.py
浏览文件 @
382e9a06
...
...
@@ -491,7 +491,6 @@ class AdamW(Optimizer):
else
self
.
_beta2
.
numpy
().
item
(
0
)
)
found_inf
=
self
.
_get_auxiliary_var
(
'found_inf'
)
_
,
_
,
_
,
_
,
_
,
_
=
_C_ops
.
adamw_
(
param_and_grad
[
0
],
param_and_grad
[
1
],
...
...
@@ -501,7 +500,7 @@ class AdamW(Optimizer):
beta1_pow_acc
,
beta2_pow_acc
,
master_weight
,
found_inf
,
None
,
_beta1
,
_beta2
,
self
.
_epsilon
,
...
...
python/paddle/optimizer/lamb.py
浏览文件 @
382e9a06
...
...
@@ -293,7 +293,6 @@ class Lamb(Optimizer):
self
.
_used_master_weights
[
p_name
]
=
master_weight
.
name
else
:
master_weight
=
None
found_inf
=
self
.
_get_auxiliary_var
(
'found_inf'
)
if
framework
.
in_dygraph_mode
():
_C_ops
.
lamb_
(
...
...
@@ -305,7 +304,7 @@ class Lamb(Optimizer):
beta1_pow_acc
,
beta2_pow_acc
,
master_weight
,
found_inf
,
None
,
weight_decay
,
self
.
_beta1
,
self
.
_beta2
,
...
...
@@ -343,6 +342,7 @@ class Lamb(Optimizer):
inputs
[
"MasterParam"
]
=
master_weight
outputs
[
"MasterParamOut"
]
=
master_weight
found_inf
=
self
.
_get_auxiliary_var
(
'found_inf'
)
if
found_inf
:
inputs
[
"SkipUpdate"
]
=
found_inf
...
...
python/paddle/optimizer/momentum.py
浏览文件 @
382e9a06
...
...
@@ -530,19 +530,30 @@ class Momentum(Optimizer):
)
if
in_dygraph_mode
():
_
,
_
,
_
=
_C_ops
.
merged_momentum_
(
self
.
_param_dict
[
key
][
param_group_idx
],
grad_dict
[
key
],
self
.
_velocity_dict
[
key
][
param_group_idx
],
lr_dict
[
key
],
master_weight
,
self
.
_momentum
,
self
.
_use_nesterov
,
self
.
_regularization_method_dict
[
key
][
param_group_idx
],
self
.
_regularization_coeff_dict
[
key
][
param_group_idx
],
find_master
,
self
.
_rescale_grad
,
)
found_inf
=
self
.
_get_auxiliary_var
(
'found_inf'
)
if
found_inf
:
if
isinstance
(
found_inf
,
core
.
eager
.
Tensor
):
self
.
_set_auxiliary_var
(
'found_inf'
,
True
)
else
:
if
isinstance
(
found_inf
,
core
.
eager
.
Tensor
):
self
.
_set_auxiliary_var
(
'found_inf'
,
False
)
_
,
_
,
_
=
_C_ops
.
merged_momentum_
(
self
.
_param_dict
[
key
][
param_group_idx
],
grad_dict
[
key
],
self
.
_velocity_dict
[
key
][
param_group_idx
],
lr_dict
[
key
],
master_weight
,
self
.
_momentum
,
self
.
_use_nesterov
,
self
.
_regularization_method_dict
[
key
][
param_group_idx
],
self
.
_regularization_coeff_dict
[
key
][
param_group_idx
],
find_master
,
self
.
_rescale_grad
,
)
else
:
inputs
=
{
"Param"
:
self
.
_param_dict
[
key
][
param_group_idx
],
...
...
python/paddle/optimizer/optimizer.py
浏览文件 @
382e9a06
...
...
@@ -920,31 +920,38 @@ class Optimizer:
self
.
_create_accumulators
(
target_block
,
params_acc_dict
)
if
framework
.
_non_static_mode
():
if
isinstance
(
parameters_and_grads
,
list
):
for
param_and_grad
in
parameters_and_grads
:
if
param_and_grad
[
1
]
is
None
:
continue
if
param_and_grad
[
0
].
stop_gradient
is
False
:
self
.
_append_optimize_op
(
target_block
,
param_and_grad
)
found_inf
=
self
.
_get_auxiliary_var
(
'found_inf'
)
if
found_inf
:
if
isinstance
(
found_inf
,
core
.
eager
.
Tensor
):
self
.
_set_auxiliary_var
(
'found_inf'
,
True
)
else
:
for
param_and_grad
in
parameters_and_grads
[
'params'
]:
if
param_and_grad
[
1
]
is
None
:
continue
if
param_and_grad
[
0
].
stop_gradient
is
False
:
param_grad_dict
=
dict
()
param_grad_dict
[
'params'
]
=
param_and_grad
param_grad_dict
.
update
(
{
k
:
v
for
k
,
v
in
parameters_and_grads
.
items
()
if
k
!=
'params'
}
)
self
.
_append_optimize_op
(
target_block
,
param_grad_dict
)
if
isinstance
(
found_inf
,
core
.
eager
.
Tensor
):
self
.
_set_auxiliary_var
(
'found_inf'
,
False
)
if
isinstance
(
parameters_and_grads
,
list
):
for
param_and_grad
in
parameters_and_grads
:
if
param_and_grad
[
1
]
is
None
:
continue
if
param_and_grad
[
0
].
stop_gradient
is
False
:
self
.
_append_optimize_op
(
target_block
,
param_and_grad
)
else
:
for
param_and_grad
in
parameters_and_grads
[
'params'
]:
if
param_and_grad
[
1
]
is
None
:
continue
if
param_and_grad
[
0
].
stop_gradient
is
False
:
param_grad_dict
=
dict
()
param_grad_dict
[
'params'
]
=
param_and_grad
param_grad_dict
.
update
(
{
k
:
v
for
k
,
v
in
parameters_and_grads
.
items
()
if
k
!=
'params'
}
)
self
.
_append_optimize_op
(
target_block
,
param_grad_dict
)
else
:
for
param_and_grad
in
parameters_and_grads
:
if
param_and_grad
[
1
]
is
None
:
...
...
saxon_zh
@saxon_zh
mentioned in commit
8a503522
·
2月 25, 2023
mentioned in commit
8a503522
mentioned in commit 8a50352216156c8cd723ed2fc482b611e552915c
开关提交列表
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录