operator.cc 97.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
22
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_transform.h"
24
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
25
#include "paddle/fluid/framework/details/nan_inf_utils.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/shape_inference.h"
29
#include "paddle/fluid/framework/transfer_scope_cache.h"
30
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/platform/enforce.h"
34
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
35
#include "paddle/fluid/platform/profiler/event_tracing.h"
36
#include "paddle/phi/common/int_array.h"
37
#include "paddle/phi/common/scalar.h"
38
#include "paddle/phi/core/kernel_context.h"
39 40
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
41

42
namespace phi {
43
class DenseTensor;
44
}  // namespace phi
45

46
#ifdef PADDLE_WITH_XPU
47 48
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
49
#endif
Q
Qiao Longfei 已提交
50

51 52 53 54
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
55 56 57 58
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
59
DECLARE_bool(benchmark);
60
DECLARE_bool(check_nan_inf);
61
DECLARE_bool(enable_unused_var_check);
62 63
PADDLE_DEFINE_EXPORTED_int32(inner_op_parallelism, 0,
                             "number of threads for inner op");
F
Feng Xing 已提交
64
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
65
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
66

Q
Qiao Longfei 已提交
67 68 69
namespace paddle {
namespace framework {

70 71 72 73 74 75
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
76

77
static DDim GetDimsDebug(const ScopeBase& scope, const std::string& name,
78
                         bool get_actual_dim = false) {
79
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
80 81
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
82 83
  }

M
minqiyang 已提交
84 85 86
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
87
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
88
    if (get_actual_dim) {
89
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
90
    } else {
91
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
92
    }
S
Steffy-zxf 已提交
93 94
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
95 96 97 98 99
  } else {
    return DDim({-1});
  }
}

100
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
101 102 103 104 105
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

106
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
107 108 109 110
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
111

M
minqiyang 已提交
112 113 114
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
115 116
      return "";
    }
117
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
118 119
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
120 121 122
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
123
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
124
    }
S
Steffy-zxf 已提交
125 126
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
127 128 129 130 131
  } else {
    return "";
  }
}

132
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
149 150
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
151 152 153 154 155 156 157 158 159 160
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

161
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
162 163 164 165 166
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

167 168
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
169 170 171 172 173
  }

  return -1;
}

174
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
175 176 177 178 179 180 181
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
182 183 184
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
185 186 187 188 189
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
190 191 192 193 194
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
195
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
196 197 198 199 200 201
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
202
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
203 204 205 206 207 208
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

209
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
210 211 212
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
213
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
214 215 216 217
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
218
#else
219
      auto dev_id = place.device;
P
peizhilin 已提交
220
      platform::SetDeviceId(dev_id);
221 222 223
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
224 225 226 227
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
228
#else
229
      auto dev_id = place.device;
230
      platform::SetXPUDeviceId(dev_id);
231 232 233 234 235 236 237 238
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
239
      auto dev_id = place.device;
240
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
241 242 243 244 245 246 247 248
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
249
      auto dev_id = place.device;
F
fwenguang 已提交
250
      platform::SetMLUDeviceId(dev_id);
251 252 253 254 255 256 257 258
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
259
      phi::DeviceManager::SetDevice(place);
260
#endif
P
peizhilin 已提交
261
    }
P
peizhilin 已提交
262

263
    {
264 265 266
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
267
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
268
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
269 270
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
C
chenjian 已提交
271 272
          op_name, platform::TracerEventType::Operator,
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
273
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
274 275
      RunImpl(scope, place);
    }
276

Z
Zhang Ting 已提交
277
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
278
  } catch (platform::EnforceNotMet& exception) {
279
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
280
    throw std::move(exception);
281 282 283 284 285 286
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
287
  } catch (...) {
288
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
289
    std::rethrow_exception(std::current_exception());
290
  }
291 292
}

293
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
294
  return inputs_.find(name) != inputs_.end();
295 296
}

297
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
298
  auto& ins = Inputs(name);
299 300
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
301
      platform::errors::InvalidArgument(
302 303
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
304
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
305 306
}

Y
Yu Yang 已提交
307 308
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
309
  auto it = inputs_.find(name);
310 311 312 313
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
314
  return it->second;
Y
Yan Chunwei 已提交
315 316
}

317
bool OperatorBase::HasOutputs(const std::string& name) const {
318
  if (outputs_.find(name) != outputs_.end()) {
319 320 321 322 323 324
    return true;
  } else {
    return false;
  }
}

325
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
326
  auto& outs = Outputs(name);
327 328 329 330 331
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
332
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
333 334
}

Y
Yu Yang 已提交
335 336
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
337
  auto it = outputs_.find(name);
338 339 340 341
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
342
  return it->second;
Y
Yan Chunwei 已提交
343 344
}

345
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
346
  std::stringstream ss;
Y
Yu Yang 已提交
347
  ss << "Op(" << type_ << "), inputs:{";
348

349
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
350 351
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
352 353
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
354 355
  }

Y
Yu Yang 已提交
356 357
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
358 359
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
360 361
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
362 363
      auto var_name = input.second[i];
      ss << var_name;
364
      if (scope) {
Q
Qiao Longfei 已提交
365 366 367 368 369 370 371
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
372 373 374
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
375
          ss << ":" << dtype;
376 377
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
378
          ss << "(" << GetPlace(*scope, var_name) << ")";
379
        }
380
      }
Y
Yu Yang 已提交
381 382 383
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
384
    }
Y
Yu Yang 已提交
385
    ss << "]";
Y
Yu Yang 已提交
386 387
    ++it;
    if (it != inputs_.end()) {
388 389
      ss << ", ";
    }
Q
Qiao Longfei 已提交
390
  }
Y
Yu Yang 已提交
391
  ss << "}, outputs:{";
Y
Yu Yang 已提交
392 393
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
394 395
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
396 397
      auto var_name = output.second[i];
      ss << var_name;
398
      if (scope) {
Q
Qiao Longfei 已提交
399 400 401 402 403 404 405
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
406 407
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
408 409
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
410
          ss << "(" << GetPlace(*scope, var_name) << ")";
411
        }
412
      }
Y
Yu Yang 已提交
413 414 415
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
416
    }
Y
Yu Yang 已提交
417
    ss << "]";
Y
Yu Yang 已提交
418 419
    ++it;
    if (it != outputs_.end()) {
420 421
      ss << ", ";
    }
Q
Qiao Longfei 已提交
422
  }
Y
Yu Yang 已提交
423
  ss << "}.";
Q
Qiao Longfei 已提交
424 425 426
  return ss.str();
}

Y
Yu Yang 已提交
427
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
428 429
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
430
                           const AttributeMap& attrs)
S
sneaxiy 已提交
431 432 433 434 435 436
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
437 438 439 440 441 442 443 444
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
445
}
446

Q
qijun 已提交
447 448
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
449
  for (auto& o : inputs_) {
Q
qijun 已提交
450 451 452 453 454 455
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
456 457 458 459 460 461 462 463 464 465
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
466
  auto& info = Info();
Y
Yu Yang 已提交
467 468

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
469
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
470 471 472 473 474 475 476 477 478
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
479 480
}

481
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
482
  if (info_ == nullptr || info_->proto_ == nullptr) return;
483

S
sneaxiy 已提交
484
  for (auto& in : info_->Proto().inputs()) {
485
    if (!in.dispensable() && !in.extra()) {
486 487 488 489
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
490
    }
491 492
  }

S
sneaxiy 已提交
493
  for (auto& out : info_->Proto().outputs()) {
494
    if (!out.dispensable() && !out.extra()) {
495 496 497 498
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
499
    }
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
515

C
chengduo 已提交
516
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
517 518
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
519 520
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
521
  } else {
522 523 524
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
525 526 527
  }
}

C
chengduo 已提交
528
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
529
  if (var->IsType<LoDTensor>()) {
530
    return var->GetMutable<LoDTensor>();
531 532
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
533
  } else {
534 535 536
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
537 538 539
  }
}

540
bool ExecutionContext::HasInput(const std::string& name) const {
541
  auto* var = InputVar(name);
542 543 544
  return var != nullptr;
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

559
bool ExecutionContext::HasOutput(const std::string& name) const {
560
  auto* var = OutputVar(name);
561 562 563
  return var != nullptr;
}

X
Xin Pan 已提交
564
const Variable* ExecutionContext::InputVar(const std::string& name) const {
565 566
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
567 568 569
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

570 571
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
572
      platform::errors::InvalidArgument(
573 574
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
575 576 577
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
578
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
579 580 581
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

582 583 584 585 586
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
587 588 589
  return it->second.empty() ? nullptr : it->second[0];
}

590
template <>
591
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
592
    const std::string& name) const {
593 594
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
595 596
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
597 598 599 600 601
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
602
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
603
                   if (var == nullptr) return nullptr;
604 605 606 607 608
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
609 610 611 612 613
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

614
template <>
615
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
616
    const std::string& name) const {
H
hong 已提交
617 618 619
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
620 621
    return {};
  }
622
  std::vector<Tensor*> res;
623 624 625 626 627
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
628
                 });
629 630 631
  return res;
}

Y
Yu Yang 已提交
632
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
633
  // check in new Function kernel first
634
  bool has_phi_kernel = false;
635
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
636
  auto kernel_key_map =
637
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
638
  for (auto& kernel : kernel_key_map) {
639
    has_phi_kernel = true;
640
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
641 642 643 644
      return true;
    }
  }

Y
Yu Yang 已提交
645 646
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
647 648 649 650 651 652 653 654 655 656 657 658 659
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
660 661 662
      return true;
    }
  }
H
hong 已提交
663

Y
Yu Yang 已提交
664 665 666
  return false;
}

667 668
class RuntimeInferShapeContext : public InferShapeContext {
 public:
669
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
670
      : op_(op), ctx_(ctx) {}
671 672

  bool HasInput(const std::string& name) const override {
673
    // has only one input
X
Xin Pan 已提交
674
    const auto& ins = ctx_.inputs;
675 676
    auto it = ins.find(name);
    if (it == ins.end()) {
677 678
      return false;
    }
679
    const auto& in = it->second;
X
Xin Pan 已提交
680
    if (in.size() == 0) return false;
681 682 683 684
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
685
    return in[0] != nullptr;
686 687 688
  }

  bool HasOutput(const std::string& name) const override {
689
    // has only one output
X
Xin Pan 已提交
690
    const auto& outs = ctx_.outputs;
691 692
    auto it = outs.find(name);
    if (it == outs.end()) {
693 694
      return false;
    }
695
    const auto& out = it->second;
X
Xin Pan 已提交
696
    if (out.size() == 0) {
697 698
      return false;
    }
699 700 701 702
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
703
    return out[0] != nullptr;
704 705
  }

706 707 708 709
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

710
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
711 712
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
713
    if (it == ins.end() || it->second.empty()) {
714 715
      return false;
    }
X
Xin Pan 已提交
716 717
    for (auto& input : it->second) {
      if (input == nullptr) {
718 719 720 721 722 723
        return false;
      }
    }
    return true;
  }

724 725
  bool HasOutputs(const std::string& name,
                  bool allow_null = false) const override {
X
Xin Pan 已提交
726 727
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
728
    if (it == outs.end() || it->second.empty()) {
729 730
      return false;
    }
731 732 733 734 735 736 737 738
    if (allow_null) {
      for (auto& output : it->second) {
        if (output != nullptr) return true;
      }
      return false;
    } else {
      for (auto& output : it->second) {
        if (output == nullptr) return false;
739
      }
740
      return true;
741 742 743 744 745
    }
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
746
  std::vector<std::string> Inputs(const std::string& name) const override {
747 748 749
    return op_.Inputs(name);
  }

H
hong 已提交
750
  std::vector<std::string> Outputs(const std::string& name) const override {
751 752 753
    return op_.Outputs(name);
  }

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

777 778
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
779 780
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
797 798 799

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
800

801 802 803 804 805
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
806

807 808 809
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
810 811 812 813 814 815 816 817
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
818
      PADDLE_THROW(platform::errors::Unimplemented(
819
          "Currently, the input type of ShareDim only can be LoDTensor "
820
          "or SelectedRows."));
821 822 823
    }
  }

H
hong 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
842
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
869 870
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
871 872
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
889 890

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
891
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
892
    Variable* out_var = out_it->second.at(j);
893 894 895 896
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
897
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
898 899
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
900

M
mozga-intel 已提交
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
920 921
  }

922
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
923
    PADDLE_THROW(platform::errors::PreconditionNotMet(
924
        "GetLoDLevel is only used in compile time. The calculation of "
925
        "output's actual lod is different among operators so that should be "
926
        "set in the runtime kernel."));
927 928
  }

929 930
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
931
    PADDLE_THROW(platform::errors::PreconditionNotMet(
932
        "SetLoDLevel is only used in compile time. The calculation of "
933
        "output's actual lod is different among operators so that should be "
934
        "set in the runtime kernel."));
C
chengduo 已提交
935 936
  }

937 938
  bool IsRuntime() const override { return true; }

939 940 941 942 943 944
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
945
    } catch (const std::bad_cast& exp) {
946 947 948 949
      return false;
    }
  }

950
  // TODO(paddle-dev): Can this be template?
951 952
  paddle::SmallVector<InferShapeVarPtr, phi::kInputSmallVectorSize>
  GetInputVarPtrs(const std::string& name) const override {
953
    const std::vector<Variable*>& vars = InputVars(name);
954
    paddle::SmallVector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
955 956 957 958 959
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

960 961
  paddle::SmallVector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
  GetOutputVarPtrs(const std::string& name) const override {
962
    const std::vector<Variable*>& vars = OutputVars(name);
963
    paddle::SmallVector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
964 965 966 967 968
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
969 970
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
971 972 973 974 975
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
976 977 978 979 980 981 982 983
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

984 985 986 987
  proto::VarType::Type GetInputVarType(const std::string& name) const override {
    return GetVarType(InputVars(name).at(0));
  }

X
Xin Pan 已提交
988 989 990 991 992 993 994 995 996 997
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
998 999
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
1000 1001 1002 1003 1004
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1014 1015 1016 1017 1018 1019 1020 1021
  const phi::ArgumentMappingFn* GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature* GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

1022
 protected:
X
Xin Pan 已提交
1023
  DDim GetDim(Variable* var) const {
1024 1025
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1026 1027
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
1028 1029
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1030
    } else {
1031 1032 1033 1034
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1035 1036 1037
    }
  }

X
Xin Pan 已提交
1038 1039 1040 1041 1042 1043 1044 1045
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1046
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1047 1048
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1049 1050
  }

X
Xin Pan 已提交
1051
  void SetDim(Variable* var, const DDim& dim) {
1052 1053
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
1054 1055
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1056
    } else {
1057 1058 1059 1060
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1061 1062 1063 1064 1065 1066
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1067 1068 1069 1070 1071 1072
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
1073 1074 1075 1076 1077
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1078 1079 1080
    }
  }

F
fengjiayi 已提交
1081 1082
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1083 1084
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1085 1086
  }

X
Xin Pan 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1098 1099 1100
    return ToVarType(var->Type());
  }

1101 1102 1103
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1104 1105 1106 1107
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1108 1109 1110 1111 1112
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1113 1114 1115 1116
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1117
    return it->second;
F
fengjiayi 已提交
1118 1119
  }

1120
  const OperatorBase& op_;
X
Xin Pan 已提交
1121
  const RuntimeContext& ctx_;
1122 1123
};

1124 1125
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1126 1127 1128 1129
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
1130 1131
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1132 1133
    return;
  }
1134 1135 1136 1137 1138 1139 1140 1141
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1142 1143
}

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(), phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(), op_kernels.end(),
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(), phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(), op_kernels.end(),
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1194 1195
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1196 1197 1198 1199 1200 1201 1202 1203 1204
  auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
  if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
    VLOG(6) << "Warning: " << type_ << " don't find its MKLDNN Kernel in Fluid "
                                       "Registered Kernels. And We don't "
                                       "search its kernels in phi lib, "
                                       "SupportsMKLDNN() return false.";
    return false;
  }
  auto& op_kernels = op_kernel_iter->second;
1205
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1206
                     [data_type](OpKernelMap::const_reference kern_pair) {
1207 1208
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1209 1210
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1211 1212 1213
                     });
}

1214 1215
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1216 1217 1218 1219
  const auto& attrs_map = ctx.Attrs();
  auto iter = attrs_map.find("use_mkldnn");
  bool use_mkldnn_ctx = iter != attrs_map.end() &&
                        BOOST_GET_CONST(bool, iter->second) &&
1220
                        platform::is_cpu_place(ctx.GetPlace());
1221
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1222 1223
}

1224 1225 1226 1227 1228 1229 1230
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1231
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1232 1233
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1234
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1235
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1236 1237
}

L
luotao1 已提交
1238 1239
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1240 1241
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1242 1243 1244
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1245
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1246
    all_kernels_must_compute_runtime_shape_ = true;
1247
  const Scope* cur_scope = &scope;
1248
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1249 1250
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1251
    pre_scope_ = cur_scope;
L
luotao1 已提交
1252
  } else {
1253 1254 1255 1256 1257 1258
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1259 1260 1261 1262 1263 1264 1265 1266
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1267
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1268
  auto* dev_ctx = pool.Get(place);
1269

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1280
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1281 1282 1283 1284
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1285 1286 1287 1288 1289 1290

  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1291
  phi::KernelKey pt_kernel_key;
1292
  std::string pt_kernel_name;
1293
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1294 1295 1296 1297
    if (kernel_signature_ == nullptr || pt_kernel_ == nullptr) {
      kernel_signature_.reset(new phi::KernelSignature(
          std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      VLOG(6) << *kernel_signature_.get();
1298 1299 1300 1301 1302

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

1303
      pt_kernel_name = kernel_signature_->name;
1304
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1305
      pt_kernel_.reset(
1306
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1307 1308 1309
              pt_kernel_name, pt_kernel_key)));

      if (pt_kernel_->IsValid()) {
1310
        VLOG(6) << "Static mode ChoosePhiKernel - kernel name: "
1311 1312 1313
                << pt_kernel_name << " | kernel key: " << pt_kernel_key
                << " | kernel: " << *pt_kernel_;
      } else {
1314
        VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1315 1316
                << "` not found.";
      }
1317
    } else {
1318
      pt_kernel_name = kernel_signature_->name;
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: " << type_
                  << ", using_kernel_key:" << *kernel_type_.get();
          auto try_pt_kernel_key =
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1344 1345
          if (!phi::KernelFactory::Instance().HasKernel(pt_kernel_name,
                                                        try_pt_kernel_key)) {
1346 1347 1348 1349 1350 1351 1352
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: " << type_
                    << " is failed " << *kernel_type_.get();
          }
        }
      }
#endif
1353
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1354
    }
1355 1356 1357 1358

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1359
#if defined(PADDLE_WITH_XPU)
1360 1361 1362 1363 1364 1365
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
            !paddle::platform::is_xpu_support_op(type_, *kernel_type_.get()) ||
        paddle::platform::is_in_xpu_black_list(type_);
#endif
    if (pt_kernel_->IsValid()
1366
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1367 1368 1369
        && !is_xpu_unsupport
#endif
        ) {
1370
      run_phi_kernel_ = true;
1371 1372 1373
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      bool use_xpu_kp_kernel_rt =
          paddle::platform::is_xpu_place(kernel_type_->place_) &&
          FLAGS_run_kp_kernel &&
          paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
      bool use_xpu_kp_kernel_debug =
          paddle::platform::is_xpu_place(kernel_type_->place_) &&
          paddle::platform::is_in_xpu_kpwhite_list(type_);
      bool is_xpu_kp_support =
          (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif

1393 1394 1395
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1396
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1397
          || is_xpu_unsupport
1398
#endif
1399 1400 1401 1402
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
              ) {
1403 1404 1405
        auto pt_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), pt_kernel_key, *this);
        pt_kernel_.reset(
1406
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1407 1408 1409 1410 1411 1412 1413
                pt_kernel_name, pt_cpu_kernel_key)));

        dev_ctx = pool.Get(platform::CPUPlace());
        if (pt_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: " << pt_kernel_name
                  << " | kernel key: " << pt_cpu_kernel_key
                  << " | kernel: " << *pt_kernel_;
1414
          run_phi_kernel_ = true;
1415 1416
        }
      }
1417 1418
    }
  }
1419
  if (!run_phi_kernel_) {
1420 1421
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1422
      dev_ctx = pool.Get(kernel_type_->place_);
1423
    }
1424 1425
  }

Y
yuyang18 已提交
1426 1427
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1428 1429
  Scope* transfer_scope = nullptr;
  {
1430
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1431 1432
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1433 1434 1435 1436
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1437
  }
Y
yuyang18 已提交
1438 1439 1440 1441
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1442
  if (!all_kernels_must_compute_runtime_shape_) {
1443
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1444 1445
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1446
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1447
    this->Info().infer_shape_(&infer_shape_ctx);
1448
  }
1449 1450 1451 1452 1453

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1454 1455
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1456
  {
1457
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1458 1459
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1460
    if (run_phi_kernel_) {
1461
      phi::KernelContext pt_kernel_context;
1462
      // Do data transform before building KernelContext
1463
      // TODO(zhiqiu): support TransferInplaceVarsBack
1464
      PreparePhiData(exec_scope, *pt_kernel_, *kernel_signature_, runtime_ctx);
1465
      BuildPhiKernelContext(*runtime_ctx, dev_ctx, &pt_kernel_context);
1466
      (*pt_kernel_)(&pt_kernel_context);
1467 1468 1469 1470
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1471
  }
D
dzhwinter 已提交
1472

Y
yuyang18 已提交
1473
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1474
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1475
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1476
  }
1477 1478 1479 1480 1481 1482 1483

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1484 1485 1486 1487 1488 1489 1490 1491
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1492

D
dzhwinter 已提交
1493
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1494
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1495
    dev_ctx->Wait();
1496 1497
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1498 1499
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1500
  }
C
chengduoZH 已提交
1501 1502

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1503
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1504
  }
1505 1506 1507 1508 1509 1510 1511

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1512
}
X
Xin Pan 已提交
1513

1514 1515 1516
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1517 1518 1519
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1530 1531
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
1532 1533
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1534
      if (SupportGPU()) {
1535
        auto& dev_ctx = ctx.device_context();
1536
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1537 1538 1539 1540 1541
      }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1542
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1543 1544 1545
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1546 1547 1548 1549 1550 1551
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1552 1553
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1554 1555 1556
  return expected_kernel_key;
}

1557
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
1558
    const ExecutionContext& ctx) const {
1559 1560 1561
  kernel_signature_.reset(
      new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  VLOG(6) << *kernel_signature_.get();
1562 1563 1564 1565

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

1566
  auto pt_kernel_name = kernel_signature_->name;
1567
  auto pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1568 1569
  pt_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      pt_kernel_name, pt_kernel_key)));
1570 1571

  if (pt_kernel_->IsValid()) {
1572
    VLOG(6) << "Static mode ChoosePhiKernel - kernel name: " << pt_kernel_name
1573 1574 1575
            << " | kernel key: " << pt_kernel_key
            << " | kernel: " << *pt_kernel_;
  } else {
1576
    VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1577 1578
            << "` not found.";
  }
1579
  return pt_kernel_key;
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1595 1596

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1597

L
Liu Yiqun 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1607
#endif
1608 1609

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1610
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1611 1612 1613
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1614 1615 1616 1617 1618 1619
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1620
#endif
L
Liu-xiandong 已提交
1621 1622

#ifdef PADDLE_WITH_XPU_KP
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
      VLOG(3) << "xpu_kp using rt mode ";
    }
    if (use_xpu_kp_kernel_debug) {
      VLOG(3) << "xpu_kp using debug mode ";
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
1637 1638
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
1639 1640
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
      // if can't find corresponding kernel when is_xpu_kp_support is on
      // if the fluid do not register related kernel, it can't work and hava
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
        VLOG(3) << "using XPU KP kernel: " << type_
                << ", using_kernel_key:" << expected_kernel_key;
      }
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
    }
    bool is_xpu_unsupport =
        (!paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
         paddle::platform::is_in_xpu_black_list(type_));
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
      VLOG(3) << "missing XPU kernel: " << type_
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
1665 1666 1667
  }
#endif

A
Allen Guo 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
1678 1679
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
1680
      platform::is_npu_place(expected_kernel_key.place_)) {
1681 1682 1683 1684 1685 1686
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1687 1688 1689
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
1690
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
1691 1692 1693
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
1705 1706 1707
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1708
#endif
1709 1710 1711 1712
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1713

1714 1715 1716 1717 1718
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1719 1720
}

Y
yuyang18 已提交
1721 1722 1723 1724
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1725
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1726
    auto* origin_var = scope.FindVar(var_name);
1727 1728 1729
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1730
    auto* original_tensor =
C
chengduo 已提交
1731
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1732
    auto* var = transfer_scope.FindVar(var_name);
1733 1734
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1735
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1736
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1737
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1738 1739 1740 1741 1742
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1743 1744 1745
  }
}

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
1775
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
1795
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1813
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1814
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1815 1816
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1817
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1818

1819
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1820 1821 1822 1823
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1824 1825
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1826 1827 1828
    }
  }

Y
yuyang18 已提交
1829
  for (auto& var_name_item : Inputs()) {
1830 1831
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1832

X
Xin Pan 已提交
1833 1834 1835 1836
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1837
      auto* var = input_vars[i];
X
Xin Pan 已提交
1838

Y
yuyang18 已提交
1839
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1840
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1841 1842 1843
        continue;
      }

C
chengduo 已提交
1844
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1860 1861
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1894 1895
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1896

1897 1898 1899
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1900
      // We use a thread_local cache to fix that issue, the key in the cache is
1901 1902 1903 1904 1905
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1906 1907
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1908
      // variables, that behavior a lot different.
1909 1910 1911 1912 1913 1914 1915 1916 1917
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1918 1919
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1920
        enable_cache_transfer_scope_ = true;
1921
      }
1922
      if (!new_scope) {
Y
yuyang18 已提交
1923 1924
        new_scope = &scope.NewScope();
      }
1925 1926 1927 1928
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1929
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1930 1931
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1932
      if (enable_cache_runtime_context_) {
1933 1934
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1935 1936

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1937
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1938
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1956
      Tensor out;
Y
yuyang18 已提交
1957
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1958 1959 1960
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1961

1962 1963 1964 1965 1966 1967
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
1968 1969 1970 1971 1972 1973

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
1974 1975
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1976 1977 1978

  return new_scope;
}
Q
Qiao Longfei 已提交
1979

1980
void OperatorWithKernel::ParseInputDataType(
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
    const Variable* var, const std::string& name,
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
    const Tensor* t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      PADDLE_ENFORCE_EQ(
          t->IsInitialized(), true,
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
                                            Type(), name));
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2011
    const std::vector<Variable*>& vars, const std::string& name,
2012
    proto::VarType::Type* data_type) const {
2013
  proto::VarType::Type default_data_type =
2014 2015 2016 2017 2018 2019 2020 2021 2022
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
2023 2024
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2025
      } else if (var->IsType<LoDTensorArray>()) {
2026 2027 2028 2029
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2030 2031
          }
        }
2032 2033
      }
      if (t != nullptr) {
2034 2035
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
2036 2037 2038
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(), name));
2039 2040
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2041 2042 2043 2044 2045 2046 2047 2048 2049
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(), name, DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
2050 2051 2052 2053 2054 2055
        *data_type = tmp;
      }
    }
  }
}

2056
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2057
    const ExecutionContext& ctx) const {
2058 2059 2060
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2061 2062 2063 2064 2065 2066
  for (auto* name : ctx.InNameList()) {
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2067
  }
2068 2069 2070 2071
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2072 2073 2074 2075 2076 2077 2078 2079
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2080 2081 2082 2083 2084
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2085 2086
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
2087 2088 2089 2090 2091
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
2092
  return data_type;
Y
Yu Yang 已提交
2093
}
2094

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
2113 2114
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2146 2147
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2148 2149 2150 2151 2152 2153 2154

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2155 2156 2157 2158 2159 2160 2161 2162
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
2163 2164
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
2165 2166
}

2167
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2168
    const ExecutionContext& ctx) const {
2169
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2170
  if (arg_map_fn_ == nullptr) {
2171 2172 2173 2174
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2175 2176
      auto func = [this](
          const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2177 2178 2179 2180
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2181 2182
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2183 2184
}

2185
Scope* OperatorWithKernel::PreparePhiData(
2186
    const Scope& scope, const phi::Kernel& pt_kernel,
2187 2188
    const phi::KernelSignature& pt_kernel_signature,
    RuntimeContext* ctx) const {
2189
  const auto& input_names = pt_kernel_signature.input_names;
2190 2191 2192 2193 2194 2195 2196
  auto input_defs = pt_kernel.args_def().input_defs();
  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));
  Scope* new_scope = nullptr;
2197
  auto& name_map = Inputs();
Y
YuanRisheng 已提交
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
    }
  }

2208 2209
  for (size_t i = 0; i < input_defs.size(); ++i) {
    auto& in_def = input_defs.at(i);
2210
    if (ctx->inputs.find(input_names[i]) == ctx->inputs.end()) {
H
hong 已提交
2211 2212
      continue;
    }
2213
    auto& ins_vector = ctx->inputs.at(input_names[i]);
2214
    auto& name_vec = name_map.at(input_names[i]);
Y
YuanRisheng 已提交
2215 2216 2217
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(input_names[i]) > 0;

2218 2219 2220 2221 2222 2223 2224
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      // Only tensor can be tranfer to another device.
      auto* var = ins_vector[offset];
      if (var == nullptr || !VarIsTensor(*var)) {
        continue;
      }
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
YuanRisheng 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
        // TODO(YuanRisheng) : There need to supplement MKLDNN code later
        continue;
      }

2234 2235 2236 2237
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2238 2239 2240
      if (in_def.backend == phi::Backend::ALL_BACKEND) {
        continue;
      }
2241 2242 2243 2244 2245

      auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
      if (in_def.backend == tensor_backend ||
          (in_def.backend == phi::Backend::GPUDNN &&
           tensor_backend == phi::Backend::GPU)) {
2246 2247 2248
        continue;
      }

2249
      auto expected_place = phi::TransToPhiPlace(in_def.backend);
2250
      VLOG(3) << "phi Transform Variable " << input_names[i] << " from "
2251
              << tensor_in->place() << " to " << expected_place;
2252

2253 2254 2255
      if (!new_scope) {
        new_scope = &scope.NewScope();
      }
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
      if (enable_cache_runtime_context_) {
        pre_scope_ = nullptr;
      }
2266

2267
      // Create new var with the same name in transfer scopes
2268
      auto* trans_var = new_scope->Var(name_vec[offset]);
2269
      ins_vector[offset] = trans_var;
2270

2271 2272 2273 2274
      // Do transfer
      Tensor out;
      framework::TensorCopySync(*tensor_in, expected_place, &out);
      SetTensorToVariable(*var, out, trans_var);
2275 2276 2277 2278 2279 2280
    }
  }

  return new_scope;
}

2281
void OperatorWithKernel::BuildPhiKernelContext(
2282
    const RuntimeContext& ctx, platform::DeviceContext* dev_ctx,
2283
    phi::KernelContext* pt_kernel_context) const {
2284
  pt_kernel_context->SetDeviceContext(dev_ctx);
2285

2286 2287 2288
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312

  auto input_defs = pt_kernel_->args_def().input_defs();
  auto attr_defs = pt_kernel_->args_def().attribute_defs();
  auto output_defs = pt_kernel_->args_def().output_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2313
    auto it = ctx.inputs.find(input_names[i]);
2314 2315 2316

    // calcute the start and end index of the input tensors
    size_t start_idx =
2317
        (i == 0 ? 0 : pt_kernel_context->InputRangeAt(i - 1).second);
2318

H
hong 已提交
2319
    // deal with optional here
2320
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
2321
        (input_defs[i].type_index ==
H
hong 已提交
2322 2323 2324 2325
             std::type_index(
                 typeid(paddle::optional<const phi::DenseTensor&>)) ||
         input_defs[i].type_index ==
             std::type_index(
2326 2327 2328 2329 2330
                 typeid(paddle::optional<const phi::SelectedRows&>)) ||
         input_defs[i].type_index ==
             std::type_index(
                 typeid(paddle::optional<
                        const std::vector<const phi::DenseTensor*>>)))) {
H
hong 已提交
2331 2332 2333 2334 2335 2336 2337 2338
      pt_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                          i);
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2339
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2340
      const phi::TensorBase* tensor_in = nullptr;
2341
      auto* var = ins_vector[offset];
H
hong 已提交
2342 2343
      if (var->IsType<framework::LoDTensor>()) {
        tensor_in = &(var->Get<framework::LoDTensor>());
2344
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2345 2346
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
2347 2348 2349 2350 2351 2352 2353 2354 2355
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
      } else if (var->IsType<framework::LoDTensorArray>()) {
        paddle::SmallVector<const phi::TensorBase*> tensor_vector;
        auto& tensor_array = var->Get<framework::LoDTensorArray>();
        for (auto& t : tensor_array) {
          tensor_vector.emplace_back(&t);
        }
        pt_kernel_context->EmplaceBackInputsWithoutSetRange(tensor_vector);
        end_idx += tensor_array.size() - 1;
2356 2357 2358 2359
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2360
      }
2361
    }
2362
    // Note: here cannot deal with vector<LoDTensorArray> input
2363
    pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2364
  }
2365
  VLOG(4) << "Done inputs";
2366 2367

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2368
    auto it = ctx.outputs.find(output_names[i]);
2369
    size_t start_idx =
2370
        (i == 0 ? 0 : pt_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
      pt_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                           i);
      continue;
    }
    auto& outs_vector = it->second;

2385
    size_t end_idx = start_idx + outs_vector.size();
2386 2387

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2388
      phi::TensorBase* tensor_out = nullptr;
2389
      auto* var = outs_vector[offset];
2390 2391 2392
      if (var) {
        if (var->template IsType<framework::LoDTensor>()) {
          tensor_out = var->template GetMutable<framework::LoDTensor>();
2393
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2394 2395
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (var->template IsType<framework::LoDTensorArray>()) {
          paddle::SmallVector<phi::TensorBase*> tensor_vector;
          auto* tensor_array =
              var->template GetMutable<framework::LoDTensorArray>();
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
          for (auto& t : *tensor_array) {
            tensor_vector.emplace_back(&t);
          }
          pt_kernel_context->EmplaceBackOutputsWithoutSetRange(tensor_vector);
          end_idx += tensor_array->size() - 1;
2408 2409 2410 2411 2412
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
2413 2414
      } else {
        pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2415
      }
2416
    }
2417
    pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
2418
  }
2419
  VLOG(4) << "Done outputs";
2420 2421

  for (size_t i = 0; i < attr_names.size(); ++i) {
2422
    if (attr_defs[i].type_index == phi::AttributeType::INT_ARRAY) {
2423 2424
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // shape is in the attribute
2425 2426
        auto& attr = attr_iter->second;
        if (AttrTypeID(attr) == proto::AttrType::LONGS) {
2427
          pt_kernel_context->EmplaceBackAttr(std::move(
2428 2429 2430 2431 2432 2433 2434
              phi::IntArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
        } else if (AttrTypeID(attr) == proto::AttrType::INTS) {
          pt_kernel_context->EmplaceBackAttr(std::move(
              phi::IntArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
        } else if (AttrTypeID(attr) == proto::AttrType::INT) {
          pt_kernel_context->EmplaceBackAttr(
              std::move(phi::IntArray(&BOOST_GET_CONST(int32_t, attr), 1)));
2435 2436
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
2437
              "Unsupported cast op attribute `%s` to IntArray when "
2438 2439 2440 2441 2442 2443
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
2444
          pt_kernel_context->EmplaceBackAttr(std::move(
2445
              experimental::MakePhiIntArrayFromVar(*ins_vector.front())));
2446
        } else {  // ShapeTensorList
2447 2448
          pt_kernel_context->EmplaceBackAttr(
              std::move(experimental::MakePhiIntArrayFromVarList(ins_vector)));
2449 2450
        }
      }
2451
    } else if (attr_defs[i].type_index == phi::AttributeType::SCALAR) {
2452 2453
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // scalar is in the attribute
2454 2455
        auto& attr = attr_iter->second;
        if (AttrTypeID(attr) == proto::AttrType::FLOAT) {
2456
          pt_kernel_context->EmplaceBackAttr(
2457
              std::move(phi::Scalar(BOOST_GET_CONST(float, attr))));
2458
        } else if (AttrTypeID(attr) == proto::AttrType::STRING) {
2459
          pt_kernel_context->EmplaceBackAttr(
2460
              std::move(phi::Scalar(BOOST_GET_CONST(std::string, attr))));
2461
        } else if (AttrTypeID(attr) == proto::AttrType::INT) {
2462
          pt_kernel_context->EmplaceBackAttr(
2463
              std::move(phi::Scalar(BOOST_GET_CONST(int, attr))));
2464 2465 2466 2467 2468 2469
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext.",
              attr_names[i]));
        }
2470
      } else {
2471
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
2472 2473
        pt_kernel_context->EmplaceBackAttr(
            std::move(experimental::MakePhiScalarFromVar(*ins_vector.front())));
2474
      }
2475

2476
    } else if (attr_defs[i].type_index == phi::AttributeType::SCALARS) {
2477
      auto& attr = Attrs().at(attr_names[i]);
2478
      if (AttrTypeID(attr) == proto::AttrType::INTS) {
2479 2480 2481 2482 2483 2484 2485
        const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2486
      } else if (AttrTypeID(attr) == proto::AttrType::LONGS) {
2487 2488 2489 2490 2491 2492 2493
        const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2494
      } else if (AttrTypeID(attr) == proto::AttrType::FLOATS) {
2495 2496 2497 2498 2499 2500 2501
        const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2502
      } else if (AttrTypeID(attr) == proto::AttrType::FLOAT64S) {
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
        const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported cast op attribute `%s` to vector<Scalar> when "
            "construct KernelContext.",
            attr_names[i]));
      }
2516
    } else {
H
hong 已提交
2517
      auto attr_it = attrs_.find(attr_names[i]);
2518
      if (attr_defs[i].type_index == phi::AttributeType::INT32) {
H
hong 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
        if (attr_it == attrs_.end()) {
          auto in_it = ctx.inputs.find(attr_names[i]);
          if (in_it != ctx.inputs.end()) {
            // get data from input
            auto val = experimental::MakePhiScalarFromVar(*(in_it->second[0]));
            int32_t val_int = val.template to<int32_t>();
            pt_kernel_context->EmplaceBackAttr(val_int);
          } else {
            PADDLE_THROW(platform::errors::NotFound(
                "can not find attribute `%s` both in attribute and input ",
                attr_names[i]));
          }
        } else {
          pt_kernel_context->EmplaceBackAttr(
              BOOST_GET_CONST(int, attr_it->second));
        }
2535
      } else if (attr_defs[i].type_index == phi::AttributeType::FLOAT32) {
H
hong 已提交
2536 2537
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(float, attr_it->second));
2538
      } else if (attr_defs[i].type_index == phi::AttributeType::BOOL) {
H
hong 已提交
2539 2540
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(bool, attr_it->second));
2541
      } else if (attr_defs[i].type_index == phi::AttributeType::INT64) {
H
hong 已提交
2542 2543
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(int64_t, attr_it->second));
2544
      } else if (attr_defs[i].type_index == phi::AttributeType::STRING) {
H
hong 已提交
2545 2546
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::string, attr_it->second));
2547
      } else if (attr_defs[i].type_index == phi::AttributeType::DATA_TYPE) {
2548
        auto data_type = paddle::framework::TransToPhiDataType(
2549
            static_cast<framework::proto::VarType::Type>(
H
hong 已提交
2550
                BOOST_GET_CONST(int, attr_it->second)));
2551
        pt_kernel_context->EmplaceBackAttr(data_type);
2552 2553
      } else if (attr_defs[i].type_index == phi::AttributeType::INT64S) {
        if (AttrTypeID(attr_it->second) == proto::AttrType::LONGS) {
2554
          pt_kernel_context->EmplaceBackAttr(
H
hong 已提交
2555
              BOOST_GET_CONST(std::vector<int64_t>, attr_it->second));
2556
        } else if (AttrTypeID(attr_it->second) == proto::AttrType::INTS) {
2557
          // Emplace Back Attr according to the type of Phi_Kernel args.
H
hong 已提交
2558 2559
          const auto& vector_int_attr =
              BOOST_GET_CONST(std::vector<int>, attr_it->second);
2560 2561
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
2562
          pt_kernel_context->EmplaceBackAttr(vector_int64_attr);
2563
        }
2564
      } else if (attr_defs[i].type_index == phi::AttributeType::INT32S) {
H
hong 已提交
2565 2566
        const auto& vector_int_attr =
            BOOST_GET_CONST(std::vector<int>, attr_it->second);
H
hong 已提交
2567
        pt_kernel_context->EmplaceBackAttr(vector_int_attr);
2568
      } else if (attr_defs[i].type_index == phi::AttributeType::STRINGS) {
2569 2570
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<std::string>, attr_it->second));
2571
      } else if (attr_defs[i].type_index == phi::AttributeType::FLOAT32S) {
2572 2573
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<float>, attr_it->second));
2574 2575
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
2576
            "Unsupported cast op attribute `%s` when construct "
2577 2578 2579 2580 2581
            "KernelContext.",
            attr_names[i]));
      }
    }
  }
2582
  VLOG(4) << "Done attributes";
2583 2584
}

Q
Qiao Longfei 已提交
2585
}  // namespace framework
L
liaogang 已提交
2586
}  // namespace paddle