operator.cc 97.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
22
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_transform.h"
24
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
25
#include "paddle/fluid/framework/details/nan_inf_utils.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/shape_inference.h"
29
#include "paddle/fluid/framework/transfer_scope_cache.h"
30
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/platform/enforce.h"
34
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
35
#include "paddle/fluid/platform/profiler/event_tracing.h"
36
#include "paddle/phi/common/int_array.h"
37 38 39
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
40

41
namespace phi {
42
class DenseTensor;
43
}  // namespace phi
44

45
#ifdef PADDLE_WITH_XPU
46 47
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
48
#endif
Q
Qiao Longfei 已提交
49

50 51 52 53
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
54 55 56 57
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
58
DECLARE_bool(benchmark);
59
DECLARE_bool(check_nan_inf);
60
DECLARE_bool(enable_unused_var_check);
61 62
PADDLE_DEFINE_EXPORTED_int32(inner_op_parallelism, 0,
                             "number of threads for inner op");
F
Feng Xing 已提交
63
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
64
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
65

Q
Qiao Longfei 已提交
66 67 68
namespace paddle {
namespace framework {

69 70 71 72 73 74
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
75

76
static DDim GetDimsDebug(const ScopeBase& scope, const std::string& name,
77
                         bool get_actual_dim = false) {
78
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
79 80
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
81 82
  }

M
minqiyang 已提交
83 84 85
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
86
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
87
    if (get_actual_dim) {
88
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
89
    } else {
90
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
91
    }
S
Steffy-zxf 已提交
92 93
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
94 95 96 97 98
  } else {
    return DDim({-1});
  }
}

99
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
100 101 102 103 104
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

105
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
106 107 108 109
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
110

M
minqiyang 已提交
111 112 113
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
114 115
      return "";
    }
116
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
117 118
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
119 120 121
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
122
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
123
    }
S
Steffy-zxf 已提交
124 125
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
126 127 128 129 130
  } else {
    return "";
  }
}

131
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
148 149
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
150 151 152 153 154 155 156 157 158 159
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

160
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
161 162 163 164 165
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

166 167
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
168 169 170 171 172
  }

  return -1;
}

173
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
174 175 176 177 178 179 180
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
181 182 183
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
184 185 186 187 188
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
189 190 191 192 193
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
194
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
195 196 197 198 199 200
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
201
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
202 203 204 205 206 207
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

208
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
209 210 211
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
212
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
213 214 215 216
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
217
#else
218
      auto dev_id = place.device;
P
peizhilin 已提交
219
      platform::SetDeviceId(dev_id);
220 221 222
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
223 224 225 226
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
227
#else
228
      auto dev_id = place.device;
229
      platform::SetXPUDeviceId(dev_id);
230 231 232 233 234 235 236 237
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
238
      auto dev_id = place.device;
239
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
240 241 242 243 244 245 246 247
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
248
      auto dev_id = place.device;
F
fwenguang 已提交
249
      platform::SetMLUDeviceId(dev_id);
250 251 252 253 254 255 256 257
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
258
      phi::DeviceManager::SetDevice(place);
259
#endif
P
peizhilin 已提交
260
    }
P
peizhilin 已提交
261

262
    {
263 264 265
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
266
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
267
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
268 269
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
C
chenjian 已提交
270 271
          op_name, platform::TracerEventType::Operator,
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
272
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
273 274
      RunImpl(scope, place);
    }
275

Z
Zhang Ting 已提交
276
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
277
  } catch (platform::EnforceNotMet& exception) {
278
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
279
    throw std::move(exception);
280 281 282 283 284 285
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
286
  } catch (...) {
287
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
288
    std::rethrow_exception(std::current_exception());
289
  }
290 291
}

292
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
293
  return inputs_.find(name) != inputs_.end();
294 295
}

296
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
297
  auto& ins = Inputs(name);
298 299
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
300
      platform::errors::InvalidArgument(
301 302
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
303
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
304 305
}

Y
Yu Yang 已提交
306 307
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
308
  auto it = inputs_.find(name);
309 310 311 312
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
313
  return it->second;
Y
Yan Chunwei 已提交
314 315
}

316
bool OperatorBase::HasOutputs(const std::string& name) const {
317
  if (outputs_.find(name) != outputs_.end()) {
318 319 320 321 322 323
    return true;
  } else {
    return false;
  }
}

324
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
325
  auto& outs = Outputs(name);
326 327 328 329 330
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
331
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
332 333
}

Y
Yu Yang 已提交
334 335
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
336
  auto it = outputs_.find(name);
337 338 339 340
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
341
  return it->second;
Y
Yan Chunwei 已提交
342 343
}

344
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
345
  std::stringstream ss;
Y
Yu Yang 已提交
346
  ss << "Op(" << type_ << "), inputs:{";
347

348
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
349 350
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
351 352
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
353 354
  }

Y
Yu Yang 已提交
355 356
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
357 358
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
359 360
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
361 362
      auto var_name = input.second[i];
      ss << var_name;
363
      if (scope) {
Q
Qiao Longfei 已提交
364 365 366 367 368 369 370
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
371 372 373
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
374
          ss << ":" << dtype;
375 376
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
377
          ss << "(" << GetPlace(*scope, var_name) << ")";
378
        }
379
      }
Y
Yu Yang 已提交
380 381 382
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
383
    }
Y
Yu Yang 已提交
384
    ss << "]";
Y
Yu Yang 已提交
385 386
    ++it;
    if (it != inputs_.end()) {
387 388
      ss << ", ";
    }
Q
Qiao Longfei 已提交
389
  }
Y
Yu Yang 已提交
390
  ss << "}, outputs:{";
Y
Yu Yang 已提交
391 392
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
393 394
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
395 396
      auto var_name = output.second[i];
      ss << var_name;
397
      if (scope) {
Q
Qiao Longfei 已提交
398 399 400 401 402 403 404
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
405 406
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
407 408
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
409
          ss << "(" << GetPlace(*scope, var_name) << ")";
410
        }
411
      }
Y
Yu Yang 已提交
412 413 414
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
415
    }
Y
Yu Yang 已提交
416
    ss << "]";
Y
Yu Yang 已提交
417 418
    ++it;
    if (it != outputs_.end()) {
419 420
      ss << ", ";
    }
Q
Qiao Longfei 已提交
421
  }
Y
Yu Yang 已提交
422
  ss << "}.";
Q
Qiao Longfei 已提交
423 424 425
  return ss.str();
}

Y
Yu Yang 已提交
426
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
427 428
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
429
                           const AttributeMap& attrs)
S
sneaxiy 已提交
430 431 432 433 434 435
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
436 437 438 439 440 441 442 443
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
444
}
445

Q
qijun 已提交
446 447
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
448
  for (auto& o : inputs_) {
Q
qijun 已提交
449 450 451 452 453 454
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
455 456 457 458 459 460 461 462 463 464
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
465
  auto& info = Info();
Y
Yu Yang 已提交
466 467

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
468
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
469 470 471 472 473 474 475 476 477
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
478 479
}

480
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
481
  if (info_ == nullptr || info_->proto_ == nullptr) return;
482

S
sneaxiy 已提交
483
  for (auto& in : info_->Proto().inputs()) {
484
    if (!in.dispensable() && !in.extra()) {
485 486 487 488
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
489
    }
490 491
  }

S
sneaxiy 已提交
492
  for (auto& out : info_->Proto().outputs()) {
493
    if (!out.dispensable() && !out.extra()) {
494 495 496 497
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
498
    }
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
514

C
chengduo 已提交
515
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
516 517
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
518 519
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
520
  } else {
521 522 523
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
524 525 526
  }
}

C
chengduo 已提交
527
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
528
  if (var->IsType<LoDTensor>()) {
529
    return var->GetMutable<LoDTensor>();
530 531
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
532
  } else {
533 534 535
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
536 537 538
  }
}

539
bool ExecutionContext::HasInput(const std::string& name) const {
540
  auto* var = InputVar(name);
541 542 543
  return var != nullptr;
}

544 545 546 547 548 549 550 551 552 553 554 555 556 557
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

558
bool ExecutionContext::HasOutput(const std::string& name) const {
559
  auto* var = OutputVar(name);
560 561 562
  return var != nullptr;
}

X
Xin Pan 已提交
563
const Variable* ExecutionContext::InputVar(const std::string& name) const {
564 565
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
566 567 568
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

569 570
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
571
      platform::errors::InvalidArgument(
572 573
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
574 575 576
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
577
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
578 579 580
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

581 582 583 584 585
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
586 587 588
  return it->second.empty() ? nullptr : it->second[0];
}

589
template <>
590
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
591
    const std::string& name) const {
592 593
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
594 595
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
596 597 598 599 600
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
601
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
602
                   if (var == nullptr) return nullptr;
603 604 605 606 607
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
608 609 610 611 612
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

613
template <>
614
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
615
    const std::string& name) const {
H
hong 已提交
616 617 618
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
619 620
    return {};
  }
621
  std::vector<Tensor*> res;
622 623 624 625 626
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
627
                 });
628 629 630
  return res;
}

Y
Yu Yang 已提交
631
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
632
  // check in new Function kernel first
633
  bool has_phi_kernel = false;
634
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
635
  auto kernel_key_map =
636
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
637
  for (auto& kernel : kernel_key_map) {
638
    has_phi_kernel = true;
639
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
640 641 642 643
      return true;
    }
  }

Y
Yu Yang 已提交
644 645
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
646 647 648 649 650 651 652 653 654 655 656 657 658
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
659 660 661
      return true;
    }
  }
H
hong 已提交
662

Y
Yu Yang 已提交
663 664 665
  return false;
}

666 667
class RuntimeInferShapeContext : public InferShapeContext {
 public:
668
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
669
      : op_(op), ctx_(ctx) {}
670 671

  bool HasInput(const std::string& name) const override {
672
    // has only one input
X
Xin Pan 已提交
673
    const auto& ins = ctx_.inputs;
674 675
    auto it = ins.find(name);
    if (it == ins.end()) {
676 677
      return false;
    }
678
    const auto& in = it->second;
X
Xin Pan 已提交
679
    if (in.size() == 0) return false;
680 681 682 683
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
684
    return in[0] != nullptr;
685 686 687
  }

  bool HasOutput(const std::string& name) const override {
688
    // has only one output
X
Xin Pan 已提交
689
    const auto& outs = ctx_.outputs;
690 691
    auto it = outs.find(name);
    if (it == outs.end()) {
692 693
      return false;
    }
694
    const auto& out = it->second;
X
Xin Pan 已提交
695
    if (out.size() == 0) {
696 697
      return false;
    }
698 699 700 701
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
702
    return out[0] != nullptr;
703 704
  }

705 706 707 708
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

709
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
710 711
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
712
    if (it == ins.end() || it->second.empty()) {
713 714
      return false;
    }
X
Xin Pan 已提交
715 716
    for (auto& input : it->second) {
      if (input == nullptr) {
717 718 719 720 721 722
        return false;
      }
    }
    return true;
  }

723 724
  bool HasOutputs(const std::string& name,
                  bool allow_null = false) const override {
X
Xin Pan 已提交
725 726
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
727
    if (it == outs.end() || it->second.empty()) {
728 729
      return false;
    }
730 731 732 733 734 735 736 737
    if (allow_null) {
      for (auto& output : it->second) {
        if (output != nullptr) return true;
      }
      return false;
    } else {
      for (auto& output : it->second) {
        if (output == nullptr) return false;
738
      }
739
      return true;
740 741 742 743 744
    }
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
745
  std::vector<std::string> Inputs(const std::string& name) const override {
746 747 748
    return op_.Inputs(name);
  }

H
hong 已提交
749
  std::vector<std::string> Outputs(const std::string& name) const override {
750 751 752
    return op_.Outputs(name);
  }

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

776 777
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
778 779
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
796 797 798

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
799

800 801 802 803 804
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
805

806 807 808
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
809 810 811 812 813 814 815 816
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
817
      PADDLE_THROW(platform::errors::Unimplemented(
818
          "Currently, the input type of ShareDim only can be LoDTensor "
819
          "or SelectedRows."));
820 821 822
    }
  }

H
hong 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
841
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
868 869
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
870 871
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
888 889

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
890
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
891
    Variable* out_var = out_it->second.at(j);
892 893 894 895
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
896
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
897 898
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
899

M
mozga-intel 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
919 920
  }

921
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
922
    PADDLE_THROW(platform::errors::PreconditionNotMet(
923
        "GetLoDLevel is only used in compile time. The calculation of "
924
        "output's actual lod is different among operators so that should be "
925
        "set in the runtime kernel."));
926 927
  }

928 929
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
930
    PADDLE_THROW(platform::errors::PreconditionNotMet(
931
        "SetLoDLevel is only used in compile time. The calculation of "
932
        "output's actual lod is different among operators so that should be "
933
        "set in the runtime kernel."));
C
chengduo 已提交
934 935
  }

936 937
  bool IsRuntime() const override { return true; }

938 939 940 941 942 943 944 945 946 947 948
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
    } catch (std::bad_cast exp) {
      return false;
    }
  }

949
  // TODO(paddle-dev): Can this be template?
950 951
  paddle::SmallVector<InferShapeVarPtr, phi::kInputSmallVectorSize>
  GetInputVarPtrs(const std::string& name) const override {
952
    const std::vector<Variable*>& vars = InputVars(name);
953
    paddle::SmallVector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
954 955 956 957 958
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

959 960
  paddle::SmallVector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
  GetOutputVarPtrs(const std::string& name) const override {
961
    const std::vector<Variable*>& vars = OutputVars(name);
962
    paddle::SmallVector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
963 964 965 966 967
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
968 969
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
970 971 972 973 974
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
975 976 977 978 979 980 981 982
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
983 984 985 986 987 988 989 990 991 992
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
993 994
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
995 996 997 998 999
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1009
 protected:
X
Xin Pan 已提交
1010
  DDim GetDim(Variable* var) const {
1011 1012
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1013 1014
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
1015 1016
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1017
    } else {
1018 1019 1020 1021
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1022 1023 1024
    }
  }

X
Xin Pan 已提交
1025 1026 1027 1028 1029 1030 1031 1032
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1033
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1034 1035
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1036 1037
  }

X
Xin Pan 已提交
1038
  void SetDim(Variable* var, const DDim& dim) {
1039 1040
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
1041 1042
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1043
    } else {
1044 1045 1046 1047
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1048 1049 1050 1051 1052 1053
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1054 1055 1056 1057 1058 1059
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
1060 1061 1062 1063 1064
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1065 1066 1067
    }
  }

F
fengjiayi 已提交
1068 1069
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1070 1071
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1072 1073
  }

X
Xin Pan 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1085 1086 1087
    return ToVarType(var->Type());
  }

1088 1089 1090
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1091 1092 1093 1094
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1095 1096 1097 1098 1099
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1100 1101 1102 1103
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1104
    return it->second;
F
fengjiayi 已提交
1105 1106
  }

1107
  const OperatorBase& op_;
X
Xin Pan 已提交
1108
  const RuntimeContext& ctx_;
1109 1110
};

1111 1112
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1113 1114 1115 1116
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
1117 1118
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1119 1120
    return;
  }
1121 1122 1123 1124 1125 1126 1127 1128
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1129 1130
}

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(), phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(), op_kernels.end(),
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(), phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(), op_kernels.end(),
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1181 1182
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1183 1184 1185 1186 1187 1188 1189 1190 1191
  auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
  if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
    VLOG(6) << "Warning: " << type_ << " don't find its MKLDNN Kernel in Fluid "
                                       "Registered Kernels. And We don't "
                                       "search its kernels in phi lib, "
                                       "SupportsMKLDNN() return false.";
    return false;
  }
  auto& op_kernels = op_kernel_iter->second;
1192
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1193
                     [data_type](OpKernelMap::const_reference kern_pair) {
1194 1195
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1196 1197
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1198 1199 1200
                     });
}

1201 1202
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1203 1204 1205 1206
  const auto& attrs_map = ctx.Attrs();
  auto iter = attrs_map.find("use_mkldnn");
  bool use_mkldnn_ctx = iter != attrs_map.end() &&
                        BOOST_GET_CONST(bool, iter->second) &&
1207
                        platform::is_cpu_place(ctx.GetPlace());
1208
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1209 1210
}

1211 1212 1213 1214 1215 1216 1217
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1218
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1219 1220
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1221
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1222
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1223 1224
}

L
luotao1 已提交
1225 1226
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1227 1228
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1229 1230 1231
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1232
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1233
    all_kernels_must_compute_runtime_shape_ = true;
1234
  const Scope* cur_scope = &scope;
1235
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1236 1237
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1238
    pre_scope_ = cur_scope;
L
luotao1 已提交
1239
  } else {
1240 1241 1242 1243 1244 1245
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1246 1247 1248 1249 1250 1251 1252 1253
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1254
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1255
  auto* dev_ctx = pool.Get(place);
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1267
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1268 1269 1270 1271
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1272 1273 1274 1275 1276 1277

  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1278
  phi::KernelKey pt_kernel_key;
1279
  std::string pt_kernel_name;
1280
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1281
    if (pt_kernel_signature_ == nullptr || pt_kernel_ == nullptr) {
1282
      pt_kernel_signature_.reset(
1283
          new KernelSignature(std::move(GetExpectedPhiKernelArgs(exe_ctx))));
1284 1285 1286 1287 1288 1289 1290
      VLOG(6) << *pt_kernel_signature_.get();

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

      pt_kernel_name = pt_kernel_signature_->name;
1291
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1292
      pt_kernel_.reset(
1293
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1294 1295 1296
              pt_kernel_name, pt_kernel_key)));

      if (pt_kernel_->IsValid()) {
1297
        VLOG(6) << "Static mode ChoosePhiKernel - kernel name: "
1298 1299 1300
                << pt_kernel_name << " | kernel key: " << pt_kernel_key
                << " | kernel: " << *pt_kernel_;
      } else {
1301
        VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1302 1303
                << "` not found.";
      }
1304 1305
    } else {
      pt_kernel_name = pt_kernel_signature_->name;
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: " << type_
                  << ", using_kernel_key:" << *kernel_type_.get();
          auto try_pt_kernel_key =
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1331 1332
          if (!phi::KernelFactory::Instance().HasKernel(pt_kernel_name,
                                                        try_pt_kernel_key)) {
1333 1334 1335 1336 1337 1338 1339
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: " << type_
                    << " is failed " << *kernel_type_.get();
          }
        }
      }
#endif
1340
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1341
    }
1342 1343 1344 1345

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1346
#if defined(PADDLE_WITH_XPU)
1347 1348 1349 1350 1351 1352
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
            !paddle::platform::is_xpu_support_op(type_, *kernel_type_.get()) ||
        paddle::platform::is_in_xpu_black_list(type_);
#endif
    if (pt_kernel_->IsValid()
1353
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1354 1355 1356
        && !is_xpu_unsupport
#endif
        ) {
1357
      run_phi_kernel_ = true;
1358 1359 1360
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      bool use_xpu_kp_kernel_rt =
          paddle::platform::is_xpu_place(kernel_type_->place_) &&
          FLAGS_run_kp_kernel &&
          paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
      bool use_xpu_kp_kernel_debug =
          paddle::platform::is_xpu_place(kernel_type_->place_) &&
          paddle::platform::is_in_xpu_kpwhite_list(type_);
      bool is_xpu_kp_support =
          (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif

1380 1381 1382
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1383
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1384
          || is_xpu_unsupport
1385
#endif
1386 1387 1388 1389
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
              ) {
1390 1391 1392
        auto pt_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), pt_kernel_key, *this);
        pt_kernel_.reset(
1393
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1394 1395 1396 1397 1398 1399 1400
                pt_kernel_name, pt_cpu_kernel_key)));

        dev_ctx = pool.Get(platform::CPUPlace());
        if (pt_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: " << pt_kernel_name
                  << " | kernel key: " << pt_cpu_kernel_key
                  << " | kernel: " << *pt_kernel_;
1401
          run_phi_kernel_ = true;
1402 1403
        }
      }
1404 1405
    }
  }
1406
  if (!run_phi_kernel_) {
1407 1408
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1409
      dev_ctx = pool.Get(kernel_type_->place_);
1410
    }
1411 1412
  }

Y
yuyang18 已提交
1413 1414
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1415 1416
  Scope* transfer_scope = nullptr;
  {
1417
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1418 1419
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1420 1421 1422 1423
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1424
  }
Y
yuyang18 已提交
1425 1426 1427 1428
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1429
  if (!all_kernels_must_compute_runtime_shape_) {
1430
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1431 1432
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1433
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1434
    this->Info().infer_shape_(&infer_shape_ctx);
1435
  }
1436 1437 1438 1439 1440

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1441 1442
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1443
  {
1444
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1445 1446
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1447
    if (run_phi_kernel_) {
1448
      phi::KernelContext pt_kernel_context;
1449
      // Do data transform before building KernelContext
1450
      // TODO(zhiqiu): support TransferInplaceVarsBack
1451 1452 1453
      PreparePhiData(exec_scope, *pt_kernel_, *pt_kernel_signature_,
                     runtime_ctx);
      BuildPhiKernelContext(*runtime_ctx, dev_ctx, &pt_kernel_context);
1454
      (*pt_kernel_)(&pt_kernel_context);
1455 1456 1457 1458
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1459
  }
D
dzhwinter 已提交
1460

Y
yuyang18 已提交
1461
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1462
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1463
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1464
  }
1465 1466 1467 1468 1469 1470 1471

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1472 1473 1474 1475 1476 1477 1478 1479
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1480

D
dzhwinter 已提交
1481
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1482
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1483
    dev_ctx->Wait();
1484 1485
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1486 1487
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1488
  }
C
chengduoZH 已提交
1489 1490

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1491
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1492
  }
1493 1494 1495 1496 1497 1498 1499

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1500
}
X
Xin Pan 已提交
1501

1502 1503 1504
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1505 1506 1507
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1518 1519
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
1520 1521
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1522
      if (SupportGPU()) {
1523
        auto& dev_ctx = ctx.device_context();
1524
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1525 1526 1527 1528 1529
      }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1530
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1531 1532 1533
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1534 1535 1536 1537 1538 1539
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1540 1541
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1542 1543 1544
  return expected_kernel_key;
}

1545
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
1546
    const ExecutionContext& ctx) const {
1547
  pt_kernel_signature_.reset(
1548
      new KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
1549
  VLOG(6) << *pt_kernel_signature_.get();
1550 1551 1552 1553

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

Y
YuanRisheng 已提交
1554
  auto pt_kernel_name = pt_kernel_signature_->name;
1555
  auto pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1556 1557
  pt_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      pt_kernel_name, pt_kernel_key)));
1558 1559

  if (pt_kernel_->IsValid()) {
1560
    VLOG(6) << "Static mode ChoosePhiKernel - kernel name: " << pt_kernel_name
1561 1562 1563
            << " | kernel key: " << pt_kernel_key
            << " | kernel: " << *pt_kernel_;
  } else {
1564
    VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1565 1566
            << "` not found.";
  }
1567
  return pt_kernel_key;
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1583 1584

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1585

L
Liu Yiqun 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1595
#endif
1596 1597

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1598
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1599 1600 1601
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1602 1603 1604 1605 1606 1607
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1608
#endif
L
Liu-xiandong 已提交
1609 1610

#ifdef PADDLE_WITH_XPU_KP
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
      VLOG(3) << "xpu_kp using rt mode ";
    }
    if (use_xpu_kp_kernel_debug) {
      VLOG(3) << "xpu_kp using debug mode ";
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
1625 1626
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
1627 1628
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
      // if can't find corresponding kernel when is_xpu_kp_support is on
      // if the fluid do not register related kernel, it can't work and hava
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
        VLOG(3) << "using XPU KP kernel: " << type_
                << ", using_kernel_key:" << expected_kernel_key;
      }
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
    }
    bool is_xpu_unsupport =
        (!paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
         paddle::platform::is_in_xpu_black_list(type_));
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
      VLOG(3) << "missing XPU kernel: " << type_
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
1653 1654 1655
  }
#endif

A
Allen Guo 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
1666 1667
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
1668
      platform::is_npu_place(expected_kernel_key.place_)) {
1669 1670 1671 1672 1673 1674
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1675 1676 1677
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
1678
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
1679 1680 1681
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
1693 1694 1695
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1696
#endif
1697 1698 1699 1700
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1701

1702 1703 1704 1705 1706
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1707 1708
}

Y
yuyang18 已提交
1709 1710 1711 1712
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1713
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1714
    auto* origin_var = scope.FindVar(var_name);
1715 1716 1717
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1718
    auto* original_tensor =
C
chengduo 已提交
1719
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1720
    auto* var = transfer_scope.FindVar(var_name);
1721 1722
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1723
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1724
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1725
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1726 1727 1728 1729 1730
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1731 1732 1733
  }
}

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
1763
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
1783
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1801
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1802
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1803 1804
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1805
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1806

1807
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1808 1809 1810 1811
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1812 1813
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1814 1815 1816
    }
  }

Y
yuyang18 已提交
1817
  for (auto& var_name_item : Inputs()) {
1818 1819
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1820

X
Xin Pan 已提交
1821 1822 1823 1824
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1825
      auto* var = input_vars[i];
X
Xin Pan 已提交
1826

Y
yuyang18 已提交
1827
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1828
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1829 1830 1831
        continue;
      }

C
chengduo 已提交
1832
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1848 1849
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1882 1883
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1884

1885 1886 1887
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1888
      // We use a thread_local cache to fix that issue, the key in the cache is
1889 1890 1891 1892 1893
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1894 1895
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1896
      // variables, that behavior a lot different.
1897 1898 1899 1900 1901 1902 1903 1904 1905
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1906 1907
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1908
        enable_cache_transfer_scope_ = true;
1909
      }
1910
      if (!new_scope) {
Y
yuyang18 已提交
1911 1912
        new_scope = &scope.NewScope();
      }
1913 1914 1915 1916
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1917
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1918 1919
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1920
      if (enable_cache_runtime_context_) {
1921 1922
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1923 1924

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1925
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1926
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1944
      Tensor out;
Y
yuyang18 已提交
1945
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1946 1947 1948
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1949

1950 1951 1952 1953 1954 1955
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
1956 1957 1958 1959 1960 1961

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
1962 1963
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1964 1965 1966

  return new_scope;
}
Q
Qiao Longfei 已提交
1967

1968
void OperatorWithKernel::ParseInputDataType(
1969
    const std::vector<Variable*>& vars, const std::string& name,
1970
    proto::VarType::Type* data_type) const {
1971
  proto::VarType::Type default_data_type =
1972 1973 1974 1975 1976 1977 1978 1979 1980
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
1981 1982
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
1983
      } else if (var->IsType<LoDTensorArray>()) {
1984 1985 1986 1987
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
1988 1989
          }
        }
1990 1991
      }
      if (t != nullptr) {
1992 1993
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
1994 1995 1996
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(), name));
1997 1998
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
1999 2000 2001 2002 2003 2004 2005 2006 2007
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(), name, DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
2008 2009 2010 2011 2012 2013
        *data_type = tmp;
      }
    }
  }
}

2014
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2015
    const ExecutionContext& ctx) const {
2016 2017 2018
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
2019
  for (auto& input : ctx.InNameList()) {
2020 2021
    const std::vector<Variable*> vars = ctx.MultiInputVar(input);
    ParseInputDataType(vars, input, &data_type);
Y
Yu Yang 已提交
2022
  }
2023 2024 2025 2026
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2027 2028 2029 2030 2031 2032 2033 2034
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2035
  ParseInputDataType(ctx.MultiInputVar(name), name, &data_type);
2036 2037
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
2038 2039 2040 2041 2042
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
2043
  return data_type;
Y
Yu Yang 已提交
2044
}
2045

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
2064 2065
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2097 2098
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2099 2100 2101 2102 2103 2104 2105

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2106 2107 2108 2109 2110 2111 2112 2113
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
2114 2115
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
2116 2117
}

2118
KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2119
    const ExecutionContext& ctx) const {
2120
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2121
  if (arg_map_fn_ == nullptr) {
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
      auto func =
          [this](const phi::ArgumentMappingContext& ctx) -> KernelSignature {
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2132 2133
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2134 2135
}

2136
Scope* OperatorWithKernel::PreparePhiData(
2137
    const Scope& scope, const phi::Kernel& pt_kernel,
2138
    const KernelSignature& pt_kernel_signature, RuntimeContext* ctx) const {
2139
  const auto& input_names = pt_kernel_signature.input_names;
2140 2141 2142 2143 2144 2145 2146
  auto input_defs = pt_kernel.args_def().input_defs();
  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));
  Scope* new_scope = nullptr;
2147
  auto& name_map = Inputs();
Y
YuanRisheng 已提交
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
    }
  }

2158 2159
  for (size_t i = 0; i < input_defs.size(); ++i) {
    auto& in_def = input_defs.at(i);
2160
    if (ctx->inputs.find(input_names[i]) == ctx->inputs.end()) {
H
hong 已提交
2161 2162
      continue;
    }
2163
    auto& ins_vector = ctx->inputs.at(input_names[i]);
2164
    auto& name_vec = name_map.at(input_names[i]);
Y
YuanRisheng 已提交
2165 2166 2167
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(input_names[i]) > 0;

2168 2169 2170 2171 2172 2173 2174
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      // Only tensor can be tranfer to another device.
      auto* var = ins_vector[offset];
      if (var == nullptr || !VarIsTensor(*var)) {
        continue;
      }
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
YuanRisheng 已提交
2175 2176 2177 2178 2179 2180 2181 2182 2183

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
        // TODO(YuanRisheng) : There need to supplement MKLDNN code later
        continue;
      }

2184 2185 2186 2187
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2188 2189 2190
      if (in_def.backend == phi::Backend::ALL_BACKEND) {
        continue;
      }
2191 2192 2193 2194 2195

      auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
      if (in_def.backend == tensor_backend ||
          (in_def.backend == phi::Backend::GPUDNN &&
           tensor_backend == phi::Backend::GPU)) {
2196 2197 2198
        continue;
      }

2199
      auto expected_place = phi::TransToPhiPlace(in_def.backend);
2200
      VLOG(3) << "phi Transform Variable " << input_names[i] << " from "
2201
              << tensor_in->place() << " to " << expected_place;
2202

2203 2204 2205
      if (!new_scope) {
        new_scope = &scope.NewScope();
      }
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
      if (enable_cache_runtime_context_) {
        pre_scope_ = nullptr;
      }
2216

2217
      // Create new var with the same name in transfer scopes
2218
      auto* trans_var = new_scope->Var(name_vec[offset]);
2219
      ins_vector[offset] = trans_var;
2220

2221 2222 2223 2224
      // Do transfer
      Tensor out;
      framework::TensorCopySync(*tensor_in, expected_place, &out);
      SetTensorToVariable(*var, out, trans_var);
2225 2226 2227 2228 2229 2230
    }
  }

  return new_scope;
}

2231
void OperatorWithKernel::BuildPhiKernelContext(
2232
    const RuntimeContext& ctx, platform::DeviceContext* dev_ctx,
2233
    phi::KernelContext* pt_kernel_context) const {
2234
  pt_kernel_context->SetDeviceContext(dev_ctx);
2235

2236 2237 2238
  auto& input_names = pt_kernel_signature_->input_names;
  auto& attr_names = pt_kernel_signature_->attr_names;
  auto& output_names = pt_kernel_signature_->output_names;
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

  auto input_defs = pt_kernel_->args_def().input_defs();
  auto attr_defs = pt_kernel_->args_def().attribute_defs();
  auto output_defs = pt_kernel_->args_def().output_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2263
    auto it = ctx.inputs.find(input_names[i]);
2264 2265 2266

    // calcute the start and end index of the input tensors
    size_t start_idx =
2267
        (i == 0 ? 0 : pt_kernel_context->InputRangeAt(i - 1).second);
2268

H
hong 已提交
2269
    // deal with optional here
2270
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
2271
        (input_defs[i].type_index ==
H
hong 已提交
2272 2273 2274 2275
             std::type_index(
                 typeid(paddle::optional<const phi::DenseTensor&>)) ||
         input_defs[i].type_index ==
             std::type_index(
2276 2277 2278 2279 2280
                 typeid(paddle::optional<const phi::SelectedRows&>)) ||
         input_defs[i].type_index ==
             std::type_index(
                 typeid(paddle::optional<
                        const std::vector<const phi::DenseTensor*>>)))) {
H
hong 已提交
2281 2282 2283 2284 2285 2286 2287 2288
      pt_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                          i);
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2289
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2290
      const phi::TensorBase* tensor_in = nullptr;
2291
      auto* var = ins_vector[offset];
H
hong 已提交
2292 2293
      if (var->IsType<framework::LoDTensor>()) {
        tensor_in = &(var->Get<framework::LoDTensor>());
2294
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2295 2296
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
2297 2298 2299 2300 2301 2302 2303 2304 2305
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
      } else if (var->IsType<framework::LoDTensorArray>()) {
        paddle::SmallVector<const phi::TensorBase*> tensor_vector;
        auto& tensor_array = var->Get<framework::LoDTensorArray>();
        for (auto& t : tensor_array) {
          tensor_vector.emplace_back(&t);
        }
        pt_kernel_context->EmplaceBackInputsWithoutSetRange(tensor_vector);
        end_idx += tensor_array.size() - 1;
2306 2307 2308 2309
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2310
      }
2311
    }
2312
    // Note: here cannot deal with vector<LoDTensorArray> input
2313
    pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2314
  }
2315
  VLOG(4) << "Done inputs";
2316 2317

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2318
    auto it = ctx.outputs.find(output_names[i]);
2319
    size_t start_idx =
2320
        (i == 0 ? 0 : pt_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
      pt_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                           i);
      continue;
    }
    auto& outs_vector = it->second;

2335
    size_t end_idx = start_idx + outs_vector.size();
2336 2337

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2338
      phi::TensorBase* tensor_out = nullptr;
2339
      auto* var = outs_vector[offset];
2340 2341 2342
      if (var) {
        if (var->template IsType<framework::LoDTensor>()) {
          tensor_out = var->template GetMutable<framework::LoDTensor>();
2343
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2344 2345
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (var->template IsType<framework::LoDTensorArray>()) {
          paddle::SmallVector<phi::TensorBase*> tensor_vector;
          auto* tensor_array =
              var->template GetMutable<framework::LoDTensorArray>();
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
          for (auto& t : *tensor_array) {
            tensor_vector.emplace_back(&t);
          }
          pt_kernel_context->EmplaceBackOutputsWithoutSetRange(tensor_vector);
          end_idx += tensor_array->size() - 1;
2358 2359 2360 2361 2362
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
2363 2364
      } else {
        pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2365
      }
2366
    }
2367
    pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
2368
  }
2369
  VLOG(4) << "Done outputs";
2370 2371

  for (size_t i = 0; i < attr_names.size(); ++i) {
2372
    if (attr_defs[i].type_index == std::type_index(typeid(phi::IntArray))) {
2373 2374 2375 2376
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // shape is in the attribute
        if (std::type_index(attr_iter->second.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
2377
          pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
2378
              BOOST_GET_CONST(std::vector<int64_t>, attr_iter->second))));
2379 2380
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
2381
          pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
2382
              BOOST_GET_CONST(std::vector<int32_t>, attr_iter->second))));
C
chentianyu03 已提交
2383 2384
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(int32_t))) {
2385 2386
          pt_kernel_context->EmplaceBackAttr(std::move(
              phi::IntArray(&BOOST_GET_CONST(int32_t, attr_iter->second), 1)));
2387 2388
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
2389
              "Unsupported cast op attribute `%s` to IntArray when "
2390 2391 2392 2393 2394 2395
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
2396
          pt_kernel_context->EmplaceBackAttr(std::move(
2397
              experimental::MakePhiIntArrayFromVar(*ins_vector.front())));
2398
        } else {  // ShapeTensorList
2399 2400
          pt_kernel_context->EmplaceBackAttr(
              std::move(experimental::MakePhiIntArrayFromVarList(ins_vector)));
2401 2402 2403
        }
      }
    } else if (attr_defs[i].type_index ==
2404
               std::type_index(typeid(phi::Scalar))) {
2405 2406 2407
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
2408 2409 2410 2411
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // scalar is in the attribute
        auto& attr = Attrs().at(attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
2412
          pt_kernel_context->EmplaceBackAttr(
2413
              std::move(phi::Scalar(BOOST_GET_CONST(float, attr))));
2414 2415
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
2416
          pt_kernel_context->EmplaceBackAttr(
2417
              std::move(phi::Scalar(BOOST_GET_CONST(std::string, attr))));
2418 2419 2420
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          pt_kernel_context->EmplaceBackAttr(
2421
              std::move(phi::Scalar(BOOST_GET_CONST(int, attr))));
2422 2423 2424 2425 2426 2427
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext.",
              attr_names[i]));
        }
2428
      } else {
2429
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
2430 2431
        pt_kernel_context->EmplaceBackAttr(
            std::move(experimental::MakePhiScalarFromVar(*ins_vector.front())));
2432
      }
2433

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(std::vector<phi::Scalar>))) {
      auto& attr = Attrs().at(attr_names[i]);
      if (std::type_index(attr.type()) ==
          std::type_index(typeid(std::vector<int32_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<float>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<double>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported cast op attribute `%s` to vector<Scalar> when "
            "construct KernelContext.",
            attr_names[i]));
      }
2479 2480
    } else {
      // TODO(chenweihang): support other attrs later
H
hong 已提交
2481
      auto attr_it = attrs_.find(attr_names[i]);
2482
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
H
hong 已提交
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
        if (attr_it == attrs_.end()) {
          auto in_it = ctx.inputs.find(attr_names[i]);
          if (in_it != ctx.inputs.end()) {
            // get data from input
            auto val = experimental::MakePhiScalarFromVar(*(in_it->second[0]));
            int32_t val_int = val.template to<int32_t>();
            pt_kernel_context->EmplaceBackAttr(val_int);
          } else {
            PADDLE_THROW(platform::errors::NotFound(
                "can not find attribute `%s` both in attribute and input ",
                attr_names[i]));
          }
        } else {
          pt_kernel_context->EmplaceBackAttr(
              BOOST_GET_CONST(int, attr_it->second));
        }
2499
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
H
hong 已提交
2500 2501
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(float, attr_it->second));
2502
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
H
hong 已提交
2503 2504
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(bool, attr_it->second));
H
hong 已提交
2505
      } else if (attr_defs[i].type_index == std::type_index(typeid(int64_t))) {
H
hong 已提交
2506 2507
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(int64_t, attr_it->second));
H
hong 已提交
2508 2509
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::string))) {
H
hong 已提交
2510 2511
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::string, attr_it->second));
2512
      } else if (attr_defs[i].type_index ==
2513
                 std::type_index(typeid(phi::DataType))) {
2514
        auto data_type = paddle::framework::TransToPhiDataType(
2515
            static_cast<framework::proto::VarType::Type>(
H
hong 已提交
2516
                BOOST_GET_CONST(int, attr_it->second)));
2517
        pt_kernel_context->EmplaceBackAttr(data_type);
2518 2519
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
H
hong 已提交
2520
        if (std::type_index(attr_it->second.type()) ==
2521 2522
            std::type_index(typeid(std::vector<int64_t>))) {
          pt_kernel_context->EmplaceBackAttr(
H
hong 已提交
2523 2524
              BOOST_GET_CONST(std::vector<int64_t>, attr_it->second));
        } else if (std::type_index(attr_it->second.type()) ==
2525
                   std::type_index(typeid(std::vector<int>))) {
2526
          // Emplace Back Attr according to the type of Phi_Kernel args.
H
hong 已提交
2527 2528
          const auto& vector_int_attr =
              BOOST_GET_CONST(std::vector<int>, attr_it->second);
2529 2530
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
2531
          pt_kernel_context->EmplaceBackAttr(vector_int64_attr);
2532
        }
H
hong 已提交
2533 2534
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int32_t>))) {
H
hong 已提交
2535 2536
        const auto& vector_int_attr =
            BOOST_GET_CONST(std::vector<int>, attr_it->second);
H
hong 已提交
2537
        pt_kernel_context->EmplaceBackAttr(vector_int_attr);
2538 2539 2540 2541
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<std::string>))) {
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<std::string>, attr_it->second));
2542 2543 2544 2545
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<float>))) {
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<float>, attr_it->second));
2546 2547
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
2548
            "Unsupported cast op attribute `%s` when construct "
2549 2550 2551 2552 2553
            "KernelContext.",
            attr_names[i]));
      }
    }
  }
2554
  VLOG(4) << "Done attributes";
2555 2556
}

Q
Qiao Longfei 已提交
2557
}  // namespace framework
L
liaogang 已提交
2558
}  // namespace paddle