math.py 182.3 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
# TODO: define math functions
18

19
import numpy as np
20

21
import paddle
22 23 24
from paddle import _C_ops, _legacy_C_ops
from paddle.common_ops_import import VarDesc, dygraph_only, dygraph_utils

25 26 27
# TODO: define math functions
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only

28
from ..common_ops_import import Variable
29 30
from ..fluid.data_feeder import (
    check_dtype,
31 32
    check_type,
    check_variable_and_dtype,
33 34
    convert_dtype,
)
35 36 37 38 39 40 41 42 43
from ..framework import (
    LayerHelper,
    convert_np_dtype_to_dtype_,
    core,
    in_dygraph_mode,
)
from .creation import _complex_to_real_dtype
from .layer_function_generator import generate_layer_fn, templatedoc
from .manipulation import cast
44 45
from .ops import abs  # noqa: F401
from .ops import acos  # noqa: F401
46
from .ops import acosh  # noqa: F401
47
from .ops import asin  # noqa: F401
48 49 50
from .ops import asinh  # noqa: F401
from .ops import atan  # noqa: F401
from .ops import atanh  # noqa: F401
51 52 53 54
from .ops import ceil  # noqa: F401
from .ops import ceil_  # noqa: F401
from .ops import cos  # noqa: F401
from .ops import cosh  # noqa: F401
55
from .ops import erf  # noqa: F401
56 57 58 59 60 61 62 63 64 65 66
from .ops import exp  # noqa: F401
from .ops import exp_  # noqa: F401
from .ops import expm1  # noqa: F401
from .ops import floor  # noqa: F401
from .ops import floor_  # noqa: F401
from .ops import reciprocal  # noqa: F401
from .ops import reciprocal_  # noqa: F401
from .ops import round  # noqa: F401
from .ops import round_  # noqa: F401
from .ops import rsqrt  # noqa: F401
from .ops import rsqrt_  # noqa: F401
67 68
from .ops import sin  # noqa: F401
from .ops import sinh  # noqa: F401
69 70
from .ops import sqrt  # noqa: F401
from .ops import sqrt_  # noqa: F401
71 72
from .ops import square  # noqa: F401
from .ops import tan  # noqa: F401
73

74 75
__all__ = []

76 77 78 79 80 81 82 83 84 85 86 87 88
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

89

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
def _get_reduce_axis(axis, x):
    """
    Internal function for max, min, amax and amin.
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, (tuple, range)):
            axis = list(axis)
        elif isinstance(axis, int):
            axis = [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(
                    type(axis)
                )
            )
    if axis is None:
        axis = []
    if axis == [] or len(axis) == len(x.shape):
        reduce_all = True
    else:
        reduce_all = False
    return reduce_all, axis


def _get_reduce_axis_with_tensor(axis, x):
    if isinstance(axis, Variable):
        if axis.shape[0] == len(x.shape):
            reduce_all = True
        else:
            reduce_all = False
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
123 124
        if paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
125 126 127
    return reduce_all, axis


128 129
def log(x, name=None):
    r"""
C
Chen Long 已提交
130
    Calculates the natural log of the given input Tensor, element-wise.
131 132 133

    .. math::

134
        Out = \ln(x)
135 136

    Args:
137
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64.
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

            import paddle

            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
    """
    if in_dygraph_mode():
        return _C_ops.log(x)
157
    else:
158 159 160
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], "log"
        )
161 162 163 164 165 166
        inputs = {'X': [x]}
        helper = LayerHelper('log', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
        return out
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185


def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
186 187 188 189 190 191
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
        scale (float|Tensor): The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32.
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
192 193

    Returns:
C
Chen Long 已提交
194
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
195 196 197

    Examples:
        .. code-block:: python
198

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
            # scale as a float32 number
            import paddle

            data = paddle.randn(shape=[2,3], dtype='float32')
            res = paddle.scale(data, scale=2.0, bias=1.0)

        .. code-block:: python

            # scale with parameter scale as a Tensor
            import paddle

            data = paddle.randn(shape=[2, 3], dtype='float32')
            factor = paddle.to_tensor([2], dtype='float32')
            res = paddle.scale(data, scale=factor, bias=1.0)

    """

    if in_dygraph_mode():
W
Weilong Wu 已提交
217 218
        if act is None:
            return _C_ops.scale(x, scale, float(bias), bias_after_scale)
W
wanghuancoder 已提交
219 220
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
221 222
    else:
        check_variable_and_dtype(
223
            x,
224 225 226 227 228 229 230 231 232 233 234 235 236
            "x",
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
            ],
            "scale",
237
        )
238 239 240 241 242 243 244 245 246 247 248
        inputs = {'X': [x]}
        attrs = {
            'bias': float(bias),
            'bias_after_scale': bias_after_scale,
        }
        if isinstance(scale, Variable):
            inputs['ScaleTensor'] = [scale]
        else:
            attrs['scale'] = float(scale)
        helper = LayerHelper('scale', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
249

250 251 252 253
        helper.append_op(
            type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return helper.append_activation(out)
254 255 256


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
257 258
    r"""

259 260 261 262
    stanh activation.

    .. math::

263
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
264 265 266 267 268

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
269
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
270 271 272 273 274 275 276 277 278 279 280 281 282 283

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]

    """

284
    if in_dygraph_mode():
285
        return _legacy_C_ops.stanh(x, 'scale_a', scale_a, 'scale_b', scale_b)
286 287 288 289
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'stanh'
        )
290

291 292 293 294 295 296 297 298 299
        helper = LayerHelper('stanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='stanh',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale_a': scale_a, 'scale_b': scale_b},
        )
        return out
300

301

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
333
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
334

335 336 337 338 339 340 341 342
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

            import paddle
343

344 345 346 347
            img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            inputs = [img1, img2]
            index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
348
            res = paddle.multiplex(inputs, index)
349
            print(res) # Tensor([[5., 6.], [3., 4.]], dtype=float32)
350 351

    """
352 353
    if in_dygraph_mode():
        return _C_ops.multiplex(inputs, index)
354 355
    else:
        helper = LayerHelper('multiplex', **locals())
356

357 358 359 360 361 362 363 364 365 366 367 368
        check_type(inputs, 'inputs', (list), 'multiplex')
        if len(inputs) < 2:
            raise ValueError(
                "inputs should be a list object with at least 2 elements."
            )
        for id, x in enumerate(inputs):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                ['float32', 'float64', 'int32', 'int64'],
                'multiplex',
            )
369
        check_variable_and_dtype(
370
            index, "index", ['int32', 'int64'], 'multiplex'
371
        )
372

373 374 375 376 377 378 379
        out = helper.create_variable_for_type_inference(inputs[0].dtype)
        helper.append_op(
            type='multiplex',
            inputs={'X': inputs, 'Ids': index},
            outputs={'Out': [out]},
        )
        return out
380

381

382 383 384 385 386 387
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
388
    if in_dygraph_mode():
389
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
390 391


392
def pow(x, y, name=None):
393
    """
C
Chen Long 已提交
394
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
395

396
    .. math::
397
        out = x^{y}
398

399
    Note:
I
Infinity_lee 已提交
400 401 402
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensors
403 404


405
    Args:
406
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
407
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
408
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
409

410
    Returns:
411
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
412 413 414

    Examples:

415
        ..  code-block:: python
416 417 418

            import paddle

419 420 421 422 423 424 425 426 427 428 429 430
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

431
            # example 2: y is a Tensor
432
            y = paddle.to_tensor([2], dtype='float32')
433
            res = paddle.pow(x, y)
434 435 436
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
437 438

    """
439
    # in dynamic graph mode
440
    if in_dygraph_mode():
441
        if isinstance(y, (int, float)):
442
            return _C_ops.pow(x, y)
443
        elif isinstance(y, (paddle.Tensor, Variable)):
444
            return _C_ops.elementwise_pow(x, y)
445
        else:
446
            raise TypeError(
447 448
                'y must be scalar or tensor type, but received: %s ' % (y.dtype)
            )
449 450
    else:
        # in static graph mode
451
        if isinstance(y, (int, float)):
452 453 454 455 456 457
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs
458
            )
459 460 461 462 463 464
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
465
        else:
466
            raise TypeError(
467
                'y must be scalar or tensor type, but received: %s ' % (type(y))
468
            )
469 470


471
OP_NAMEMAPPING = {
472 473 474 475 476 477 478 479
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
480
    'elementwise_mod': 'remainder',
481
}
482

483

484 485 486 487 488 489
def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

490 491
    out = helper.kwargs.get('out', None)

492 493
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
    bf16_and_complex_supported_ops = [
        "elementwise_add",
        "elementwise_sub",
        "elementwise_mul",
        "elementwise_div",
    ]
    if original_op_type in bf16_and_complex_supported_ops:
        data_type = [
            'uint16',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
            'complex64',
            'complex128',
        ]
    else:
        data_type = ['float16', 'float32', 'float64', 'int32', 'int64', 'bool']
514
    check_variable_and_dtype(
515 516
        x,
        'x',
517
        data_type,
518 519
        original_op_type,
    )
520
    check_variable_and_dtype(
521 522
        y,
        'y',
523
        data_type,
524 525
        original_op_type,
    )
526 527 528 529

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
530 531 532 533 534

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
535 536 537 538 539 540 541 542 543 544
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )

    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
545 546 547
    return helper.append_activation(out)


Y
Yang Zhang 已提交
548
def add(x, y, name=None):
549
    """
550 551 552 553 554 555 556 557
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

558 559
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
560 561

    There are two cases for this operator:
562 563 564 565

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

566
    For case 2:
567 568

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
H
HongyuJia 已提交
569
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
570
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
571 572 573 574

        For example:

        ..  code-block:: python
575

576 577 578 579 580 581
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
582

583
    Args:
584 585 586
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
587 588

    Returns:
H
HongyuJia 已提交
589
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.
590 591 592 593

    Examples:

        ..  code-block:: python
594

595
            import paddle
596

597 598 599 600
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.to_tensor([1, 5, 2], 'float64')
            z = paddle.add(x, y)
            print(z)  # [3., 8., 6. ]
601
    """
602

J
Jiabin Yang 已提交
603
    if in_dygraph_mode():
604
        return _C_ops.add(x, y)
J
Jiabin Yang 已提交
605
    else:
606
        return _elementwise_op(LayerHelper('elementwise_add', **locals()))
607 608


609 610 611 612 613 614 615 616 617
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
618
        raise ValueError(
619 620 621 622
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
623

624
    return _C_ops.add_(x, y)
625 626


627 628
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
629
    Substract two tensors element-wise. The equation is:
630 631 632 633

    .. math::
        out = x - y

634
    Note:
I
Infinity_lee 已提交
635 636 637
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
638 639 640 641 642 643 644 645 646 647 648 649

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
650

651 652 653 654 655 656
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
657 658 659
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[-4, -4],
            #         [ 4,  4]])
660 661 662 663 664

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
665 666 667
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[ 0,  2, -1],
            #          [ 0,  2, -1]]])
668

669 670
            x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
671 672
            res = paddle.subtract(x, y)
            print(res)
673 674
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
675

676
            x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
677 678 679
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
680 681
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 4.  ,  inf., -inf.])
682
    """
J
Jiabin Yang 已提交
683
    if in_dygraph_mode():
684
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
685
    else:
686
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
687 688


689 690 691 692 693 694 695 696 697
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
698
        raise ValueError(
699 700 701 702
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
703

704
    return _C_ops.subtract_(x, y)
705 706


707
def divide(x, y, name=None):
708
    """
709
    Divide two tensors element-wise. The equation is:
710

711 712
    .. math::
        out = x / y
713

714
    Note:
I
Infinity_lee 已提交
715 716 717
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
718

719 720 721 722
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
723

724
    Returns:
725
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
726

727
    Examples:
728

729
        ..  code-block:: python
730

731
            import paddle
732

733 734
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
735
            z = paddle.divide(x, y)
736
            print(z)  # [2., 0.6, 2.]
737

738
    """
J
Jiabin Yang 已提交
739
    if in_dygraph_mode():
740
        return _C_ops.divide(x, y)
J
Jiabin Yang 已提交
741
    else:
742
        return _elementwise_op(LayerHelper('elementwise_div', **locals()))
743 744


745 746
def floor_divide(x, y, name=None):
    """
L
Lin Manhui 已提交
747
    Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
748

749
    .. math::
L
Lin Manhui 已提交
750
        out = trunc(x / y)
751

H
hg-1099255210 已提交
752 753 754
    - :math:`x`: Multidimensional Tensor.
    - :math:`y`: Multidimensional Tensor.

755
    Note:
I
Infinity_lee 已提交
756 757 758 759
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

L
Lin Manhui 已提交
760
        Also note that the name ``floor_divide`` can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.
761

762 763 764 765
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
766

767 768
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
769

770
    Examples:
771

772
        ..  code-block:: python
773

774
            import paddle
775

776 777
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
778
            z = paddle.floor_divide(x, y)
779
            print(z)  # [2, 0, 2, 2]
780

781
    """
782 783
    if in_dygraph_mode():
        return _C_ops.floor_divide(x, y)
784
    else:
785
        return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))
786 787


788
def remainder(x, y, name=None):
789
    r"""
790 791 792
    Mod two tensors element-wise. The equation is:

    .. math::
793

794 795
        out = x \% y

796
    Note:
I
Infinity_lee 已提交
797 798 799
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
800 801

    Args:
802 803
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
804 805 806
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
807
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
808 809 810 811 812 813 814

    Examples:

        ..  code-block:: python

            import paddle

815 816
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
817
            z = paddle.remainder(x, y)
W
WangXi 已提交
818
            print(z)  # [0, 3, 2, 1]
819 820

    """
821 822
    if in_dygraph_mode():
        return _C_ops.remainder(x, y)
823
    else:
824
        return _elementwise_op(LayerHelper('elementwise_mod', **locals()))
825 826


827 828 829 830 831 832 833 834 835
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_remainder`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
836 837 838 839
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
840
    return _C_ops.remainder_(x, y)
841 842


843 844
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
845 846


847
def multiply(x, y, name=None):
848
    """
849
    multiply two tensors element-wise. The equation is:
850

851 852
    .. math::
        out = x * y
853

854
    Note:
I
Infinity_lee 已提交
855 856 857
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
858

859
    Args:
W
will-jl944 已提交
860 861
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
862
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
863

864
    Returns:
865
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
866

867 868 869 870 871 872
    Examples:

        ..  code-block:: python

            import paddle

873 874
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
875
            res = paddle.multiply(x, y)
876
            print(res) # [[5, 12], [21, 32]]
877

878
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
879 880 881
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
882 883

    """
J
Jiabin Yang 已提交
884
    if in_dygraph_mode():
885
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
886
    else:
887 888 889 890
        if x.dtype != y.dtype:
            raise TypeError(
                'Input tensors must be same type, but received type of x: %s, type of y: %s '
                % (x.dtype, y.dtype)
891
            )
892

893
        return _elementwise_op(LayerHelper('elementwise_mul', **locals()))
894

895

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
@dygraph_only
def _elementwise_op_with_axis_in_dygraph(
    x, y, axis=-1, name=None, op_type="Undifined"
):
    assert (
        in_dygraph_mode()
    ), "You can only call `_elementwise_op_with_axis_in_dygraph` function within in_dygraph_mode"
    assert op_type in ["add", "subtract", "multiply", "divide"], (
        "op_name input error! _elementwise_op_with_axis is an inner function to replace elementwise_add/sub/mul/div. Input op_name=%s, Expect op_name=[add|subtract|multiply|divide]\n"
        % op_type
    )
    op = getattr(_C_ops, op_type)
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if axis == -1 or len(x_shape) == len(y_shape):
        return op(x, y)
    if len(x_shape) > len(y_shape):
        padding = len(x_shape) - len(y_shape) - axis
        y = paddle.reshape(y, [1] * axis + y_shape + [1] * padding)
    else:
        padding = len(y_shape) - len(x_shape) - axis
        x = paddle.reshape(x, [1] * axis + y_shape + [1] * padding)
    return op(x, y)


def _add_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "add")
    else:
        op_type = 'elementwise_add'
927
        return _elementwise_op(LayerHelper(op_type, **locals()))
928 929 930 931 932 933 934 935 936 937


def _subtract_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "subtract"
        )
    else:
        op_type = 'elementwise_sub'
938
        return _elementwise_op(LayerHelper(op_type, **locals()))
939 940 941 942 943 944 945 946 947 948


def _multiply_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "multiply"
        )
    else:
        op_type = 'elementwise_mul'
949
        return _elementwise_op(LayerHelper(op_type, **locals()))
950 951 952 953 954 955 956 957


def _divide_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "divide")
    else:
        op_type = 'elementwise_div'
958
        return _elementwise_op(LayerHelper(op_type, **locals()))
959 960


961
def maximum(x, y, name=None):
962
    """
W
Wei Shengyu 已提交
963
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
964

965 966
    .. math::
        out = max(x, y)
967

968
    Note:
I
Infinity_lee 已提交
969 970 971
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to  `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
991 992 993
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
994 995 996 997 998

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
999 1000 1001
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
1002 1003

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1004
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1005 1006
            res = paddle.maximum(x, y)
            print(res)
1007 1008
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2. , nan, nan])
1009

1010 1011
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
1012 1013
            res = paddle.maximum(x, y)
            print(res)
1014 1015
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
1016
    """
1017 1018
    if in_dygraph_mode():
        return _C_ops.maximum(x, y)
1019
    else:
1020
        return _elementwise_op(LayerHelper('elementwise_max', **locals()))
1021

1022

1023
def minimum(x, y, name=None):
1024
    """
C
Chen Long 已提交
1025
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
1026

1027 1028
    .. math::
        out = min(x, y)
1029

1030
    Note:
I
Infinity_lee 已提交
1031 1032 1033
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1034 1035 1036 1037 1038 1039 1040

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
1041
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
1053 1054 1055
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
1056 1057 1058 1059 1060

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
1061 1062 1063
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
1064 1065

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1066
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1067 1068
            res = paddle.minimum(x, y)
            print(res)
1069 1070
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
1071

1072 1073
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
1074 1075
            res = paddle.minimum(x, y)
            print(res)
1076 1077
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
1078
    """
1079 1080
    if in_dygraph_mode():
        return _C_ops.minimum(x, y)
1081
    else:
1082
        return _elementwise_op(LayerHelper('elementwise_min', **locals()))
1083

1084

L
LJQ❤️ 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1094
    Note:
I
Infinity_lee 已提交
1095 1096 1097
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1098 1099

    Args:
1100 1101
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
1117 1118 1119
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
L
LJQ❤️ 已提交
1120 1121 1122 1123 1124

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
1125 1126 1127
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
L
LJQ❤️ 已提交
1128 1129

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1130
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1131 1132
            res = paddle.fmax(x, y)
            print(res)
1133 1134
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 3., 5.])
L
LJQ❤️ 已提交
1135

1136 1137
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
L
LJQ❤️ 已提交
1138 1139
            res = paddle.fmax(x, y)
            print(res)
1140 1141
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
L
LJQ❤️ 已提交
1142
    """
1143
    if in_dygraph_mode():
1144
        return _C_ops.fmax(x, y)
1145
    else:
1146
        return _elementwise_op(LayerHelper('elementwise_fmax', **locals()))
L
LJQ❤️ 已提交
1147

1148

L
LJQ❤️ 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157
def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1158
    Note:
I
Infinity_lee 已提交
1159 1160 1161
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1162 1163

    Args:
1164 1165
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
1181 1182 1183
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
L
LJQ❤️ 已提交
1184 1185 1186 1187 1188

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
1189 1190 1191
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
L
LJQ❤️ 已提交
1192 1193

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1194
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1195 1196
            res = paddle.fmin(x, y)
            print(res)
1197 1198
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1., 3., 5.])
L
LJQ❤️ 已提交
1199

1200 1201
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
L
LJQ❤️ 已提交
1202 1203
            res = paddle.fmin(x, y)
            print(res)
1204 1205
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
L
LJQ❤️ 已提交
1206
    """
1207
    if in_dygraph_mode():
1208
        return _C_ops.fmin(x, y)
1209
    else:
1210
        return _elementwise_op(LayerHelper('elementwise_fmin', **locals()))
L
LJQ❤️ 已提交
1211

Y
Yang Zhang 已提交
1212

1213
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1214 1215 1216 1217
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1218
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1219 1220
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1221
            Tensor with a single element, otherwise must be in the
1222 1223 1224 1225 1226 1227 1228
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1229
            value is False.
1230
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1231 1232

    Returns:
1233
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1234
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
1235
        otherwise it's data type is the same as `x`.
1236 1237 1238 1239 1240

    Examples:
        .. code-block:: python

            import paddle
1241

1242
            # x is a Tensor with following elements:
1243 1244 1245
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
1246 1247
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1248
            out1 = paddle.sum(x)  # [3.5]
1249 1250 1251
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
1252

1253
            # y is a Tensor with shape [2, 2, 2] and elements as below:
1254 1255 1256
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
1257
            y = paddle.to_tensor([[[1, 2], [3, 4]],
1258
                                  [[5, 6], [7, 8]]])
1259 1260
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
            out7 = paddle.sum(x)  # [4]
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
1271
    """
1272

1273 1274 1275 1276
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1277 1278

    if in_dygraph_mode():
1279
        return _C_ops.sum(x, axis, dtype, keepdim)
1280 1281 1282
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
F
From00 已提交
1283

1284
        if dtype_flag:
1285
            attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})
W
wanghuancoder 已提交
1286

1287 1288 1289 1290 1291
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
1292
                'uint16',
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'sum',
        )
1304

1305 1306 1307
        check_type(
            axis, 'axis', (int, list, tuple, type(None), Variable), 'sum'
        )
1308

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
        helper = LayerHelper('sum', **locals())
        if dtype_flag:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_sum',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1321

1322

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
def nan_to_num(x, nan=0.0, posinf=None, neginf=None, name=None):
    """
    Replaces NaN, positive infinity, and negative infinity values in input tensor.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        nan (float, optional): the value to replace NaNs with. Default is 0.
        posinf (float, optional): if a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by input’s dtype. Default is None.
        neginf (float, optional): if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by input’s dtype. Default is None.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of nan_to_num operation input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([float('nan'), 0.3, float('+inf'), float('-inf')], dtype='float32')
            out1 = paddle.nan_to_num(x)  # [0, 0.3, 3.4028235e+38, -3.4028235e+38]
            out2 = paddle.nan_to_num(x, nan=1)  # [1, 0.3, 3.4028235e+38, -3.4028235e+38]
            out3 = paddle.nan_to_num(x, posinf=5)  # [0, 0.3, 5, -3.4028235e+38]
            out4 = paddle.nan_to_num(x, nan=10, neginf=-99)  # [10, 0.3, 3.4028235e+38, -99]
    """
    # NOTE(tiancaishaonvjituizi): it seems that paddle handles the dtype of python float number
    # incorrectly, so we have to explicitly contruct tensors here
    posinf_value = paddle.full_like(x, float("+inf"))
    neginf_value = paddle.full_like(x, float("-inf"))
    nan = paddle.full_like(x, nan)
    assert x.dtype in [paddle.float32, paddle.float64]
    is_float32 = x.dtype == paddle.float32
    if posinf is None:
        posinf = (
            np.finfo(np.float32).max if is_float32 else np.finfo(np.float64).max
        )
    posinf = paddle.full_like(x, posinf)
    if neginf is None:
        neginf = (
            np.finfo(np.float32).min if is_float32 else np.finfo(np.float64).min
        )
    neginf = paddle.full_like(x, neginf)
    x = paddle.where(paddle.isnan(x), nan, x)
    x = paddle.where(x == posinf_value, posinf, x)
    x = paddle.where(x == neginf_value, neginf, x)
    return x


W
wangguanqun 已提交
1371 1372 1373 1374 1375
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
1376
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
W
wangguanqun 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1388
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

            import paddle

            # x is a Tensor with following elements:
            #    [[nan, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, -nan, 0.7]]
            # Each example is followed by the corresponding output tensor.
1402 1403
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                            [0.1, 0.2, float('-nan'), 0.7]],dtype="float32")
W
wangguanqun 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412
            out1 = paddle.nansum(x)  # [2.7]
            out2 = paddle.nansum(x, axis=0)  # [0.1, 0.5, 0.5, 1.6]
            out3 = paddle.nansum(x, axis=-1)  # [1.7, 1.0]
            out4 = paddle.nansum(x, axis=1, keepdim=True)  # [[1.7], [1.0]]

            # y is a Tensor with shape [2, 2, 2] and elements as below:
            #      [[[1, nan], [3, 4]],
            #      [[5, 6], [-nan, 8]]]
            # Each example is followed by the corresponding output tensor.
1413
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
W
wangguanqun 已提交
1414 1415 1416 1417
                            [[5, 6], [float('-nan'), 8]]])
            out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19]
            out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
    """
1418
    check_variable_and_dtype(
1419
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'nansum'
1420
    )
W
wangguanqun 已提交
1421 1422 1423 1424 1425 1426 1427
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                                  [0.1, 0.2, float('-nan'), 0.7]])
            out1 = paddle.nanmean(x)
            # [0.44999996]
            out2 = paddle.nanmean(x, axis=0)
            # [0.1, 0.25, 0.5, 0.79999995]
            out3 = paddle.nanmean(x, axis=0, keepdim=True)
            # [[0.1, 0.25, 0.5, 0.79999995]]
            out4 = paddle.nanmean(x, axis=1)
            # [0.56666666 0.33333334]
            out5 = paddle.nanmean(x, axis=1, keepdim=True)
            # [[0.56666666]
            #  [0.33333334]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
                                   [[5, 6], [float('-nan'), 8]]])
            out6 = paddle.nanmean(y, axis=[1, 2])
            # [2.66666675, 6.33333349]
            out7 = paddle.nanmean(y, axis=[0, 1])
            # [3., 6.]
    """
    if isinstance(axis, int):
        axis = [axis]
1485 1486 1487
    check_variable_and_dtype(
        x, 'x/input', ['uint16', 'float16', 'float32', 'float64'], 'nanmean'
    )
1488 1489 1490
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

1491 1492 1493
    cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim)
    return paddle.divide(
        paddle.nansum(x, axis=axis, keepdim=keepdim, name=name),
1494 1495
        cnt.astype(x.dtype),
    )
1496 1497


1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            out1 = paddle.count_nonzero(x)
            # [3]
            out2 = paddle.count_nonzero(x, axis=0)
            # [0, 1, 2]
            out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            # [[0, 1, 2]]
            out4 = paddle.count_nonzero(x, axis=1)
            # [2, 1, 0]
            out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            #[[2],
            # [1],
            # [0]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
                                  [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            out6 = paddle.count_nonzero(y, axis=[1, 2])
            # [3, 6]
            out7 = paddle.count_nonzero(y, axis=[0, 1])
            # [1, 3, 5]
    """

    if axis is not None:
        if isinstance(axis, int):
            axis = [axis]
        dims = len(x.shape)
        for i in range(len(axis)):
1552 1553 1554
            if not isinstance(axis[i], int) or not (
                axis[i] < dims and axis[i] >= -dims
            ):
1555 1556 1557 1558 1559 1560 1561 1562 1563
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1564
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1565
def add_n(inputs, name=None):
1566
    """
1567
    Sum one or more Tensor of the input.
1568

S
Steffy-zxf 已提交
1569 1570 1571
    For example:

    .. code-block:: text
1572

S
Steffy-zxf 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
1586

S
Steffy-zxf 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1602 1603

    Args:
1604
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1605
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1606
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1607 1608

    Returns:
S
Steffy-zxf 已提交
1609
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1610 1611 1612

    Examples:
        .. code-block:: python
1613

1614 1615
            import paddle

S
Steffy-zxf 已提交
1616 1617 1618
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
1619
            # [[8., 10., 12.],
S
Steffy-zxf 已提交
1620
            #  [14., 16., 18.]]
1621
    """
1622 1623 1624
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
1625
        return _C_ops.add_n(inputs)
1626
    else:
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
        helper = LayerHelper('add_n', **locals())
        check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
        if isinstance(inputs, list) or isinstance(inputs, tuple):
            if len(inputs) > 0:
                for input in inputs:
                    check_variable_and_dtype(
                        input,
                        "inputs",
                        ['float16', 'float32', 'float64', 'int32', 'int64'],
                        'add_n',
                    )
        else:
            check_variable_and_dtype(
                inputs,
                "inputs",
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                'add_n',
            )
1645

1646 1647 1648 1649 1650 1651 1652 1653 1654
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('inputs')
        )
        helper.append_op(
            type='sum',
            inputs={'X': inputs},
            outputs={'Out': out},
            attrs={'use_mkldnn': False},
        )
1655

1656
        return out
1657 1658


1659 1660 1661
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
1662

1663 1664 1665
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1666

1667 1668
    Returns:
        Tensor: The output Tensor of trunc.
1669

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
J
Jiabin Yang 已提交
1687
    if in_dygraph_mode():
1688
        return _C_ops.trunc(input)
1689
    else:
1690 1691
        inputs = {"X": input}
        attrs = {}
1692

1693 1694 1695 1696 1697
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
1698

1699 1700 1701 1702
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
1703 1704


W
WuHaobo 已提交
1705
def mm(input, mat2, name=None):
1706
    """
S
swtkiwi 已提交
1707

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1719
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1720
        mat2 (Tensor): The input tensor which is a Tensor.
1721
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1722 1723

    Returns:
N
Noel 已提交
1724
        Tensor: The product Tensor.
1725

W
wawltor 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

1758 1759 1760 1761
    Examples:
        .. code-block:: python

            import paddle
1762 1763 1764 1765 1766 1767 1768 1769
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1770

1771
    """
1772
    if in_dygraph_mode():
1773
        return _C_ops.matmul(input, mat2, False, False)
1774
    else:
1775

1776 1777 1778 1779 1780
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'mm'
1781
                )
1782 1783 1784 1785 1786 1787
            x_shape = list(x.shape)
            y_shape = list(y.shape)
            if len(x_shape) == 1:
                x_shape = [1] + x_shape
            if len(y_shape) == 1:
                y_shape = y_shape + [1]
1788

1789 1790 1791
            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-2]:
                if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
1792
                    raise ValueError(
1793 1794 1795 1796
                        "After performing an optional transpose, Input X's width should be "
                        "equal to Y's width for multiplication "
                        "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                        % (x_shape, y_shape)
1797
                    )
1798

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
            if len(y_shape) > 2 and len(x_shape) > 2:
                for i, dim_x in enumerate(x_shape[:-2]):
                    # don't check neg shape
                    if dim_x < 0 or y_shape[i] < 0:
                        continue
                    if dim_x != y_shape[i]:
                        raise ValueError(
                            "When the matrix is larger than 2 dimensions, the higher "
                            "dimensional values of the two matrices need to be equal. "
                            "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                            "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                        )

        __check_input(input, mat2)

        helper = LayerHelper('mm', **locals())
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': input, 'Y': mat2},
            outputs={'Out': out},
        )
        return out
1822

1823

Y
yaoxuefeng 已提交
1824
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1825 1826 1827
    """
    **addmm**

1828
    Perform matrix multiplication for input $x$ and $y$.
1829 1830 1831 1832 1833 1834 1835 1836 1837
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1838 1839 1840
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1841 1842
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
1843
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1844 1845

    Returns:
1846
        Tensor: The output Tensor of addmm.
1847 1848 1849

    Examples:
        ..  code-block:: python
1850

1851 1852
            import paddle

Y
yaoxuefeng 已提交
1853 1854 1855
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1856

Y
yaoxuefeng 已提交
1857
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1858

N
Noel 已提交
1859
            print(out)
1860 1861 1862
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1863 1864 1865
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
1866
    if not len(x_shape) == len(y_shape) == 2:
1867
        raise ValueError(
1868 1869 1870 1871
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
1872
    if x_shape[1] != y_shape[0]:
1873
        raise ValueError(
1874 1875 1876 1877
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
1878 1879 1880
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
1881
                raise ValueError(
1882 1883 1884 1885
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
1886
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
1887
                raise ValueError(
1888 1889 1890 1891
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
1892 1893
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
1894
                raise ValueError(
1895 1896 1897 1898
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
1899 1900
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
1901
            raise ValueError(
1902 1903 1904 1905
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
1906
    else:
1907
        raise ValueError(
1908 1909 1910 1911
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )
Y
yaoxuefeng 已提交
1912

J
Jiabin Yang 已提交
1913
    if in_dygraph_mode():
1914
        return _C_ops.addmm(input, x, y, beta, alpha)
J
Jiabin Yang 已提交
1915
    else:
1916 1917
        inputs = {'Input': input, "X": x, "Y": y}
        attrs = {'Alpha': alpha, 'Beta': beta}
1918

1919 1920 1921 1922 1923 1924 1925
        helper = LayerHelper("addmm", **locals())
        check_variable_and_dtype(
            input, 'Input', ['float32', 'float64'], 'addmm'
        )
        check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
        check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1926

1927 1928 1929 1930
        helper.append_op(
            type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
1931

1932

S
seemingwang 已提交
1933 1934 1935 1936 1937 1938 1939
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
1940
    part, if the p-norm for part i is larger than max-norm, then each element
S
seemingwang 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
        ..  code-block:: python
1955

S
seemingwang 已提交
1956 1957 1958 1959
            import paddle
            input = [[[2.0,2,-2],[3,0.3,3]],[[2,-8,2],[3.1,3.7,3]]]
            x = paddle.to_tensor(input,dtype='float32')
            y = paddle.renorm(x, 1.0, 2, 2.05)
1960
            print(y)
S
seemingwang 已提交
1961 1962 1963 1964
    #        [[[ 0.40594056,  0.29285714, -0.41000000],
    #          [ 0.60891086,  0.04392857,  0.61500001]],
    #         [[ 0.40594056, -1.17142856,  0.41000000],
    #          [ 0.62920785,  0.54178572,  0.61500001]]])
1965

S
seemingwang 已提交
1966 1967 1968
    """
    input_shape = x.shape
    if not axis < len(input_shape):
1969 1970
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
1971 1972 1973
                axis, len(input_shape), input_shape
            )
        )
1974
    if not axis >= 0:
S
seemingwang 已提交
1975
        if not axis >= -1 * len(input_shape):
1976
            raise ValueError(
1977 1978 1979 1980
                "the axis:{} should not be less than -1 * length of input_shape:{}".format(
                    axis, -1 * len(input_shape)
                )
            )
S
seemingwang 已提交
1981
        axis = axis + len(input_shape)
S
seemingwang 已提交
1982
    if in_dygraph_mode():
1983
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
1984
        return out
1985
    else:
1986
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
1987 1988
        inputs = {'X': x}
        attrs = {'p': p, 'axis': axis, 'max_norm': max_norm}
S
seemingwang 已提交
1989

1990 1991
        helper = LayerHelper("renorm", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
seemingwang 已提交
1992

1993 1994 1995 1996
        helper.append_op(
            type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
S
seemingwang 已提交
1997

1998

Z
zhiboniu 已提交
1999 2000 2001 2002
def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
2003

Z
zhiboniu 已提交
2004 2005 2006 2007 2008
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
2009
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            out = paddle.inner(x, y)
            print(out)
            #        ([[14, 32, 50],
            #         [32, 77, 122]])


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
2032 2033
        dstshape = list(xshape[:-1]) + list(yshape[:-1])
        if len(dstshape) == 0:
Z
zhiboniu 已提交
2034 2035 2036 2037
            dstshape = [1]
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

2038
        if in_dygraph_mode():
2039
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
2040
        else:
Z
zhiboniu 已提交
2041

2042 2043 2044 2045 2046
            def __check_input(x, y):
                var_names = {'x': x, 'y': y}
                for name, val in var_names.items():
                    check_variable_and_dtype(
                        val, name, ['float16', 'float32', 'float64'], 'inner'
2047
                    )
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
                x_shape = list(xshape)
                y_shape = list(yshape)

                # check the inner 2 dimensions
                if x_shape[-1] != y_shape[-1]:
                    if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                        raise ValueError(
                            "After performing an optional transpose, Input X's last dim should be "
                            "equal to Y's last dim for multiplication "
                            "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                            % (x_shape, y_shape)
                        )

            __check_input(nx, ny)

            helper = LayerHelper('inner', **locals())
            out = helper.create_variable_for_type_inference(dtype=nx.dtype)
            helper.append_op(
                type='matmul_v2',
                inputs={'X': nx, 'Y': ny.T},
                outputs={'Out': out},
            )
            return out.reshape(dstshape)
Z
zhiboniu 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
2081 2082
        x (Tensor): An N-D Tensor or a Scalar Tensor.
        y (Tensor): An N-D Tensor or a Scalar Tensor.
2083
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 4).astype('float32')
            y = paddle.arange(1, 6).astype('float32')
            out = paddle.outer(x, y)
            print(out)
            #        ([[1, 2, 3, 4, 5],
            #         [2, 4, 6, 8, 10],
            #         [3, 6, 9, 12, 15]])


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

2105
    if in_dygraph_mode():
2106
        return _C_ops.matmul(nx, ny, False, False)
2107
    else:
Z
zhiboniu 已提交
2108

2109 2110 2111 2112 2113 2114
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'inner'
                )
Z
zhiboniu 已提交
2115

2116
        __check_input(nx, ny)
Z
zhiboniu 已提交
2117

2118 2119 2120 2121 2122 2123
        helper = LayerHelper('outer', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx, 'Y': ny}, outputs={'Out': out}
        )
        return out
Z
zhiboniu 已提交
2124 2125


2126
def logsumexp(x, axis=None, keepdim=False, name=None):
2127
    r"""
2128
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
2129

2130
    .. math::
2131
       logsumexp(x) = \log\sum exp(x)
2132

2133
    Args:
2134
        x (Tensor): The input Tensor with data type float16, float32 or float64, which
S
Shang Zhizhou 已提交
2135
            have no more than 4 dimensions.
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2152

2153
    Returns:
2154 2155
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2156

2157
    Examples:
2158

2159
    .. code-block:: python
2160

2161 2162
        import paddle

2163
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
2164 2165
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
2166 2167

    """
2168
    reduce_all, axis = _get_reduce_axis(axis, x)
2169

2170
    if in_dygraph_mode():
2171
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2172
    else:
2173 2174 2175
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'logsumexp'
        )
2176 2177 2178 2179 2180 2181

        helper = LayerHelper('logsumexp', **locals())
        attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all}
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
2182
        )
2183
        return out
2184

S
swtkiwi 已提交
2185

2186 2187
def inverse(x, name=None):
    """
2188 2189 2190 2191 2192
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2193
        x (Tensor): The input tensor. The last two
2194 2195 2196
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2197
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2198 2199

    Returns:
2200
        Tensor: A Tensor holds the inverse of x. The shape and data type
2201
                        is the same as x.
2202 2203 2204 2205 2206

    Examples:
        .. code-block:: python

            import paddle
2207 2208

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
2209 2210
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
2211 2212

    """
2213
    if in_dygraph_mode():
W
wanghuancoder 已提交
2214
        return _C_ops.inverse(x)
2215
    else:
2216

2217 2218 2219 2220 2221 2222 2223 2224
        def _check_input(x):
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse')
            if len(x.shape) < 2:
                raise ValueError(
                    "The input of inverse is expected to be a Tensor whose number "
                    "of dimensions is no less than 2. But reviced: %d, "
                    "x's shape: %s." % (len(x.shape), x.shape)
                )
2225

2226 2227 2228 2229 2230 2231 2232
        _check_input(x)
        helper = LayerHelper('inverse', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='inverse', inputs={'Input': [x]}, outputs={'Output': [out]}
        )
        return out
2233

2234

2235
def max(x, axis=None, keepdim=False, name=None):
2236
    """
S
swtkiwi 已提交
2237

2238
    Computes the maximum of tensor elements over the given axis.
2239

T
Tao Luo 已提交
2240 2241
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2242
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2243 2244 2245
        while max propagates gradient to all of them.


2246
    Args:
2247 2248
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2249
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2250
            `x` and return a Tensor with a single element,
2251 2252
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2253
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2254
            output Tensor. The result tensor will have one fewer dimension
2255
            than the `x` unless :attr:`keepdim` is true, default
2256
            value is False.
2257
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2258 2259

    Returns:
2260
        Tensor, results of maximum on the specified axis of input tensor,
2261
        it's data type is the same as `x`.
2262 2263 2264

    Examples:
        .. code-block:: python
2265

2266
            import paddle
2267

N
Noel 已提交
2268
            # data_x is a Tensor with shape [2, 4]
2269
            # the axis is a int element
2270
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2271
                                  [0.1, 0.2, 0.6, 0.7]],
2272
                                 dtype='float64', stop_gradient=False)
2273
            result1 = paddle.max(x)
2274
            result1.backward()
2275
            print(result1, x.grad)
2276 2277 2278
            #[0.9], [[0., 0., 0., 1.], [0., 0., 0., 0.]]

            x.clear_grad()
2279
            result2 = paddle.max(x, axis=0)
2280
            result2.backward()
2281
            print(result2, x.grad)
2282 2283 2284
            #[0.2, 0.3, 0.6, 0.9], [[1., 1., 0., 1.], [0., 0., 1., 0.]]

            x.clear_grad()
2285
            result3 = paddle.max(x, axis=-1)
2286
            result3.backward()
2287
            print(result3, x.grad)
2288 2289 2290
            #[0.9, 0.7], [[0., 0., 0., 1.], [0., 0., 0., 1.]]

            x.clear_grad()
2291
            result4 = paddle.max(x, axis=1, keepdim=True)
2292
            result4.backward()
2293
            print(result4, x.grad)
2294
            #[[0.9], [0.7]], [[0., 0., 0., 1.], [0., 0., 0., 1.]]
2295

N
Noel 已提交
2296
            # data_y is a Tensor with shape [2, 2, 2]
2297
            # the axis is list
2298
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2299 2300
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2301
            result5 = paddle.max(y, axis=[1, 2])
2302
            result5.backward()
2303
            print(result5, y.grad)
2304 2305 2306
            #[4., 8.], [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]

            y.clear_grad()
2307
            result6 = paddle.max(y, axis=[0, 1])
2308
            result6.backward()
2309
            print(result6, y.grad)
2310
            #[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
2311 2312
    """

2313
    if in_dygraph_mode():
2314
        return _C_ops.max(x, axis, keepdim)
2315 2316 2317 2318 2319
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('max', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max'
2320
        )
2321 2322
        if not isinstance(axis, Variable) and paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
2323

2324 2325 2326 2327 2328 2329 2330 2331
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_max',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2332

2333

2334
def min(x, axis=None, keepdim=False, name=None):
2335
    """
S
swtkiwi 已提交
2336

2337
    Computes the minimum of tensor elements over the given axis
2338

T
Tao Luo 已提交
2339 2340
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2341
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2342 2343
        while min propagates gradient to all of them.

2344
    Args:
2345 2346
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2347
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2348
            `x` and return a Tensor with a single element,
2349 2350
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2351
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2352
            output Tensor. The result tensor will have one fewer dimension
2353
            than the `x` unless :attr:`keepdim` is true, default
2354
            value is False.
2355
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2356

2357
    Returns:
2358
        Tensor, results of minimum on the specified axis of input tensor,
2359
        it's data type is the same as input's Tensor.
2360

2361 2362 2363
    Examples:
        .. code-block:: python

2364
            import paddle
2365

2366
            # data_x is a Tensor with shape [2, 4]
2367
            # the axis is a int element
2368
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2369
                                  [0.1, 0.2, 0.6, 0.7]],
2370
                                 dtype='float64', stop_gradient=False)
2371
            result1 = paddle.min(x)
2372
            result1.backward()
2373
            print(result1, x.grad)
2374 2375 2376
            #[0.1], [[0., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2377
            result2 = paddle.min(x, axis=0)
2378
            result2.backward()
2379
            print(result2, x.grad)
2380 2381 2382
            #[0.1, 0.2, 0.5, 0.7], [[0., 0., 1., 0.], [1., 1., 0., 1.]]

            x.clear_grad()
2383
            result3 = paddle.min(x, axis=-1)
2384
            result3.backward()
2385
            print(result3, x.grad)
2386 2387 2388
            #[0.2, 0.1], [[1., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2389
            result4 = paddle.min(x, axis=1, keepdim=True)
2390
            result4.backward()
2391
            print(result4, x.grad)
2392
            #[[0.2], [0.1]], [[1., 0., 0., 0.], [1., 0., 0., 0.]]
2393

2394
            # data_y is a Tensor with shape [2, 2, 2]
2395
            # the axis is list
2396
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2397 2398
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2399
            result5 = paddle.min(y, axis=[1, 2])
2400
            result5.backward()
2401
            print(result5, y.grad)
2402 2403 2404
            #[1., 5.], [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]

            y.clear_grad()
2405
            result6 = paddle.min(y, axis=[0, 1])
2406
            result6.backward()
2407
            print(result6, y.grad)
2408
            #[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
2409
    """
2410

2411
    if in_dygraph_mode():
2412
        return _C_ops.min(x, axis, keepdim)
2413 2414 2415 2416 2417
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('min', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min'
2418
        )
2419

2420 2421 2422 2423 2424 2425 2426 2427
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_min',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2428

2429

T
Tao Luo 已提交
2430 2431 2432 2433 2434 2435
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2436
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2437 2438 2439
        while max propagates gradient to all of them.

    Args:
2440
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2441
            the dimension is no more than 4.
2442
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2443 2444 2445 2446
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2447
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2448 2449 2450
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2451
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
2465
                                  [0.9, 0.9, 0.6, 0.7]],
T
Tao Luo 已提交
2466
                                 dtype='float64', stop_gradient=False)
2467 2468
            # There are 5 maximum elements:
            # 1) amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2469
            #    thus the corresponding gradients are 1/5=0.2;
2470
            # 2) while max propagates gradient to all of them,
T
Tao Luo 已提交
2471
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2472 2473
            result1 = paddle.amax(x)
            result1.backward()
2474
            print(result1, x.grad)
T
Tao Luo 已提交
2475 2476
            #[0.9], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2477 2478 2479
            x.clear_grad()
            result1_max = paddle.max(x)
            result1_max.backward()
2480
            print(result1_max, x.grad)
T
Tao Luo 已提交
2481 2482 2483 2484
            #[0.9], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2485 2486 2487
            x.clear_grad()
            result2 = paddle.amax(x, axis=0)
            result2.backward()
2488
            print(result2, x.grad)
T
Tao Luo 已提交
2489 2490 2491 2492 2493
            #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amax(x, axis=-1)
            result3.backward()
2494
            print(result3, x.grad)
T
Tao Luo 已提交
2495 2496 2497 2498 2499
            #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amax(x, axis=1, keepdim=True)
            result4.backward()
2500
            print(result4, x.grad)
T
Tao Luo 已提交
2501 2502 2503
            #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2504
            # the axis is list
T
Tao Luo 已提交
2505 2506 2507 2508 2509
            y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
                                  [[0.9, 0.9], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amax(y, axis=[1, 2])
            result5.backward()
2510
            print(result5, y.grad)
T
Tao Luo 已提交
2511 2512 2513 2514 2515
            #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amax(y, axis=[0, 1])
            result6.backward()
2516
            print(result6, y.grad)
T
Tao Luo 已提交
2517 2518
            #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2519
    if in_dygraph_mode():
2520
        return _C_ops.amax(x, axis, keepdim)
2521

2522 2523 2524 2525 2526
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amax', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax'
2527
        )
T
Tao Luo 已提交
2528

2529 2530 2531 2532 2533 2534 2535 2536
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amax',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2537

2538

T
Tao Luo 已提交
2539 2540 2541 2542 2543 2544 2545
def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2546
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2547 2548 2549
        while min propagates gradient to all of them.

    Args:
2550
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2551
            the dimension is no more than 4.
2552
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
2553 2554 2555 2556
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2557
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2558 2559 2560
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2561
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
2575
                                  [0.1, 0.1, 0.6, 0.7]],
T
Tao Luo 已提交
2576
                                 dtype='float64', stop_gradient=False)
2577 2578
            # There are 5 minimum elements:
            # 1) amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2579
            #    thus the corresponding gradients are 1/5=0.2;
2580
            # 2) while min propagates gradient to all of them,
T
Tao Luo 已提交
2581
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2582 2583
            result1 = paddle.amin(x)
            result1.backward()
2584
            print(result1, x.grad)
T
Tao Luo 已提交
2585 2586
            #[0.1], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2587 2588 2589
            x.clear_grad()
            result1_min = paddle.min(x)
            result1_min.backward()
2590
            print(result1_min, x.grad)
T
Tao Luo 已提交
2591 2592 2593 2594
            #[0.1], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2595 2596 2597
            x.clear_grad()
            result2 = paddle.amin(x, axis=0)
            result2.backward()
2598
            print(result2, x.grad)
T
Tao Luo 已提交
2599 2600 2601 2602 2603
            #[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amin(x, axis=-1)
            result3.backward()
2604
            print(result3, x.grad)
T
Tao Luo 已提交
2605 2606 2607 2608 2609
            #[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amin(x, axis=1, keepdim=True)
            result4.backward()
2610
            print(result4, x.grad)
T
Tao Luo 已提交
2611 2612 2613
            #[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2614
            # the axis is list
T
Tao Luo 已提交
2615 2616 2617 2618 2619
            y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
                                  [[0.1, 0.1], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amin(y, axis=[1, 2])
            result5.backward()
2620
            print(result5, y.grad)
T
Tao Luo 已提交
2621 2622 2623 2624 2625
            #[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amin(y, axis=[0, 1])
            result6.backward()
2626
            print(result6, y.grad)
T
Tao Luo 已提交
2627 2628
            #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2629
    if in_dygraph_mode():
2630
        return _C_ops.amin(x, axis, keepdim)
2631

2632 2633 2634 2635 2636
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amin', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin'
2637
        )
T
Tao Luo 已提交
2638

2639 2640 2641 2642 2643 2644 2645 2646
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amin',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2647

2648

W
WuHaobo 已提交
2649
def log1p(x, name=None):
2650
    r"""
2651
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
2652

2653
    .. math::
2654
        Out = \ln(x+1)
S
Steffy-zxf 已提交
2655

2656
    Args:
2657
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64.
2658
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2659

2660
    Returns:
S
Steffy-zxf 已提交
2661
        Tensor, the natural log of the input Tensor computed element-wise.
2662

2663 2664
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
2665

2666
            import paddle
S
Steffy-zxf 已提交
2667 2668 2669 2670

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
2671 2672
    """

2673
    if in_dygraph_mode():
W
wanghuancoder 已提交
2674
        return _C_ops.log1p(x)
2675
    else:
2676 2677 2678
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], "log1p"
        )
2679 2680 2681 2682 2683 2684
        inputs = {'X': [x]}
        helper = LayerHelper('log1p', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
        return out
B
Bai Yifan 已提交
2685

2686

J
joejiong 已提交
2687
def log2(x, name=None):
2688
    r"""
J
joejiong 已提交
2689 2690 2691 2692
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

2693
        Out = \log_2x
J
joejiong 已提交
2694 2695 2696

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2697
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2698 2699 2700 2701 2702 2703 2704 2705


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2706

J
joejiong 已提交
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
2725
    if in_dygraph_mode():
W
wanghuancoder 已提交
2726
        return _C_ops.log2(x)
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], "log2"
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log2', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
        return out
W
WuHaobo 已提交
2737

J
joejiong 已提交
2738 2739

def log10(x, name=None):
2740
    r"""
J
joejiong 已提交
2741 2742 2743 2744
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

2745
        Out = \log_10_x
J
joejiong 已提交
2746 2747 2748

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2749
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2750 2751 2752 2753 2754 2755 2756 2757


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2758

J
joejiong 已提交
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
2777
    if in_dygraph_mode():
W
wanghuancoder 已提交
2778
        return _C_ops.log10(x)
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], "log10"
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log10', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
        return out
J
joejiong 已提交
2789 2790


Y
Yang Zhang 已提交
2791
def clip(x, min=None, max=None, name=None):
2792
    """
Y
Yang Zhang 已提交
2793
    This operator clip all elements in input into the range [ min, max ] and return
2794 2795 2796 2797
    a resulting tensor as the following equation:

    .. math::

2798
        Out = MIN(MAX(x, min), max)
2799 2800

    Args:
2801
        x (Tensor): An N-D Tensor with data type float16, float32, float64, int32 or int64.
2802
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``Tensor``
2803
            with shape [1] and type ``int32``, ``float16``, ``float32``, ``float64``.
2804
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``Tensor``
2805
            with shape [1] and type ``int32``, ``float16``, ``float32``, ``float64``.
2806
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2807 2808

    Returns:
Y
Yang Zhang 已提交
2809
        Tensor: A Tensor with the same data type and data shape as input.
2810 2811 2812 2813 2814

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
2815

2816
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
2817 2818
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
2819
            print(out1)
Y
Yang Zhang 已提交
2820 2821
            # [[3.5, 3.5]
            # [4.5, 5.0]]
2822
            print(out2)
Y
Yang Zhang 已提交
2823 2824
            # [[2.5, 3.5]
            # [[4.5, 6.4]
2825 2826
    """

2827 2828 2829 2830 2831 2832 2833
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
2834 2835 2836
    elif x_dtype == 'paddle.float16':
        min_ = float(np.finfo(np.float16).min)
        max_ = float(np.finfo(np.float16).max)
2837 2838 2839
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
2840

C
chentianyu03 已提交
2841 2842 2843 2844 2845 2846 2847
    if in_dygraph_mode():
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
        min = min_ if min is None else min
        max = max_ if max is None else max
2848
        return _C_ops.clip(x, min, max)
2849 2850 2851 2852 2853 2854 2855
    else:
        if min is not None:
            check_type(min, 'min', (float, int, Variable), 'clip')
            if isinstance(min, Variable):
                check_dtype(
                    min.dtype,
                    'min',
2856
                    ['float16', 'float32', 'float64', 'int32'],
2857 2858 2859 2860 2861 2862 2863 2864 2865
                    'clip',
                    '(When the type of min in clip is Variable.)',
                )
        if max is not None:
            check_type(max, 'max', (float, int, Variable), 'clip')
            if isinstance(max, Variable):
                check_dtype(
                    max.dtype,
                    'max',
2866
                    ['float16', 'float32', 'float64', 'int32'],
2867 2868 2869
                    'clip',
                    '(When the type of max in clip is Variable.)',
                )
C
chentianyu03 已提交
2870

2871
        check_variable_and_dtype(
2872
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'clip'
2873
        )
Y
Yang Zhang 已提交
2874

2875 2876
        inputs = {'X': x}
        attrs = {'min': min_, 'max': max_}
2877

2878 2879 2880 2881 2882
        if isinstance(min, Variable):
            min.stop_gradient = True
            inputs['Min'] = min
        elif min is not None:
            attrs['min'] = min
2883

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
        if isinstance(max, Variable):
            max.stop_gradient = True
            inputs['Max'] = max
        elif max is not None:
            attrs['max'] = max

        helper = LayerHelper('clip', **locals())
        output = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs
        )
2897

2898
        return output
F
Feiyu Chan 已提交
2899

W
WuHaobo 已提交
2900

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
        min = min.numpy().item(0)
    if isinstance(max, Variable):
        max = max.numpy().item(0)
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
2915 2916

    if in_dygraph_mode():
2917
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
2918

2919

2920
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
2921
    """
S
swtkiwi 已提交
2922

2923
    Computes the sum along diagonals of the input tensor x.
2924 2925

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
2926

2927
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
2928
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
2929
    of the input tensor x.
L
Li Fuchen 已提交
2930

2931
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
2932 2933 2934 2935

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
2936
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
2937

L
Li Fuchen 已提交
2938
    Args:
2939 2940 2941 2942 2943
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
2944 2945

    Returns:
2946
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
2947 2948 2949 2950 2951

    Examples:
        .. code-block:: python

            import paddle
2952

2953 2954 2955
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
2956 2957 2958
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
2959
    """
2960

Z
zyfncg 已提交
2961
    def __check_input(x, offset, axis1, axis2):
2962 2963 2964 2965 2966 2967
        check_dtype(
            x.dtype,
            'Input',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'trace',
        )
L
Li Fuchen 已提交
2968

2969
        input_shape = list(x.shape)
2970 2971 2972 2973
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "But received Input x's dimensional: %s.\n" % len(input_shape)
        )
L
Li Fuchen 已提交
2974

2975 2976
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
2977

2978 2979
        assert (0 <= axis1_) and (axis1_ < len(input_shape)), (
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
2980
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
2981
        )
L
Li Fuchen 已提交
2982

2983 2984
        assert (0 <= axis2_) and (axis2_ < len(input_shape)), (
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
2985
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
2986
        )
L
Li Fuchen 已提交
2987

2988 2989 2990 2991
        assert axis1_ != axis2_, (
            "axis1 and axis2 cannot be the same axis."
            "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
        )
L
Li Fuchen 已提交
2992

H
hong 已提交
2993
    if in_dygraph_mode():
2994
        return _C_ops.trace(x, offset, axis1, axis2)
2995 2996
    else:
        __check_input(x, offset, axis1, axis2)
H
hong 已提交
2997

2998 2999
        helper = LayerHelper('trace', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
3000

3001 3002 3003 3004 3005 3006 3007
        helper.append_op(
            type='trace',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
L
Li Fuchen 已提交
3008

3009

3010 3011 3012 3013 3014
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
    This OP computes the diagonals of the input tensor x.

    If ``x`` is 2D, returns the diagonal.
3015
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2.
3016 3017 3018 3019 3020 3021 3022
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3023

3024
    Args:
3025 3026 3027 3028 3029
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
3073

3074
    """
J
Jiabin Yang 已提交
3075
    if in_dygraph_mode():
3076
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
3077
    else:
W
wanghuancoder 已提交
3078

3079 3080 3081 3082 3083 3084 3085
        def __check_input(x, offset, axis1, axis2):
            check_dtype(
                x.dtype,
                'Input',
                ['bool', 'int32', 'int64', 'float16', 'float32', 'float64'],
                'diagonal',
            )
3086

3087 3088 3089 3090 3091
            input_shape = list(x.shape)
            assert len(input_shape) >= 2, (
                "The x must be at least 2-dimensional, "
                "But received Input x's dimensional: %s.\n" % len(input_shape)
            )
3092

3093 3094
            axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
            axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
3095

3096 3097 3098 3099
            assert axis1_ < len(input_shape), (
                "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis1)
            )
3100

3101 3102 3103 3104
            assert axis2_ < len(input_shape), (
                "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis2)
            )
3105

3106 3107 3108 3109
            assert axis1_ != axis2_, (
                "axis1 and axis2 cannot be the same axis."
                "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
            )
3110

3111 3112 3113
        __check_input(x, offset, axis1, axis2)
        helper = LayerHelper('diagonal', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
3114

3115 3116 3117 3118 3119 3120 3121
        helper.append_op(
            type='diagonal',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
3122 3123


W
WuHaobo 已提交
3124
def kron(x, y, name=None):
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
    r"""
    Compute the Kronecker product of two tensors, a
    composite tensor made of blocks of the second tensor scaled by the
    first.
    Assume that the rank of the two tensors, $X$ and $Y$
    are the same, if necessary prepending the smallest with ones. If the
    shape of $X$ is [$r_0$, $r_1$, ..., $r_N$] and the shape of $Y$ is
    [$s_0$, $s_1$, ..., $s_N$], then the shape of the output tensor is
    [$r_{0}s_{0}$, $r_{1}s_{1}$, ..., $r_{N}s_{N}$]. The elements are
    products of elements from $X$ and $Y$.
    The equation is:
    $$
    output[k_{0}, k_{1}, ..., k_{N}] = X[i_{0}, i_{1}, ..., i_{N}] *
    Y[j_{0}, j_{1}, ..., j_{N}]
    $$
    where
    $$
    k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, ..., N
    $$
F
Feiyu Chan 已提交
3144 3145

    Args:
3146 3147
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3148
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3149 3150

    Returns:
3151
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3152 3153 3154

    Examples:
        .. code-block:: python
3155

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3167
    """
3168
    if in_dygraph_mode():
3169 3170 3171 3172 3173 3174 3175 3176 3177
        return _legacy_C_ops.kron(x, y)
    else:
        helper = LayerHelper('kron', **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
F
Feiyu Chan 已提交
3178

3179 3180 3181 3182 3183
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
3184 3185 3186 3187


def cumsum(x, axis=None, dtype=None, name=None):
    """
3188 3189
    The cumulative sum of the elements along a given axis.

3190
    Note:
3191
        The first element of the result is the same as the first element of the input.
3192 3193

    Args:
3194
        x (Tensor): The input tensor needed to be cumsumed.
3195
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3196
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3197 3198 3199
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3200
        Tensor, the result of cumsum operator.
3201 3202 3203

    Examples:
        .. code-block:: python
3204

3205
            import paddle
3206

3207 3208
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
3209 3210 3211 3212 3213 3214 3215 3216

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
3217

3218 3219 3220 3221 3222 3223 3224
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
3225
            # paddle.float64
3226 3227 3228 3229 3230 3231
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3232
        x = cast(x, dtype)
3233

H
hong 已提交
3234
    if in_dygraph_mode():
3235 3236
        if axis is None:
            axis = -1
3237
        return _C_ops.cumsum(x, axis, flatten, False, False)
3238
    else:
3239 3240 3241 3242 3243 3244
        check_variable_and_dtype(
            x,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'cumsum',
        )
3245 3246 3247 3248 3249 3250 3251 3252
        check_type(x, 'x', (Variable), 'cumsum')
        locals_var = locals().copy()
        kwargs = dict()
        for name, val in locals_var.items():
            if val is not None:
                kwargs[name] = val
        _cum_sum_ = generate_layer_fn('cumsum')
        return _cum_sum_(**kwargs)
G
guofei 已提交
3253

3254 3255 3256

def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
3257
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
3258 3259 3260 3261 3262 3263

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
3264

3265 3266 3267 3268 3269 3270
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3271
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3272 3273 3274
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3275
        Tensor, the result of logcumsumexp operator.
3276 3277 3278

    Examples:
        .. code-block:: python
3279

3280
            import paddle
3281

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
            data = paddle.arange(12, dtype='float64')
            data = paddle.reshape(data, (3, 4))

            y = paddle.logcumsumexp(data)
            # [ 0.         1.3132617  2.4076061  3.4401898  4.4519143  5.4561934
            #   6.4577627  7.4583397  8.458551   9.45863   10.458658  11.458669 ]

            y = paddle.logcumsumexp(data, axis=0)
            # [[ 0.        1.        2.        3.      ]
            #  [ 4.01815   5.01815   6.01815   7.01815 ]
            #  [ 8.018479  9.018479 10.018479 11.018479]]
3293

3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
            y = paddle.logcumsumexp(data, axis=-1)
            # [[ 0.         1.3132617  2.4076061  3.4401898]
            #  [ 4.         5.3132615  6.407606   7.44019  ]
            #  [ 8.         9.313262  10.407606  11.440189 ]]

            y = paddle.logcumsumexp(data, dtype='float64')
            print(y.dtype)
            # paddle.float64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

    if in_dygraph_mode():
3311 3312
        if axis is None:
            axis = -1
3313
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
3314 3315 3316 3317
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], "logcumsumexp"
        )
3318

3319 3320 3321 3322 3323 3324 3325 3326 3327
        helper = LayerHelper('logcumsumexp', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logcumsumexp',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'flatten': flatten},
        )
        return out
3328 3329


H
hlygit66666 已提交
3330 3331 3332 3333
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

3334 3335
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
3336 3337 3338

    Args:
        x (Tensor): the input tensor need to be cumproded.
Z
Zman 已提交
3339 3340 3341 3342 3343 3344 3345
        dim (int, optional): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank),
                    where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64,
                    complex128. If specified, the input tensor is casted to dtype before the operation is performed.
                    This is useful for preventing data type overflows. The default value is None.
        name (str, optional): Name for the operation (optional, default is None). For more information,
                    please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3382
        x = cast(x, dtype)
H
hlygit66666 已提交
3383

3384
    if in_dygraph_mode():
3385
        return _C_ops.cumprod(x, dim)
3386 3387 3388 3389 3390 3391 3392 3393
    else:
        check_variable_and_dtype(
            x,
            "x",
            ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
            'cumprod',
        )
        check_type(dim, 'dim', int, 'cumprod')
H
hlygit66666 已提交
3394

3395 3396 3397 3398 3399 3400 3401 3402 3403
        helper = LayerHelper('cumprod', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='cumprod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': dim},
        )
        return out
H
hlygit66666 已提交
3404

3405

J
Jack Zhou 已提交
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3422

3423
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3424
            out = paddle.isfinite(x)
N
Noel 已提交
3425
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
3426
    """
H
hong 已提交
3427
    if in_dygraph_mode():
3428
        return _C_ops.isfinite(x)
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
    else:
        helper = LayerHelper("isfinite_v2", **locals())
        check_variable_and_dtype(
            x,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'isfinite',
        )
        out = helper.create_variable_for_type_inference('bool')
        helper.append_op(
            type="isfinite_v2", inputs={"X": x}, outputs={"Out": out}
        )
        return out
J
Jack Zhou 已提交
3442

3443

J
Jack Zhou 已提交
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3460

3461
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3462
            out = paddle.isinf(x)
N
Noel 已提交
3463
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
3464
    """
H
hong 已提交
3465
    if in_dygraph_mode():
3466
        return _C_ops.isinf(x)
3467 3468 3469 3470 3471 3472 3473 3474
    else:
        helper = LayerHelper("isinf_v2", **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf'
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3475

3476

J
Jack Zhou 已提交
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
3493

3494
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3495
            out = paddle.isnan(x)
N
Noel 已提交
3496
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
3497
    """
H
hong 已提交
3498
    if in_dygraph_mode():
3499
        return _C_ops.isnan(x)
3500 3501 3502 3503 3504 3505 3506 3507
    else:
        helper = LayerHelper("isnan_v2", **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan'
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3508 3509


G
guofei 已提交
3510 3511 3512 3513 3514
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
3515
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
3516 3517 3518
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
            multiply all elements of `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
G
guofei 已提交
3519
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
3520
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
3521
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
3522 3523 3524
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
            int32, int64. If specified, the input tensor is casted to dtype before operator performed.
            This is very useful for avoiding data type overflows. The default value is None, the dtype
G
guofei 已提交
3525
            of output is the same as input Tensor `x`.
3526
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
3527 3528 3529

    Returns:
        Tensor, result of product on the specified dim of input tensor.
3530

G
guofei 已提交
3531 3532 3533 3534 3535 3536
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
3537 3538
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
3555 3556
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
3557 3558 3559 3560 3561 3562 3563 3564
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
3565 3566 3567
        check_dtype(
            dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod'
        )
G
guofei 已提交
3568
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3569
            x = cast(x, dtype)
G
guofei 已提交
3570

3571
    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
3572
    if in_dygraph_mode():
3573
        return _C_ops.prod(x, axis, keepdim, reduce_all)
3574 3575 3576 3577 3578 3579 3580
    else:
        helper = LayerHelper('reduce_prod', **locals())
        check_variable_and_dtype(
            x,
            'x/input',
            ['float32', 'float64', 'int32', 'int64'],
            'reduce_prod',
3581
        )
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='reduce_prod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
W
WangXi 已提交
3592 3593 3594 3595


def sign(x, name=None):
    """
3596
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
3597 3598

    Args:
3599 3600
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
3601 3602 3603 3604 3605 3606 3607 3608 3609

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

3610
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
3611 3612 3613
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
H
hong 已提交
3614
    if in_dygraph_mode():
3615
        return _C_ops.sign(x)
3616 3617 3618 3619 3620 3621
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'sign'
        )
        helper = LayerHelper("sign", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
3622

3623
        helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})
W
WangXi 已提交
3624

3625
        return out
W
WangXi 已提交
3626 3627 3628


def tanh(x, name=None):
3629
    r"""
W
WangXi 已提交
3630 3631 3632
    Tanh Activation Operator.

    .. math::
3633
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

3648
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
3649
            out = paddle.tanh(x)
N
Noel 已提交
3650
            print(out)
W
WangXi 已提交
3651 3652
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
H
hong 已提交
3653
    if in_dygraph_mode():
3654
        return _C_ops.tanh(x)
3655 3656 3657 3658 3659 3660 3661 3662 3663
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'tanh'
        )
        check_type(x, 'x', (Variable), 'tanh')
        helper = LayerHelper('tanh', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
        return out
S
Steffy-zxf 已提交
3664

3665

3666
@inplace_apis_in_dygraph_only
3667 3668 3669 3670 3671
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
3672
    return _C_ops.tanh_(x)
3673 3674


S
Steffy-zxf 已提交
3675 3676
def increment(x, value=1.0, name=None):
    """
3677
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
3678 3679 3680 3681
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
3682
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
H
hong 已提交
3698
    if in_dygraph_mode():
3699
        return _C_ops.increment_(x, value)
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
        )
        helper = LayerHelper("increment", **locals())
        helper.append_op(
            type='increment',
            inputs={'X': [x]},
            outputs={'Out': [x]},
            attrs={'step': float(value)},
        )
        return x
3712 3713 3714 3715


def all(x, axis=None, keepdim=False, name=None):
    """
3716
    Computes the ``logical and`` of tensor elements over the given dimension.
3717 3718 3719 3720 3721

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3722
            Tensor with a single element, otherwise must be in the
3723 3724 3725 3726 3727 3728
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3729
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3730 3731 3732 3733 3734 3735 3736 3737

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3738

N
Noel 已提交
3739
            # x is a bool Tensor with following elements:
3740 3741
            #    [[True, False]
            #     [True, True]]
C
Chen Long 已提交
3742
            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
3743
            print(x)
S
syyxsxx 已提交
3744
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3745

3746 3747 3748
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
C
Chen Long 已提交
3749

3750 3751 3752
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
C
Chen Long 已提交
3753 3754

            # keepdim=False, out3 should be [False, True], out.shape should be (2,)
3755 3756
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
C
Chen Long 已提交
3757 3758 3759

            # keepdim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keepdim=True) # [[False], [True]]
3760
            print(out4)
3761

3762
    """
3763
    if in_dygraph_mode():
3764
        return _C_ops.all(x, axis, keepdim)
3765 3766 3767 3768 3769 3770 3771 3772
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
        check_variable_and_dtype(x, 'x', ['bool'], 'all')
3773

3774
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')
3775

3776 3777 3778 3779 3780 3781 3782 3783 3784
        helper = LayerHelper('all', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_all',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
3785 3786 3787 3788


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
3789
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
3790 3791 3792 3793 3794

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3795
            Tensor with a single element, otherwise must be in the
3796 3797 3798 3799 3800 3801
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3802
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3803 3804 3805 3806 3807 3808 3809 3810

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3811 3812 3813

            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            x = paddle.assign(x)
3814
            print(x)
S
syyxsxx 已提交
3815
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3816 3817 3818 3819
            # x is a bool Tensor with following elements:
            #    [[True, False]
            #     [True, True]]

3820 3821 3822
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
C
Chen Long 已提交
3823

3824 3825
            # out2 should be [True, True]
            out2 = paddle.any(x, axis=0)  # [True, True]
3826
            print(out2)
C
Chen Long 已提交
3827 3828

            # keepdim=False, out3 should be [True, True], out.shape should be (2,)
3829
            out3 = paddle.any(x, axis=-1)  # [True, True]
3830
            print(out3)
C
Chen Long 已提交
3831 3832 3833

            # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keepdim=True)  # [[True], [True]]
3834 3835
            print(out4)

3836
    """
3837
    if in_dygraph_mode():
3838
        return _C_ops.any(x, axis, keepdim)
3839 3840 3841 3842 3843 3844 3845
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
3846

3847
        check_variable_and_dtype(x, 'x', ['bool'], 'any')
3848

3849
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')
3850

3851 3852 3853 3854 3855 3856 3857 3858 3859
        helper = LayerHelper('any', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_any',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
L
Leo Chen 已提交
3860

3861

L
Leo Chen 已提交
3862 3863
def broadcast_shape(x_shape, y_shape):
    """
I
Infinity_lee 已提交
3864 3865 3866 3867 3868 3869
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape.

    Note:
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
Leo Chen 已提交
3870 3871 3872 3873

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
3874

L
Leo Chen 已提交
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
3886

L
Leo Chen 已提交
3887 3888 3889 3890 3891 3892
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
3893

3894

3895 3896 3897 3898 3899
def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
3900
        x (Tensor): The input Tensor which hold the complex numbers.
3901
            Optional data types are:float16, complex64, complex128, float32, float64, int32 or int64.
3902
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3903 3904

    Returns:
C
Chen Long 已提交
3905
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
3906 3907 3908 3909 3910

    Examples:
        .. code-block:: python

          import paddle
3911

3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
H
hong 已提交
3923
    if in_dygraph_mode():
3924
        return _C_ops.conj(x)
3925 3926 3927 3928
    else:
        check_variable_and_dtype(
            x,
            "x",
3929 3930 3931 3932 3933 3934 3935 3936 3937
            [
                'complex64',
                'complex128',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
3938 3939
            'conj',
        )
H
hong 已提交
3940

3941 3942 3943 3944
        helper = LayerHelper('conj', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
3945

3946 3947
        helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
        return out
3948

3949

Z
zyfncg 已提交
3950 3951 3952 3953 3954 3955 3956 3957 3958
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
3959
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

J
Jiabin Yang 已提交
3976
    if in_dygraph_mode():
3977
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
3978
    else:
3979 3980 3981 3982 3983
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'digamma')
        helper = LayerHelper('digamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
        return out
Z
zyfncg 已提交
3984

3985

3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.lgamma(x)
            print(out)
            # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
    """
    if in_dygraph_mode():
        return _C_ops.lgamma(x)
4013 4014 4015 4016 4017 4018
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lgamma')
        helper = LayerHelper('lgamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
        return out
4019 4020


4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

4043 4044 4045
    return scale(
        x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )
4046

R
ronnywang 已提交
4047

4048
def atan2(x, y, name=None):
R
ronnywang 已提交
4049
    r"""
4050
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
4051 4052 4053 4054

    Equation:
        .. math::

4055 4056 4057 4058 4059 4060 4061 4062
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
4063 4064

    Args:
4065 4066
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
4067 4068 4069 4070 4071 4072 4073 4074
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

4075
            import paddle
R
ronnywang 已提交
4076

4077 4078 4079
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
4080

4081 4082 4083
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
4084

4085 4086 4087
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
4088 4089 4090

    """

J
Jiabin Yang 已提交
4091
    if in_dygraph_mode():
4092
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
4093
    else:
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
        check_variable_and_dtype(
            x,
            'x',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
        check_variable_and_dtype(
            y,
            'y',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
R
ronnywang 已提交
4106

4107 4108 4109 4110 4111
        helper = LayerHelper('atan2', **locals())
        inputs = {'X1': x, 'X2': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out})
        return out
A
andyjpaddle 已提交
4112

4113

W
wangzhen38 已提交
4114 4115 4116 4117 4118
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
4119

W
wangzhen38 已提交
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
4151
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]
W
wangzhen38 已提交
4152 4153

    """
4154
    if eps is None:
W
wangzhen38 已提交
4155
        eps = 0.0
4156
    if in_dygraph_mode():
4157
        return _C_ops.logit(x, eps)
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'logit'
        )
        helper = LayerHelper("logit", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logit',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'eps': eps},
        )
        return out
W
wangzhen38 已提交
4171

4172

4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
4183 4184 4185
        x (Tensor): An N-D Tensor with starting points, the data type is float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is float32, float64.
4186 4187 4188 4189 4190 4191 4192 4193 4194
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
4195

4196 4197 4198
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
4199
            out = paddle.lerp(x, y, 0.5)
4200
            # out: [5.5, 6., 6.5, 7.]
4201 4202

    """
4203 4204
    if isinstance(weight, float):
        weight = paddle.full(shape=[], fill_value=weight, dtype=x.dtype)
H
hong 已提交
4205

4206
    if in_dygraph_mode():
4207
        return _C_ops.lerp(x, y, weight)
4208 4209 4210 4211 4212 4213
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lerp')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'lerp')
        check_variable_and_dtype(
            weight, 'weight', ['float32', 'float64'], 'lerp'
        )
4214

4215 4216 4217 4218 4219
        helper = LayerHelper('lerp', **locals())
        inputs = {'X': x, 'Y': y, 'Weight': weight}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
        return out
4220

4221

4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
4235
        raise ValueError(
4236 4237 4238 4239
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
4240
    return _C_ops.lerp_(x, y, weight)
4241

4242

W
wuhuanzhou 已提交
4243 4244
def erfinv(x, name=None):
    r"""
4245
    The inverse error function of x. Please refer to :ref:`api_paddle_erf`
W
wuhuanzhou 已提交
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255

        .. math::

            erfinv(erf(x)) = x.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4256
        out (Tensor), an N-D Tensor, the shape and data type is the same with input.
W
wuhuanzhou 已提交
4257 4258 4259 4260 4261

    Example:
        .. code-block:: python

            import paddle
4262

W
wuhuanzhou 已提交
4263 4264 4265 4266 4267
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
H
hong 已提交
4268
    if in_dygraph_mode():
4269
        return _C_ops.erfinv(x)
4270 4271 4272 4273 4274 4275
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv')
        helper = LayerHelper('erfinv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
        return out
W
wuhuanzhou 已提交
4276

4277

W
wuhuanzhou 已提交
4278 4279 4280 4281 4282 4283 4284
@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
4285
    return _C_ops.erfinv_(x)
W
wuhuanzhou 已提交
4286

4287

4288
def rad2deg(x, name=None):
4289
    r"""
4290
    Convert each of the elements of input x from angles in radians to degrees.
4291

4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4308
            import math
4309

4310 4311 4312 4313 4314 4315 4316
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

4317
            x2 = paddle.to_tensor(math.pi/2)
4318 4319 4320 4321
            result2 = paddle.rad2deg(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [90.])
4322

4323 4324 4325 4326 4327 4328 4329
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [57.29578018])
    """
    rad2deg_scale = 180 / np.pi
4330 4331 4332
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4333
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
4334
    else:
4335 4336 4337
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg'
        )
4338 4339 4340
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4341
            out_cast = helper.create_variable_for_type_inference(
4342 4343 4344 4345 4346 4347 4348 4349
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4350
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4351 4352 4353 4354 4355 4356
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': rad2deg_scale},
        )
4357 4358
        return out

4359

4360
def deg2rad(x, name=None):
4361
    r"""
4362
    Convert each of the elements of input x from degrees to angles in radians.
4363

4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4379

4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274])
    """
    deg2rad_scale = np.pi / 180.0
4394 4395 4396
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4397
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
4398
    else:
4399 4400 4401
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad'
        )
4402 4403 4404
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4405
            out_cast = helper.create_variable_for_type_inference(
4406 4407 4408 4409 4410 4411 4412 4413
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4414
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4415 4416 4417 4418 4419 4420
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': deg2rad_scale},
        )
4421
        return out
A
andyjpaddle 已提交
4422

4423

T
Tao Luo 已提交
4424 4425 4426 4427
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
4428

T
Tao Luo 已提交
4429 4430 4431
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
4432 4433
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4434
    Args:
4435 4436
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4437 4438 4439 4440 4441 4442 4443 4444 4445
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4446

T
Tao Luo 已提交
4447 4448 4449 4450 4451 4452
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])

T
Tao Luo 已提交
4453
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20])

            paddle.gcd(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
4466

T
Tao Luo 已提交
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
4479
        return paddle.any(y != 0)
T
Tao Luo 已提交
4480 4481 4482 4483 4484

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
4485
        y_not_equal_0 = y != 0
T
Tao Luo 已提交
4486
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
4487 4488 4489 4490 4491 4492 4493 4494
        x, y = (
            paddle.where(y_not_equal_0, y, x),
            paddle.where(
                y_not_equal_0,
                paddle.mod(x, y_safe),
                paddle.zeros(y.shape, y.dtype),
            ),
        )
T
Tao Luo 已提交
4495 4496
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

4497
    if in_dygraph_mode():
T
Tao Luo 已提交
4498 4499 4500 4501 4502
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
4503 4504
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
4505 4506 4507
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

4508

T
Tao Luo 已提交
4509 4510 4511 4512
def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
4513

T
Tao Luo 已提交
4514 4515 4516
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
4517 4518
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4519
    Args:
4520 4521
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4522 4523 4524 4525 4526 4527 4528 4529 4530
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4531

T
Tao Luo 已提交
4532 4533 4534 4535 4536 4537
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])

T
Tao Luo 已提交
4538
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])

            paddle.lcm(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
4551

T
Tao Luo 已提交
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
4563 4564 4565
    out = paddle.where(
        d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe
    )
T
Tao Luo 已提交
4566 4567
    return out

4568

A
andyjpaddle 已提交
4569 4570 4571
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
4572
    The first-order differences is computed by using the following formula:
A
andyjpaddle 已提交
4573 4574 4575 4576

    .. math::

        out[i] = x[i+1] - x[i]
4577 4578

    Higher-order differences are computed by using paddle.diff() recursively.
A
andyjpaddle 已提交
4579 4580 4581
    Only n=1 is currently supported.

    Args:
4582
        x (Tensor): The input tensor to compute the forward difference on
4583
        n (int, optional): The number of times to recursively compute the difference.
A
andyjpaddle 已提交
4584
                          Only support n=1. Default:1
4585 4586
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
4587
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4588
                                   and its shapes must match x's shape except on axis.
4589 4590
        append (Tensor, optional): The tensor to append to input along axis before computing the difference,
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4591
                                   and its shapes must match x's shape except on axis.
4592
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4593

A
andyjpaddle 已提交
4594 4595 4596 4597 4598 4599 4600
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
4601

A
andyjpaddle 已提交
4602 4603 4604 4605 4606 4607 4608 4609 4610
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
4611
            # out:
A
andyjpaddle 已提交
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
    infer_flags = list(1 for i in range(len(axes)))
4634
    if in_dygraph_mode():
A
andyjpaddle 已提交
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
4647
            new_input = _C_ops.concat(input_list, axis)
A
andyjpaddle 已提交
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4660 4661 4662
        input_front = _C_ops.slice(
            new_input, axes, starts_1, ends_1, infer_flags, []
        )
A
andyjpaddle 已提交
4663 4664 4665 4666
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4667 4668 4669
        input_back = _C_ops.slice(
            new_input, axes, starts_2, ends_2, infer_flags, []
        )
4670 4671

        if x.dtype == paddle.bool:
4672
            return _C_ops.logical_xor(input_back, input_front)
4673
        else:
4674
            return _C_ops.subtract(input_back, input_front)
A
andyjpaddle 已提交
4675
    else:
4676
        check_variable_and_dtype(
4677 4678
            x, 'x', ['float32', 'float64', 'bool', 'int32', 'int64'], 'diff'
        )
A
andyjpaddle 已提交
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
4695 4696 4697 4698 4699 4700
            helper.append_op(
                type='concat',
                inputs={'X': input_list},
                outputs={'Out': [new_input]},
                attrs={'axis': axis},
            )
A
andyjpaddle 已提交
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
4711 4712 4713 4714 4715 4716
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_1,
            outputs={'Out': input_front},
        )
A
andyjpaddle 已提交
4717 4718 4719 4720 4721 4722
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
4723 4724 4725 4726 4727 4728
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_2,
            outputs={'Out': input_back},
        )
A
andyjpaddle 已提交
4729 4730 4731

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
4732 4733 4734 4735 4736
            helper.append_op(
                type='logical_xor',
                inputs={"X": input_back, "Y": input_front},
                outputs={"Out": out},
            )
A
andyjpaddle 已提交
4737
        else:
Z
zyfncg 已提交
4738
            out = paddle.tensor.math.subtract(input_back, input_front)
A
andyjpaddle 已提交
4739
        return out
F
Feiyu Chan 已提交
4740

4741

F
Feiyu Chan 已提交
4742 4743
def angle(x, name=None):
    r"""
4744
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
F
Feiyu Chan 已提交
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4757
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
4758 4759 4760 4761 4762 4763 4764 4765 4766

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
4767 4768 4769 4770 4771 4772
            print(z)
            # Tensor(shape=[4, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[(-2-2j), (-2-1j), (-2+0j), (-2+1j)],
            #         [(-1-2j), (-1-1j), (-1+0j), (-1+1j)],
            #         [-2j    , -1j    ,  0j    ,  1j    ],
            #         [ (1-2j),  (1-1j),  (1+0j),  (1+1j)]])
F
Feiyu Chan 已提交
4773 4774

            theta = paddle.angle(z)
4775 4776 4777 4778 4779 4780
            print(theta)
            # Tensor(shape=[4, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-2.35619450, -2.67794514,  3.14159274,  2.67794514],
            #         [-2.03444386, -2.35619450,  3.14159274,  2.35619450],
            #         [-1.57079637, -1.57079637,  0.        ,  1.57079637],
            #         [-1.10714877, -0.78539819,  0.        ,  0.78539819]])
F
Feiyu Chan 已提交
4781 4782
    """

W
WangZhen 已提交
4783
    if in_dygraph_mode():
F
Feiyu Chan 已提交
4784
        return _C_ops.angle(x)
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'complex64', 'complex128'], 'angle'
        )
        op_type = "angle"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
4798

4799

4800
def heaviside(x, y, name=None):
4801
    r"""
4802 4803 4804 4805 4806
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
4807 4808 4809 4810
                \begin{array}{lcl}
                0,& &\text{if} \ x < 0, \\
                y,& &\text{if} \ x = 0, \\
                1,& &\text{if} \ x > 0.
4811
                \end{array}
4812
            \right.
4813

4814
    Note:
I
Infinity_lee 已提交
4815 4816 4817
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
4818 4819

    Args:
4820 4821
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-0.5, 0, 0.5])
            y = paddle.to_tensor([0.1])
            paddle.heaviside(x, y)
            #    [0.        , 0.10000000, 1.        ]
            x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            y = paddle.to_tensor([0.1, 0.2, 0.3])
            paddle.heaviside(x, y)
            #    [[0.        , 0.20000000, 1.        ],
            #     [0.        , 1.        , 0.30000001]]
4840
    """
4841
    if in_dygraph_mode():
4842
        return _C_ops.heaviside(x, y)
4843
    else:
W
Weilong Wu 已提交
4844
        op_type = 'elementwise_heaviside'
4845
        return _elementwise_op(LayerHelper(op_type, **locals()))
4846

4847

4848 4849 4850 4851 4852 4853
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
4854
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4855 4856 4857 4858 4859

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
4860
        .. code-block:: python
4861 4862 4863

            import paddle

4864 4865
            input = paddle.to_tensor([[12.22000003, -1.02999997],
                                    [-0.54999995, 0.66000003]])
4866
            output = paddle.frac(input)
4867 4868 4869 4870
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.22000003, -0.02999997],
            #         [-0.54999995,  0.66000003]])
4871
    """
4872
    if x.dtype not in [
4873 4874 4875 4876
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
4877
    ]:
4878
        raise TypeError(
4879 4880 4881 4882
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
4883
    if in_dygraph_mode():
4884 4885
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
4886
    else:
4887 4888
        inputs = {"X": x}
        attrs = {}
4889

4890 4891 4892 4893 4894 4895 4896 4897
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        y = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y}
        )
4898
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
4899

4900

4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
        .. code-block:: Python

            import paddle

            x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            print(paddle.sgn(x))
            #[[0.6+0.8j       0.28-0.96j      0.+0.j      0.4472136+0.8944272j]
            # [0.6+0.8j       1.+0.j          0.+0.j      -1.+0.j]]

    """
4926
    if x.dtype not in [
4927 4928 4929 4930 4931
        paddle.float16,
        paddle.float32,
        paddle.float64,
        paddle.complex64,
        paddle.complex128,
4932
    ]:
4933
        raise TypeError(
4934 4935 4936 4937
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}".format(
                x.dtype
            )
        )
4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
4949

4950

4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x_int = paddle.arange(0, 12).reshape([3, 4])
            x_float = x_int.astype(paddle.float64)

            idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range

            paddle.take(x_int, idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_neg)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 ],
            #         [1 , 2 , 3 ]])

            paddle.take(x_float, idx_pos)
            # Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6.],
            #         [7., 8., 9.]])

            x_int.take(idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_err, mode='wrap')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 0 ]])

            paddle.take(x_int, idx_err, mode='clip')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 11]])

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
5018 5019 5020 5021
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}.".format(
                mode
            )
        )
5022

5023
    if in_dygraph_mode():
5024 5025
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
5026
                "The type of 'index' must be Tensor, but got {}".format(
5027 5028 5029
                    type(index)
                )
            )
5030 5031
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
5032 5033 5034 5035
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}".format(
                    index.dtype
                )
            )
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
5049
        index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d)
5050 5051 5052
        index_1d = paddle.where(
            index_1d >= max_index, index_1d % max_index, index_1d
        )
5053 5054 5055 5056 5057 5058 5059
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out
5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085


def frexp(x, name=None):
    """
    The function used to decompose a floating point number into mantissa and exponent.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:

        - mantissa (Tensor), A mantissa Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

        - exponent (Tensor), A exponent Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3, 4]], dtype="float32")
            print(paddle.tensor.math.frexp(x))
            # (Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[0.50000000, 0.50000000, 0.75000000, 0.50000000]]),
            #  Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[1., 2., 2., 3.]]))
5086
    """
5087 5088
    if x.dtype not in [paddle.float32, paddle.float64]:
        raise TypeError(
5089 5090 5091 5092
            "The data type of input must be one of ['float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5093 5094
    input_x = paddle.abs(x)
    exponent = paddle.floor(paddle.log2(input_x))
5095 5096 5097
    exponent = paddle.where(
        paddle.isinf(exponent), paddle.full_like(exponent, 0), exponent
    )
5098 5099 5100 5101

    # 0填充
    mantissa = paddle.divide(input_x, 2**exponent)
    # 计算exponent
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
    exponent = paddle.where(
        (mantissa >= 1),
        paddle.add(exponent, paddle.ones_like(exponent)),
        exponent,
    )
    mantissa = paddle.where(
        (mantissa >= 1),
        paddle.divide(mantissa, 2 ** paddle.ones_like(exponent)),
        mantissa,
    )
5112 5113 5114

    mantissa = paddle.where((x < 0), mantissa * -1, mantissa)
    return mantissa, exponent