parse_utils.py 23.5 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
from copy import copy
17 18
from typing import Any, Dict, List, Tuple

C
Charles-hit 已提交
19
from tests_utils import is_attr, is_input, is_output, is_vec
20
from type_mapping import opmaker_attr_types_map
21 22


23
def to_named_dict(items: List[Dict], is_op=False) -> Dict[str, Dict]:
24
    named_dict = {}
25 26 27 28 29 30 31
    if is_op:
        for item in items:
            if "name" not in item:
                raise KeyError(f"name not in {item}")
            item["name"] = (
                item["name"] if item["name"][-1] != '_' else item["name"][:-1]
            )
32 33 34 35 36 37
            if "forward" in item:
                item["forward"]["name"] = (
                    item["forward"]["name"]
                    if item["forward"]["name"][-1] != '_'
                    else item["forward"]["name"][:-1]
                )
38 39 40 41 42 43 44 45
            name = item["name"]
            named_dict[name] = item
    else:
        for item in items:
            if "name" not in item:
                raise KeyError(f"name not in {item}")
            name = item["name"]
            named_dict[name] = item
46 47 48
    return named_dict


49
def parse_arg(op_name: str, s: str) -> Dict[str, str]:
50 51 52 53
    """parse an argument in following formats:
    1. typename name
    2. typename name = default_value
    """
54
    typename, rest = (item.strip() for item in s.split(" ", 1))
55 56
    assert (
        len(typename) > 0
57
    ), f"The arg typename should not be empty. Please check the args of {op_name} in yaml."
58

59 60
    assert (
        rest.count("=") <= 1
61
    ), f"There is more than 1 = in an arg in {op_name}"
62
    if rest.count("=") == 1:
63
        name, default_value = (item.strip() for item in rest.split("=", 1))
64 65
        assert (
            len(name) > 0
66
        ), f"The arg name should not be empty. Please check the args of {op_name} in yaml."
67 68
        assert (
            len(default_value) > 0
69
        ), f"The default value should not be empty. Please check the args of {op_name} in yaml."
70 71 72
        return {
            "typename": typename,
            "name": name,
73
            "default_value": default_value,
74 75 76
        }
    else:
        name = rest.strip()
77 78
        assert (
            len(name) > 0
79
        ), f"The arg name should not be empty. Please check the args of {op_name} in yaml."
80 81 82
        return {"typename": typename, "name": name}


83
def parse_input_and_attr(
84
    op_name: str, arguments: str
85
) -> Tuple[List, List, Dict, Dict]:
86
    args_str = arguments.strip()
87 88
    assert args_str.startswith('(') and args_str.endswith(')'), (
        f"Args declaration should start with '(' and end with ')', "
89
        f"please check the args of {op_name} in yaml."
90
    )
91 92 93 94 95 96 97 98 99
    args_str = args_str[1:-1]
    args = parse_plain_list(args_str)

    inputs = []
    attrs = []

    met_attr_with_default_value = False

    for arg in args:
100
        item = parse_arg(op_name, arg)
101 102 103
        typename = item["typename"]
        name = item["name"]
        if is_input(typename):
104 105
            assert len(attrs) == 0, (
                f"The input Tensor should appear before attributes. "
106
                f"please check the position of {op_name}:input({name}) "
107 108
                f"in yaml."
            )
109 110 111
            inputs.append(item)
        elif is_attr(typename):
            if met_attr_with_default_value:
112 113
                assert (
                    "default_value" in item
114
                ), f"{op_name}: Arguments with default value should not precede those without default value"
115 116
            elif "default_value" in item:
                met_attr_with_default_value = True
117 118
            if typename.startswith('Scalar') or typename == 'IntArray':
                item['data_type'] = opmaker_attr_types_map[typename]
119 120
            attrs.append(item)
        else:
121
            raise KeyError(f"{op_name}: Invalid argument type {typename}.")
122 123 124
    return inputs, attrs


125
def parse_output(op_name: str, s: str) -> Dict[str, str]:
126 127 128
    """parse an output, typename or typename(name)."""
    match = re.search(
        r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
129 130
        s,
    )
131 132 133 134 135 136 137
    typename = match.group("out_type")
    name = match.group("name")
    size_expr = match.group("expr")

    name = name[1:-1] if name is not None else 'out'
    size_expr = size_expr[1:-1] if size_expr is not None else None

138
    assert is_output(typename), (
139
        f"Invalid output type: {typename} in op : {op_name}."
140 141
        f"Supported types are Tensor and Tensor[]"
    )
142
    if size_expr is not None:
143
        assert is_vec(typename), (
144
            f"Invalid output size: output {name} in op : {op_name} is "
145 146
            f"not a vector but has size expr"
        )
147 148 149 150 151
        return {"typename": typename, "name": name, "size": size_expr}
    else:
        return {"typename": typename, "name": name}


152
def parse_outputs(op_name: str, outputs: str) -> List[Dict]:
153 154 155
    outputs = parse_plain_list(outputs, sep=",")
    output_items = []
    for output in outputs:
156
        output_items.append(parse_output(op_name, output))
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    return output_items


def parse_infer_meta(infer_meta: Dict[str, Any]) -> Dict[str, Any]:
    infer_meta = copy(infer_meta)  # to prevent mutating the input
    if "param" not in infer_meta:
        infer_meta["param"] = None
    return infer_meta


def parse_candidates(s: str) -> Dict[str, Any]:
    "parse candidates joined by either '>'(ordered) or ','(unordered)"
    delimiter = ">" if ">" in s else ","
    ordered = delimiter == ">"
    candidates = parse_plain_list(s, delimiter)
    return {"ordered": ordered, "candidates": candidates}


def parse_plain_list(s: str, sep=",") -> List[str]:
176 177 178 179 180 181 182
    if sep == ",":
        patten = re.compile(r',(?![^{]*\})')  # support "int[] a={1,2}"
        items = re.split(patten, s.strip())
        items = [x.strip() for x in items]
        return items
    else:
        return [item.strip() for item in s.strip().split(sep)]
183 184


185
def parse_kernel(op_name: str, kernel_config: Dict[str, Any]) -> Dict[str, Any]:
186 187 188 189 190 191
    # kernel :
    #    func : [], Kernel functions (example: scale, scale_sr)
    #    param : [], Input params of kernel
    #    backend : str, the names of param to choose the kernel backend, default is None
    #    layout : str, the names of param to choose the kernel layout, default is None
    #    data_type : str, the names of param to choose the kernel data_type, default is None
192
    #    dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)})
193
    kernel = {
194
        'func': [],  # up to 2 function names
195 196 197
        'param': None,
        'backend': None,
        'layout': None,
198
        'data_type': None,
199
        'dispatch': {},
200
        'force_backend': None,
201 202 203 204
    }
    if 'param' in kernel_config:
        kernel['param'] = kernel_config['param']

205 206 207
    if 'force_backend' in kernel_config:
        kernel['force_backend'] = kernel_config["force_backend"]

208 209 210 211 212 213 214
    if 'backend' in kernel_config:
        kernel['backend'] = parse_candidates(kernel_config["backend"])

    if 'layout' in kernel_config:
        kernel['layout'] = parse_candidates(kernel_config["layout"])

    if 'data_type' in kernel_config:
215 216 217 218 219 220 221 222 223 224 225 226 227 228
        data_type_item = parse_candidates(kernel_config["data_type"])
        params_num = len(data_type_item['candidates'])
        data_type_item['to_complex_flag'] = [False] * params_num
        for i in range(params_num):
            complex_match_result = re.match(
                r"complex\((?P<param_name>\w+)\)",
                data_type_item['candidates'][i],
            )
            if complex_match_result:
                data_type_item['candidates'][i] = complex_match_result.group(
                    'param_name'
                )
                data_type_item['to_complex_flag'][i] = True
        kernel['data_type'] = data_type_item
229 230

    kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall(
231 232
        kernel_config['func']
    )
233 234 235 236 237 238 239 240 241 242 243

    def parse_kernel_in_out_type(in_out_str):
        if len(in_out_str) == 0:
            return None
        tmp_in_out_list = in_out_str[1:-1].split('->')
        inputs = [item.strip() for item in tmp_in_out_list[0].split(',')]
        outputs = [item.strip() for item in tmp_in_out_list[1].split(',')]

        # check the tensor type
        for item in inputs:
            assert item in [
244 245 246 247
                'dense',
                'selected_rows',
                'sparse_coo',
                'sparse_csr',
248
            ], f"{op_name} : Invalid input tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
249 250
        for item in outputs:
            assert item in [
251 252 253 254
                'dense',
                'selected_rows',
                'sparse_coo',
                'sparse_csr',
255
            ], f"{op_name} : Invalid output tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
256 257 258 259 260 261

        return (inputs, outputs)

    for func_item in kernel_funcs:
        kernel['func'].append(func_item[0])
        kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type(
262 263
            func_item[1]
        )
264

265 266 267
    return kernel


268 269 270 271 272 273 274 275
def delete_bracket(name: str):
    if name[0] == "(":
        name = name.lstrip("(")
    if name[-1] == ")":
        name = name.rstrip(")")
    return name


276
def parse_inplace(op_name: str, inplace_cfg: str) -> Dict[str, str]:
277 278 279 280 281
    inplace_map = {}
    inplace_cfg = inplace_cfg.lstrip("(").rstrip(")")
    pairs = parse_plain_list(inplace_cfg)
    for pair in pairs:
        in_name, out_name = parse_plain_list(pair, sep="->")
282 283
        in_name = delete_bracket(in_name)
        out_name = delete_bracket(out_name)
284 285 286 287
        inplace_map[out_name] = in_name
    return inplace_map


288
def parse_invoke(op_name: str, invoke_config: str) -> Dict[str, Any]:
289 290 291 292 293 294 295 296 297
    invoke_config = invoke_config.strip()
    func, rest = invoke_config.split("(", 1)
    func = func.strip()
    args = rest.rstrip(")").strip()
    invocation = {"func": func, "args": args}
    return invocation


def extract_type_and_name(records: List[Dict]) -> List[Dict]:
298
    """extract type and name from forward call, it is simpler than forward op ."""
299 300 301
    extracted = [
        {"name": item["name"], "typename": item["typename"]} for item in records
    ]
302 303 304
    return extracted


305 306
def parse_forward(op_name: str, forward_config: str) -> Dict[str, Any]:
    # op_name (const Tensor& input, ... , int attr, ...) -> Tensor(out)
307
    result = re.search(
308
        r"(?P<op>[a-z][a-z0-9_]+)\s*(?P<args>\([^\)]+\))\s*->\s*(?P<outputs>.+)",
309 310
        forward_config,
    )
311 312
    op = result.group("op")
    outputs = parse_outputs(op_name, result.group("outputs"))
313 314
    outputs = extract_type_and_name(outputs)

315
    inputs, attrs = parse_input_and_attr(op_name, result.group("args"))
316 317 318
    inputs = extract_type_and_name(inputs)
    attrs = extract_type_and_name(attrs)
    forward_cfg = {
319
        "name": op,
320 321
        "inputs": inputs,
        "attrs": attrs,
322
        "outputs": outputs,
323 324 325 326
    }
    return forward_cfg


J
Jiabin Yang 已提交
327 328 329 330 331
def parse_composite(
    op_name: str,
    composite_config: str,
) -> Dict[str, Any]:
    # composite_config: func(args1, args2,.....)
332 333 334 335 336 337 338
    result = re.search(
        r"(?P<func_name>[a-z][a-z0-9_]+)\s*\((?P<func_args>[^\)]+)\)",
        composite_config,
    )

    func_name = result.group("func_name")
    func_args = result.group("func_args")
J
Jiabin Yang 已提交
339 340 341 342 343 344 345

    composite_dict = {}
    composite_dict["func_name"] = func_name
    composite_dict["func_args"] = func_args
    return composite_dict


346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
def check_op_config(op_entry, op_name):
    base_key_set = (
        'op',
        'backward_op',
        'forward',
        'args',
        'output',
        'infer_meta',
        'kernel',
        'backward',
        'invoke',
        'inplace',
        'view',
        'optional',
        'intermediate',
        'no_need_buffer',
        'data_transform',
J
Jiabin Yang 已提交
363
        'composite',
364
        'support_dygraph_mode',
365 366
    )
    infer_meta_key_set = ('func', 'param')
367 368 369 370 371 372 373 374
    kernel_key_set = (
        'func',
        'param',
        'data_type',
        'layout',
        'backend',
        'force_backend',
    )
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    for key in op_entry.keys():
        assert (
            key in base_key_set
        ), f"Op ({op_name}) : invalid key ({key}) in Yaml."

    if 'infer_meta' in op_entry:
        for infer_meta_key in op_entry['infer_meta'].keys():
            assert (
                infer_meta_key in infer_meta_key_set
            ), f"Op ({op_name}) : invalid key (infer_meta.{infer_meta_key}) in Yaml."

    if 'kernel' in op_entry:
        for kernel_key in op_entry['kernel'].keys():
            assert (
                kernel_key in kernel_key_set
            ), f"Op ({op_name}) : invalid key (kernel.{kernel_key}) in Yaml."


393 394 395 396
def parse_op_entry(op_entry: Dict[str, Any], name_field="op"):
    op_name = op_entry[name_field]
    inputs, attrs = parse_input_and_attr(op_name, op_entry["args"])
    outputs = parse_outputs(op_name, op_entry["output"])
J
Jiabin Yang 已提交
397 398
    if "composite" in op_entry:
        composite_dict = parse_composite(op_name, op_entry["composite"])
399
    check_op_config(op_entry, op_name)
400 401 402 403 404 405
    # validate default value of DataType and DataLayout
    for attr in attrs:
        if "default_value" in attr:
            typename = attr["typename"]
            default_value = attr["default_value"]
            if typename == "DataType":
406 407
                assert (
                    "DataType" in default_value
408
                ), f"invalid DataType default value in {op_name}"
409
                # remove namespace
410
                default_value = default_value[default_value.find("DataType") :]
411 412
                attr["default_value"] = default_value
            elif typename == "DataLayout":
413 414
                assert (
                    "DataLayout" in default_value
415
                ), f"invalid DataLayout default value in {op_name}"
416 417 418
                default_value = default_value[
                    default_value.find("DataLayout") :
                ]
419 420 421 422 423 424 425 426 427
                attr["default_value"] = default_value

    input_names = [item["name"] for item in inputs]
    attr_names = [item["name"] for item in attrs]
    output_names = [item["name"] for item in outputs]

    # add optional tag for every input
    for input in inputs:
        input["optional"] = False
428 429 430
    for output in outputs:
        output["optional"] = False

431 432
    if "optional" in op_entry:
        optional_args = parse_plain_list(op_entry["optional"])
433
        for name in optional_args:
434
            assert (
435 436
                name in input_names or name in output_names
            ), f"{op_name} has an optional tensor: '{name}' which is not in input or output."
437 438 439
        for input in inputs:
            if input["name"] in optional_args:
                input["optional"] = True
440 441 442
        for output in outputs:
            if output["name"] in optional_args:
                output["optional"] = True
443 444 445 446

    # add intermediate tag for every output
    for output in outputs:
        output["intermediate"] = False
447 448
    if "intermediate" in op_entry:
        intermediate_outs = parse_plain_list(op_entry["intermediate"])
449
        for name in intermediate_outs:
450 451
            assert (
                name in output_names
452
            ), f"{op_name} has an intermediate output: '{name}' which is not an output."
453 454 455 456 457 458 459
        for output in outputs:
            if output["name"] in intermediate_outs:
                output["intermediate"] = True

    # add no_need_buffer for every input
    for input in inputs:
        input["no_need_buffer"] = False
460 461
    if "no_need_buffer" in op_entry:
        no_buffer_args = parse_plain_list(op_entry["no_need_buffer"])
462
        for name in no_buffer_args:
463 464
            assert (
                name in input_names
465
            ), f"{op_name} has an no buffer input: '{name}' which is not an input."
466 467 468 469 470 471
        for input in inputs:
            if input["name"] in no_buffer_args:
                input["no_need_buffer"] = True
    else:
        no_buffer_args = None

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
    # add data_transform tag for every input.
    # the format is {data_transform : {skip_transform : [x, z], support_trans_dtype : y}}
    for input in inputs:
        input["data_transform"] = {}
    if "data_transform" in op_entry:
        skip_trans_args = []
        support_trans_args = []
        data_trans = op_entry["data_transform"]
        if "skip_transform" in data_trans:
            skip_trans_args = parse_plain_list(data_trans["skip_transform"])
            for name in skip_trans_args:
                assert (
                    name in input_names
                ), f"{op_name} has an skip_transform input: '{name}' which is not an input."
            data_trans["skip_transform"] = skip_trans_args
        if "support_trans_dtype" in data_trans:
            support_trans_args = parse_plain_list(
                data_trans["support_trans_dtype"]
            )
            for name in support_trans_args:
                assert (
                    name in input_names
                ), f"{op_name} has an support_trans_dtype input: '{name}' which is not an input."
            data_trans["support_trans_dtype"] = support_trans_args
        for input in inputs:
            if input["name"] in skip_trans_args:
                input["data_transform"]["skip_trans_args"] = True
            else:
                input["data_transform"]["skip_trans_args"] = False
            if input["name"] in support_trans_args:
                input["data_transform"]["support_trans_dtype"] = True
            else:
                input["data_transform"]["support_trans_dtype"] = False
    else:
        data_trans = None
507

508 509
    op = {
        "name": op_name,
510 511 512
        "inputs": inputs,
        "attrs": attrs,
        "outputs": outputs,
513
        "no_need_buffer": no_buffer_args,
514
        "data_transform": data_trans,
515 516
    }

X
xiaoguoguo626807 已提交
517 518 519 520 521 522
    # op should be is_base_op or is_invoke_op or is_only_composite_op
    is_base_op = True
    if "invoke" in op_entry:
        is_base_op = False
    if "composite" in op_entry and "kernel" not in op_entry:
        is_base_op = False
523

524
    if is_base_op:
525
        # kernel
526
        kernel = parse_kernel(op_name, op_entry["kernel"])
527 528 529 530
        if kernel["param"] is None:
            kernel["param"] = input_names + attr_names

        # infer meta
531
        infer_meta = parse_infer_meta(op_entry["infer_meta"])
532 533 534 535
        if infer_meta["param"] is None:
            infer_meta["param"] = copy(kernel["param"])

        # inplace
536 537
        if "inplace" in op_entry:
            inplace_pairs = parse_inplace(op_name, op_entry["inplace"])
538 539
        else:
            inplace_pairs = None
540 541 542 543 544
        # view
        if "view" in op_entry:
            view_pairs = parse_inplace(op_name, op_entry["view"])
        else:
            view_pairs = None
545
        op.update(
546 547 548 549
            {
                "infer_meta": infer_meta,
                "kernel": kernel,
                "inplace": inplace_pairs,
550
                "view": view_pairs,
551 552
            }
        )
X
xiaoguoguo626807 已提交
553 554 555 556 557

    # has invoke ?
    if "invoke" in op_entry:
        invoke_dict = parse_invoke(op_name, op_entry["invoke"])
        op.update({"invoke": invoke_dict})
558

J
Jiabin Yang 已提交
559 560 561 562
    # has composite ?
    if "composite" in op_entry:
        op.update({"composite": composite_dict})

563
    # backward
564 565
    if "backward" in op_entry:
        backward = op_entry["backward"]
566 567
    else:
        backward = None
568
    op["backward"] = backward
569

570 571 572 573 574
    # forward for backward_ops
    is_backward_op = name_field == "backward_op"
    if is_backward_op:
        if "forward" in op_entry:
            forward = parse_forward(op_name, op_entry["forward"])
575
            # validate_fb
576
            validate_backward_inputs(
577
                op_name, forward["inputs"], forward["outputs"], inputs
578
            )
579 580
            validate_backward_attrs(op_name, forward["attrs"], attrs)
            validate_backward_outputs(op_name, forward["inputs"], outputs)
581 582
        else:
            forward = None
583 584
        op["forward"] = forward
    return op
585 586


587
def validate_backward_attrs(op, forward_attrs, backward_attrs):
588 589 590
    if len(forward_attrs) >= len(backward_attrs):
        return
    num_exceptional_attrs = len(backward_attrs) - len(forward_attrs)
591 592
    # this is a not-that-clean trick to allow backward op to has more attrs
    # than the forward op , as long as they all have default value
593
    for i in range(-num_exceptional_attrs, 0):
594 595
        assert (
            "default_value" in backward_attrs[i]
596
        ), f"{op } has exceptional attr without default value"
597 598


599
def validate_backward_inputs(
600
    op, forward_inputs, forward_outputs, backward_inputs
601
):
602 603 604 605 606
    foward_input_names = [item["name"] for item in forward_inputs]
    forward_output_names = [item["name"] for item in forward_outputs]
    backward_input_names = [item["name"] for item in backward_inputs]

    assert len(backward_input_names) <= len(foward_input_names) + 2 * len(
607
        forward_output_names
608
    ), f"{op } has too many inputs."
609 610


611
def validate_backward_outputs(op, forward_inputs, backward_outputs):
612
    assert len(backward_outputs) <= len(
613
        forward_inputs
614
    ), f"{op } has too many outputs"
615 616


617 618 619 620
def cross_validate(ops):
    for name, op in ops.items():
        if "forward" in op:
            fw_call = op["forward"]
621
            fw_name = fw_call["name"]
622
            if fw_name not in ops:
623
                print(
624
                    f"Something Wrong here, this backward op ({name})'s forward op ({fw_name}) does not exist."
625 626
                )
            else:
627 628
                fw_op = ops[fw_name]
                if "backward" not in fw_op or fw_op["backward"] is None:
629
                    print(
630
                        f"Something Wrong here, {name}'s forward op ({fw_name}) does not claim {name} as its backward."
631 632
                    )
                else:
633
                    assert (
634
                        fw_op["backward"] == name
635
                    ), f"{name}: backward and forward name mismatch"
636 637

                assert len(fw_call["inputs"]) <= len(
638 639
                    fw_op["inputs"]
                ), f"{name}: forward call has more inputs than the op "
640
                for input, input_ in zip(fw_call["inputs"], fw_op["inputs"]):
641 642 643
                    assert (
                        input["typename"] == input_["typename"]
                    ), f"type mismatch in {name} and {fw_name}"
644 645

                assert len(fw_call["attrs"]) <= len(
646 647
                    fw_op["attrs"]
                ), f"{name}: forward call has more attrs than the op "
648
                for attr, attr_ in zip(fw_call["attrs"], fw_op["attrs"]):
649 650 651 652 653 654
                    if attr["typename"] == "Scalar":
                        # special case for Scalar, fw_call can omit the type
                        assert re.match(
                            r"Scalar(\(\w+\))*", attr_["typename"]
                        ), f"type mismatch in {name} and {fw_name}"
                    else:
655 656 657
                        assert (
                            attr["typename"] == attr_["typename"]
                        ), f"type mismatch in {name} and {fw_name}"
658 659

                assert len(fw_call["outputs"]) == len(
660 661
                    fw_op["outputs"]
                ), f"{name}: forward call has more outputs than the op "
662
                for output, output_ in zip(
663
                    fw_call["outputs"], fw_op["outputs"]
664 665 666 667
                ):
                    assert (
                        output["typename"] == output_["typename"]
                    ), f"type mismatch in {name} and {fw_name}"