operator.cc 128.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18
#include <unordered_set>
19

20
#include "gflags/gflags.h"
21
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
26
#include "paddle/fluid/framework/phi_utils.h"
27
#include "paddle/fluid/framework/raw_tensor.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/shape_inference.h"
29
#include "paddle/fluid/framework/transfer_scope_cache.h"
30
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/operators/isfinite_op.h"
33
#include "paddle/fluid/operators/ops_extra_info.h"
34
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
35
#include "paddle/fluid/platform/enforce.h"
36
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
37
#include "paddle/fluid/platform/profiler/event_tracing.h"
38
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
39
#include "paddle/phi/common/int_array.h"
40
#include "paddle/phi/common/scalar.h"
41
#include "paddle/phi/core/ddim.h"
42
#include "paddle/phi/core/kernel_context.h"
43 44
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
45

46
namespace phi {
47
class DenseTensor;
48
}  // namespace phi
49

50
#ifdef PADDLE_WITH_XPU
51 52
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
53
#endif
Q
Qiao Longfei 已提交
54

55 56
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
57
#include "paddle/fluid/platform/mkldnn_op_list.h"
58 59
#endif

F
fwenguang 已提交
60 61 62 63
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

64 65 66 67
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
#endif

D
dzhwinter 已提交
68
DECLARE_bool(benchmark);
69
DECLARE_bool(check_nan_inf);
70
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
71
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
72
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
73

Q
Qiao Longfei 已提交
74 75 76
namespace paddle {
namespace framework {

77 78 79 80 81 82
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
83

84
static DDim GetDimsDebug(const Scope& scope,
85
                         const std::string& name,
86
                         bool get_actual_dim = false) {
87
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
88 89
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
90 91
  }

92 93
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
94
    return tensor.dims();
95
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
96
    if (get_actual_dim) {
97
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
98
    } else {
99
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
100
    }
S
Steffy-zxf 已提交
101 102
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
103 104 105 106 107
  } else {
    return DDim({-1});
  }
}

108
static bool VarInited(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
109 110 111 112 113
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

114
static std::string GetDtype(const Scope& scope, const std::string& name) {
D
dzhwinter 已提交
115 116 117 118
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
119

120 121
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
122
    if (UNLIKELY(!tensor.IsInitialized())) {
123 124
      return "";
    }
125
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
126 127
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
128 129 130
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
131
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
132
    }
S
Steffy-zxf 已提交
133 134
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
135 136 137 138 139
  } else {
    return "";
  }
}

140
static std::string GetPlace(const Scope& scope, const std::string& name) {
L
Leo Chen 已提交
141 142 143 144 145 146 147 148 149 150
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

151 152
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
L
Leo Chen 已提交
153 154 155 156
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
157 158
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
159 160 161 162 163 164 165 166 167 168
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

169
static int GetRowSize(const Scope& scope, const std::string& name) {
170 171 172 173 174
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

175 176
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
177 178 179 180 181
  }

  return -1;
}

182
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
183 184 185 186 187 188 189
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

190 191
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
192
    return tensor.lod();
Q
Qiao Longfei 已提交
193 194 195 196 197
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
198 199 200 201 202
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
203
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
204 205 206 207 208 209
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
210
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
211 212 213 214 215 216
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

217
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
218 219 220
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
221
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
222 223 224 225
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
226
#else
227
      auto dev_id = place.device;
P
peizhilin 已提交
228
      platform::SetDeviceId(dev_id);
229 230 231
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
232 233 234 235
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
236
#else
237
      auto dev_id = place.device;
238
      platform::SetXPUDeviceId(dev_id);
239 240 241 242 243 244 245 246
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
247
      auto dev_id = place.device;
248
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
249 250 251 252 253 254 255 256
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
257
      auto dev_id = place.device;
F
fwenguang 已提交
258
      platform::SetMLUDeviceId(dev_id);
259 260 261 262 263 264 265 266
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
267
      phi::DeviceManager::SetDevice(place);
268
#endif
P
peizhilin 已提交
269
    }
P
peizhilin 已提交
270

271
    {
272 273 274
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
275
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
276
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
277 278
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
279 280
          op_name,
          platform::TracerEventType::Operator,
C
chenjian 已提交
281
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
282
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
283 284
      RunImpl(scope, place);
    }
285

Z
Zhang Ting 已提交
286
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
287
  } catch (platform::EnforceNotMet& exception) {
288
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
289
    throw std::move(exception);
290 291 292 293 294 295
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
296
  } catch (...) {
297
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
298
    std::rethrow_exception(std::current_exception());
299
  }
300 301
}

302
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
303
  return inputs_.find(name) != inputs_.end();
304 305
}

306
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
307
  auto& ins = Inputs(name);
308
  PADDLE_ENFORCE_LE(
309 310
      ins.size(),
      1UL,
311
      platform::errors::InvalidArgument(
312 313
          "Operator %s's input %s should contain only one variable.",
          type_,
314
          name));
Y
Yu Yang 已提交
315
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
316 317
}

Y
Yu Yang 已提交
318 319
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
320
  auto it = inputs_.find(name);
321
  PADDLE_ENFORCE_NE(
322 323 324 325
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have the input %s.", type_, name));
Y
Yu Yang 已提交
326
  return it->second;
Y
Yan Chunwei 已提交
327 328
}

329
bool OperatorBase::HasOutputs(const std::string& name) const {
330
  if (outputs_.find(name) != outputs_.end()) {
331 332 333 334 335 336
    return true;
  } else {
    return false;
  }
}

337
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
338
  auto& outs = Outputs(name);
339
  PADDLE_ENFORCE_LE(
340 341
      outs.size(),
      1UL,
342
      platform::errors::InvalidArgument(
343 344
          "Operator %s's output %s should contain only one variable.",
          type_,
345
          name));
Y
Yu Yang 已提交
346
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
347 348
}

Y
Yu Yang 已提交
349 350
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
351
  auto it = outputs_.find(name);
352
  PADDLE_ENFORCE_NE(
353 354
      it,
      outputs_.end(),
355 356
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
357
  return it->second;
Y
Yan Chunwei 已提交
358 359
}

360
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
361
  std::stringstream ss;
Y
Yu Yang 已提交
362
  ss << "Op(" << type_ << "), inputs:{";
363

364
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
365 366
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
367 368
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
369 370
  }

Y
Yu Yang 已提交
371 372
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
373 374
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
375 376
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
377 378
      auto var_name = input.second[i];
      ss << var_name;
379
      if (scope) {
Q
Qiao Longfei 已提交
380 381 382 383 384 385 386
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
387 388 389
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
390 391 392
          std::string place = is_no_need_buffer_var
                                  ? "unknown_place"
                                  : GetPlace(*scope, var_name);
Q
Qiao Longfei 已提交
393
          ss << ":" << dtype;
394 395
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
396
          ss << "(" << place << ")";
397
        }
398
      }
Y
Yu Yang 已提交
399 400 401
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
402
    }
Y
Yu Yang 已提交
403
    ss << "]";
Y
Yu Yang 已提交
404 405
    ++it;
    if (it != inputs_.end()) {
406 407
      ss << ", ";
    }
Q
Qiao Longfei 已提交
408
  }
Y
Yu Yang 已提交
409
  ss << "}, outputs:{";
Y
Yu Yang 已提交
410 411
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
412 413
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
414 415
      auto var_name = output.second[i];
      ss << var_name;
416
      if (scope) {
Q
Qiao Longfei 已提交
417 418 419 420 421 422 423
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
424 425
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
426 427
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
428
          ss << "(" << GetPlace(*scope, var_name) << ")";
429
        }
430
      }
Y
Yu Yang 已提交
431 432 433
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
434
    }
Y
Yu Yang 已提交
435
    ss << "]";
Y
Yu Yang 已提交
436 437
    ++it;
    if (it != outputs_.end()) {
438 439
      ss << ", ";
    }
Q
Qiao Longfei 已提交
440
  }
Y
Yu Yang 已提交
441
  ss << "}.";
Q
Qiao Longfei 已提交
442 443 444
  return ss.str();
}

Y
Yu Yang 已提交
445
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
446 447
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
448
                           const AttributeMap& attrs)
S
sneaxiy 已提交
449 450 451 452 453 454
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
455 456 457 458 459 460 461 462
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
463
  // In OperatorBase level, all attributes with VarDesc type will be considered
464 465 466 467 468 469
  // as Input.
  for (auto& attr : FilterAttrVar(attrs)) {
    VLOG(3) << "found Attribute with Variable type: " << attr.first;
    inputs_[attr.first] = std::move(AttrVarNames(attr.second));
    attrs_.erase(attr.first);
  }
Y
Yu Yang 已提交
470
}
471

Q
qijun 已提交
472 473
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
474
  for (auto& o : inputs_) {
Q
qijun 已提交
475 476 477 478 479 480
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
481 482 483 484 485 486 487 488 489 490
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
491
  auto& info = Info();
Y
Yu Yang 已提交
492 493

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
494
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
495 496 497 498 499 500 501 502 503
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
504 505
}

506
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
507
  if (info_ == nullptr || info_->proto_ == nullptr) return;
508

S
sneaxiy 已提交
509
  for (auto& in : info_->Proto().inputs()) {
510
    if (!in.dispensable() && !in.extra()) {
511
      PADDLE_ENFORCE_NE(
512 513 514 515
          inputs_.find(in.name()),
          inputs_.end(),
          platform::errors::NotFound(
              "Operator %s's input (%s) is not set.", Type(), in.name()));
516
    }
517 518
  }

S
sneaxiy 已提交
519
  for (auto& out : info_->Proto().outputs()) {
520
    if (!out.dispensable() && !out.extra() && !out.intermediate()) {
521
      PADDLE_ENFORCE_NE(
522 523 524 525
          outputs_.find(out.name()),
          outputs_.end(),
          platform::errors::NotFound(
              "Operator %s's output (%s) is not set.", Type(), out.name()));
526
    }
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
542

543 544
const phi::DenseTensor* GetLoDTensorOrSelectedRowsValueFromVar(
    const Variable& var) {
545 546
  if (var.IsType<phi::DenseTensor>()) {
    return static_cast<const phi::DenseTensor*>(&(var.Get<phi::DenseTensor>()));
547 548
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
549
  } else {
550
    PADDLE_THROW(platform::errors::InvalidArgument(
551
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
552
        ToTypeName(var.Type())));
Q
QI JUN 已提交
553 554 555
  }
}

556
phi::DenseTensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
557 558
  if (var->IsType<phi::DenseTensor>()) {
    return var->GetMutable<phi::DenseTensor>();
559 560
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
561
  } else {
562
    PADDLE_THROW(platform::errors::InvalidArgument(
563
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
564
        ToTypeName(var->Type())));
Q
QI JUN 已提交
565 566 567
  }
}

568 569 570 571 572 573 574 575
OperatorWithKernel::OperatorWithKernel(const std::string& type,
                                       const VariableNameMap& inputs,
                                       const VariableNameMap& outputs,
                                       const AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {}

OperatorWithKernel::~OperatorWithKernel() = default;

576
bool ExecutionContext::HasInput(const std::string& name) const {
577
  auto* var = InputVar(name);
578 579 580
  return var != nullptr;
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

595
bool ExecutionContext::HasOutput(const std::string& name) const {
596
  auto* var = OutputVar(name);
597 598 599
  return var != nullptr;
}

X
Xin Pan 已提交
600
const Variable* ExecutionContext::InputVar(const std::string& name) const {
601 602
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
603 604 605
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

606
  PADDLE_ENFORCE_LE(
607 608
      it->second.size(),
      1UL,
609
      platform::errors::InvalidArgument(
610
          "Operator %s's input %s should contain only one variable.",
611 612
          op_.Type(),
          name));
X
Xin Pan 已提交
613 614 615
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
616
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
617 618 619
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

620
  PADDLE_ENFORCE_LE(
621 622
      it->second.size(),
      1UL,
623 624
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
625 626
          op_.Type(),
          name));
X
Xin Pan 已提交
627 628 629
  return it->second.empty() ? nullptr : it->second[0];
}

630
template <>
631 632
const std::vector<const phi::DenseTensor*>
ExecutionContext::MultiInput<phi::DenseTensor>(const std::string& name) const {
633 634
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
635 636
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
637 638
    return {};
  }
639
  std::vector<const phi::DenseTensor*> res;
X
Xin Pan 已提交
640
  res.reserve(vars.size());
641 642 643
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
644
                 [&](const Variable* var) -> const phi::DenseTensor* {
X
Xin Pan 已提交
645
                   if (var == nullptr) return nullptr;
646 647 648 649 650 651 652 653
                   PADDLE_ENFORCE_EQ(
                       var->IsType<phi::DenseTensor>(),
                       true,
                       platform::errors::InvalidArgument(
                           "Input variable should be phi::DenseTensor, "
                           "but the received type is %s.",
                           ToTypeName(var->Type())));
                   return &(var->Get<phi::DenseTensor>());
X
Xin Pan 已提交
654 655 656 657
                 });
  return res;
}

658
template <>
659
std::vector<phi::DenseTensor*> ExecutionContext::MultiOutput<phi::DenseTensor>(
660
    const std::string& name) const {
H
hong 已提交
661 662 663
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
664 665
    return {};
  }
666
  std::vector<phi::DenseTensor*> res;
667
  res.reserve(vars.size());
668 669 670
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
671
                 [&](Variable* var) -> phi::DenseTensor* {
672
                   return var == nullptr ? nullptr
673
                                         : var->GetMutable<phi::DenseTensor>();
674
                 });
675 676 677
  return res;
}

Y
Yu Yang 已提交
678
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
679
  // check in new Function kernel first
680
  bool has_phi_kernel = false;
681
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
682
  auto kernel_key_map =
683
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
684
  for (auto& kernel : kernel_key_map) {
685
    has_phi_kernel = true;
686
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
687 688 689 690
      return true;
    }
  }

Y
Yu Yang 已提交
691 692
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
693 694 695 696 697 698 699 700 701 702 703 704 705
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
706 707 708
      return true;
    }
  }
H
hong 已提交
709

Y
Yu Yang 已提交
710 711 712
  return false;
}

713 714
class RuntimeInferShapeContext : public InferShapeContext {
 public:
715
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
716
      : op_(op), ctx_(ctx) {}
717 718

  bool HasInput(const std::string& name) const override {
719
    // has only one input
X
Xin Pan 已提交
720
    const auto& ins = ctx_.inputs;
721 722
    auto it = ins.find(name);
    if (it == ins.end()) {
723 724
      return false;
    }
725
    const auto& in = it->second;
X
Xin Pan 已提交
726
    if (in.size() == 0) return false;
727
    PADDLE_ENFORCE_EQ(
728 729
        in.size(),
        1UL,
730 731
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
732
    return in[0] != nullptr;
733 734 735
  }

  bool HasOutput(const std::string& name) const override {
736
    // has only one output
X
Xin Pan 已提交
737
    const auto& outs = ctx_.outputs;
738 739
    auto it = outs.find(name);
    if (it == outs.end()) {
740 741
      return false;
    }
742
    const auto& out = it->second;
X
Xin Pan 已提交
743
    if (out.size() == 0) {
744 745
      return false;
    }
746
    PADDLE_ENFORCE_EQ(
747 748
        out.size(),
        1UL,
749 750
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
751
    return out[0] != nullptr;
752 753
  }

754 755 756 757
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

758
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
759 760
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
761
    if (it == ins.end() || it->second.empty()) {
762 763
      return false;
    }
X
Xin Pan 已提交
764 765
    for (auto& input : it->second) {
      if (input == nullptr) {
766 767 768 769 770 771
        return false;
      }
    }
    return true;
  }

772 773
  bool HasOutputs(const std::string& name,
                  bool allow_null = false) const override {
X
Xin Pan 已提交
774 775
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
776
    if (it == outs.end() || it->second.empty()) {
777 778
      return false;
    }
Y
YuanRisheng 已提交
779
    if (!allow_null) {
780 781
      for (auto& output : it->second) {
        if (output == nullptr) return false;
782 783
      }
    }
Y
YuanRisheng 已提交
784
    return true;
785 786
  }

787 788 789
  AttrReader Attrs() const override {
    return AttrReader(op_.Attrs(), op_.RuntimeAttrs());
  }
790

H
hong 已提交
791
  std::vector<std::string> Inputs(const std::string& name) const override {
792 793 794
    return op_.Inputs(name);
  }

H
hong 已提交
795
  std::vector<std::string> Outputs(const std::string& name) const override {
796 797 798
    return op_.Outputs(name);
  }

799 800 801
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
802 803
    PADDLE_ENFORCE_LT(idx,
                      op_proto->inputs().size(),
804 805 806
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
807 808 809
                          op_.Type(),
                          idx,
                          op_proto->inputs().size()));
810 811 812 813 814 815 816
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
817 818
        idx,
        op_proto->outputs().size(),
819 820 821
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
822 823 824
            op_.Type(),
            idx,
            op_proto->outputs().size()));
825 826 827
    return op_proto->outputs()[idx].name();
  }

828 829 830
  void ShareDim(const std::string& in,
                const std::string& out,
                size_t i = 0,
831
                size_t j = 0) override {
X
Xin Pan 已提交
832 833
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
834
    PADDLE_ENFORCE_NE(
835 836
        in_it,
        ctx_.inputs.end(),
837 838
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
839 840
        out_it,
        ctx_.outputs.end(),
841
        platform::errors::NotFound("Output %s does not exist.", out));
842 843
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
844 845 846
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
847 848 849 850
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
851 852 853
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
854 855
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
856 857 858

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
859

860
    PADDLE_ENFORCE_EQ(
861 862
        in_var->Type(),
        out_var->Type(),
863
        platform::errors::InvalidArgument(
864 865
            "The type of input (%s) and output (%s) are inconsistent.",
            in,
866
            out));
867

868 869 870
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
871 872 873
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
874 875 876
    } else if (in_var->IsType<phi::DenseTensor>()) {
      auto& in_lod_tensor = in_var->Get<phi::DenseTensor>();
      auto* out_lod_tensor = out_var->GetMutable<phi::DenseTensor>();
877 878
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
879
      PADDLE_THROW(platform::errors::Unimplemented(
880
          "Currently, the input type of ShareDim only can be phi::DenseTensor "
881
          "or SelectedRows."));
882 883 884
    }
  }

H
hong 已提交
885 886 887 888
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
889 890
    PADDLE_ENFORCE_NE(in_it,
                      ctx_.inputs.end(),
H
hong 已提交
891 892 893
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
894 895 896 897
        out_it,
        ctx_.outputs.end(),
        platform::errors::NotFound(
            "Output [%s] found error in Op [%s]", out, op_.Type()));
H
hong 已提交
898 899 900 901 902

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
903 904
        in_var_list.size(),
        out_var_list.size(),
H
hong 已提交
905
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
906
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
907 908 909 910 911 912 913 914 915 916
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
917
      if (!in_var->IsType<phi::DenseTensor>()) return;
H
hong 已提交
918
      Variable* out_var = out_var_list[i];
919 920 921 922 923 924 925 926 927
      PADDLE_ENFORCE_EQ(
          out_var->IsType<phi::DenseTensor>(),
          true,
          platform::errors::PreconditionNotMet(
              "The %d-th output of Output(%s) must be phi::DenseTensor.",
              i,
              out_var_names[i]));
      auto& in_tensor = in_var->Get<phi::DenseTensor>();
      auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
H
hong 已提交
928 929
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
930
      if (in_tensor.layout() != DataLayout::ONEDNN)
H
hong 已提交
931 932 933 934 935
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

936 937 938
  void ShareLoD(const std::string& in,
                const std::string& out,
                size_t i = 0,
Q
Qiao Longfei 已提交
939
                size_t j = 0) const override {
X
Xin Pan 已提交
940 941
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
942
    PADDLE_ENFORCE_NE(
943 944
        in_it,
        ctx_.inputs.end(),
945 946
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
947 948
        out_it,
        ctx_.outputs.end(),
949
        platform::errors::NotFound("Output %s does not exist.", out));
950 951
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
952 953 954
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
955 956 957 958
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
959 960 961
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
962 963
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
964 965

    Variable* in_var = in_it->second.at(i);
966
    if (!in_var->IsType<phi::DenseTensor>()) return;
X
Xin Pan 已提交
967
    Variable* out_var = out_it->second.at(j);
968
    PADDLE_ENFORCE_EQ(
969
        out_var->IsType<phi::DenseTensor>(),
970
        true,
971
        platform::errors::InvalidArgument(
972 973 974 975 976
            "The %zu-th output of Output(%s) must be phi::DenseTensor.",
            j,
            out));
    auto& in_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
Q
Qiao Longfei 已提交
977
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
978

M
mozga-intel 已提交
979 980
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
981
// Shall we have a better method to shared info between in/out phi::DenseTensor?
M
mozga-intel 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
995
    if (in_tensor.layout() != DataLayout::ONEDNN)
M
mozga-intel 已提交
996 997
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
998 999
  }

1000
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
1001
    PADDLE_THROW(platform::errors::PreconditionNotMet(
1002
        "GetLoDLevel is only used in compile time. The calculation of "
1003
        "output's actual lod is different among operators so that should be "
1004
        "set in the runtime kernel."));
1005 1006
  }

1007 1008
  void SetLoDLevel(const std::string& out,
                   int32_t lod_level,
1009
                   size_t j = 0) const override {
1010
    PADDLE_THROW(platform::errors::PreconditionNotMet(
1011
        "SetLoDLevel is only used in compile time. The calculation of "
1012
        "output's actual lod is different among operators so that should be "
1013
        "set in the runtime kernel."));
C
chengduo 已提交
1014 1015
  }

1016 1017
  bool IsRuntime() const override { return true; }

1018 1019 1020 1021 1022
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
1023
               phi::DataLayout::ONEDNN));
1024
    } catch (const std::bad_cast& exp) {
1025 1026 1027 1028
      return false;
    }
  }

1029
  // TODO(paddle-dev): Can this be template?
C
Chen Weihang 已提交
1030
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
1031
  GetInputVarPtrs(const std::string& name) const override {
1032
    const std::vector<Variable*>& vars = InputVars(name);
C
Chen Weihang 已提交
1033
    paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
1034 1035 1036 1037 1038
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

C
Chen Weihang 已提交
1039
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
1040
  GetOutputVarPtrs(const std::string& name) const override {
1041
    const std::vector<Variable*>& vars = OutputVars(name);
C
Chen Weihang 已提交
1042
    paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
1043 1044 1045 1046 1047
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
1048 1049
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
1050
    PADDLE_ENFORCE_EQ(
1051 1052
        vars.size(),
        1UL,
1053 1054
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
1055 1056
            name,
            vars.size()));
X
Xin Pan 已提交
1057 1058 1059 1060 1061 1062 1063 1064
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

1065 1066 1067 1068
  proto::VarType::Type GetInputVarType(const std::string& name) const override {
    return GetVarType(InputVars(name).at(0));
  }

X
Xin Pan 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
1079 1080
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
1081
    PADDLE_ENFORCE_EQ(
1082 1083
        vars.size(),
        1UL,
1084 1085
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
1086 1087
                                          name,
                                          vars.size()));
X
Xin Pan 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1097 1098 1099 1100 1101 1102 1103 1104
  const phi::ArgumentMappingFn* GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature* GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

1105
 protected:
X
Xin Pan 已提交
1106
  DDim GetDim(Variable* var) const {
1107 1108
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1109 1110
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().dims();
1111 1112
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1113
    } else {
1114
      PADDLE_THROW(platform::errors::InvalidArgument(
1115
          "Only phi::DenseTensor or SelectedRows support 'GetDim', but input "
1116 1117
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1118 1119 1120
    }
  }

X
Xin Pan 已提交
1121 1122 1123
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
1124 1125 1126
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(ret),
X
Xin Pan 已提交
1127 1128 1129 1130
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1131
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1132 1133
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1134 1135
  }

X
Xin Pan 已提交
1136
  void SetDim(Variable* var, const DDim& dim) {
1137 1138
    if (var->IsType<phi::DenseTensor>()) {
      var->GetMutable<phi::DenseTensor>()->Resize(dim);
1139 1140
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1141
    } else {
1142
      PADDLE_THROW(platform::errors::Unimplemented(
1143 1144
          "Variable type error, expect phi::DenseTensor or SelectedRows, but "
          "received "
1145 1146
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1147 1148 1149 1150 1151 1152
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1153 1154
    PADDLE_ENFORCE_EQ(length,
                      dims.size(),
1155 1156 1157 1158
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
1159 1160
                          length,
                          dims.size()));
X
Xin Pan 已提交
1161 1162 1163 1164 1165
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1166 1167 1168
    }
  }

F
fengjiayi 已提交
1169 1170
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1171 1172
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1173 1174
  }

X
Xin Pan 已提交
1175 1176 1177 1178
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
1179 1180 1181
    std::transform(vars.begin(),
                   vars.end(),
                   retv.begin(),
X
Xin Pan 已提交
1182
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
1183 1184
                             this,
                             std::placeholders::_1));
X
Xin Pan 已提交
1185 1186 1187 1188
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1189 1190 1191
    return ToVarType(var->Type());
  }

1192 1193 1194
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1195
    PADDLE_ENFORCE_NE(
1196 1197
        it,
        ctx_.inputs.end(),
1198 1199
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1200 1201 1202 1203 1204
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1205
    PADDLE_ENFORCE_NE(
1206 1207
        it,
        ctx_.outputs.end(),
1208 1209
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1210
    return it->second;
F
fengjiayi 已提交
1211 1212
  }

1213
  const OperatorBase& op_;
X
Xin Pan 已提交
1214
  const RuntimeContext& ctx_;
1215 1216
};

1217
struct OperatorWithKernel::CacheImpl {
1218
  static const char kNotAllowInferShapeCahce[];
1219
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
1220 1221 1222 1223 1224 1225 1226
                     RuntimeInferShapeContext* infer_shape_ctx,
                     const std::vector<phi::DenseTensor*>& tensors,
                     bool not_allow_infer_shape_cache)
      : kernel_ctx_(kernel_ctx),
        infer_shape_ctx_(infer_shape_ctx),
        tensors_(tensors),
        not_allow_infer_shape_cache_(not_allow_infer_shape_cache) {}
1227 1228 1229 1230 1231 1232

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
  bool NeedInferShape() {
    if (not_allow_infer_shape_cache_) return true;

    bool ret{false};
    if (last_ddims_.empty() || tensors_.empty()) ret = true;
    if (!ret) {
      CHECK_EQ(last_ddims_.size(), tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        if (tensors_[i]->dims() != last_ddims_[i]) {
          ret = true;
          break;
        }
      }
    }
    if (ret) {
      last_ddims_.resize(tensors_.size());
      for (size_t i = 0; i < last_ddims_.size(); ++i) {
        last_ddims_[i] = tensors_[i]->dims();
      }
    }
    VLOG(3) << "need infer shape is " << ret;
    return ret;
  }

1257 1258 1259
 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
1260 1261 1262
  std::vector<phi::DenseTensor*> tensors_;
  bool not_allow_infer_shape_cache_;
  std::vector<phi::DDim> last_ddims_;
1263
};
1264 1265
const char OperatorWithKernel::CacheImpl::kNotAllowInferShapeCahce[] =
    "@NOT_ALLOW_INFERSHAPE_CACHE@";
1266

1267 1268
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
1269
                                const phi::DenseTensor& tensor) {
C
chengduoZH 已提交
1270 1271 1272
  if (tensor.memory_size() == 0) {
    return;
  }
1273 1274
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1275 1276
    return;
  }
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
  PADDLE_ENFORCE_NE(framework::TensorContainsInf(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains Inf.",
                        op_type,
                        name));
  PADDLE_ENFORCE_NE(framework::TensorContainsNAN(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains NAN.",
                        op_type,
                        name));
C
chengduoZH 已提交
1289 1290
}

1291 1292 1293 1294
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1295 1296
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1309 1310
          op_kernels.begin(),
          op_kernels.end(),
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1322 1323
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1336 1337
          op_kernels.begin(),
          op_kernels.end(),
1338 1339 1340 1341 1342 1343 1344
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
bool OperatorWithKernel::SupportXPU() const {
#ifdef PADDLE_WITH_XPU
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::XPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_xpu_place(kern_pair.first.place_) &&
Q
QingshuChen 已提交
1368 1369 1370 1371
                   paddle::platform::is_xpu_support_op(
                       type_,
                       framework::TransToPhiDataType(
                           kern_pair.first.data_type_));
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportXPU() when not compiled with "
      "XPU support."));
  return false;
#endif
}

1383 1384
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1385 1386 1387 1388 1389
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
Y
YuanRisheng 已提交
1390 1391 1392 1393
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::ONEDNN &&
                           kern_pair.first.dtype() ==
                               framework::TransToPhiDataType(data_type);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_cpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kMKLDNN &&
                   kern_pair.first.data_type_ == data_type;
          });
    }
1412
  }
1413 1414
}

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
bool OperatorWithKernel::SupportsCUDNN(
    const proto::VarType::Type data_type) const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  paddle::experimental::DataType phi_data_type =
      framework::TransToPhiDataType(data_type);
  auto has_phi_kernel = std::any_of(
      phi_kernels.begin(),
      phi_kernels.end(),
      [phi_data_type](phi::KernelKeyMap::const_reference kern_pair) {
        return kern_pair.first.backend() == phi::Backend::GPUDNN &&
               kern_pair.first.dtype() == phi_data_type;
      });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kCUDNN &&
                   kern_pair.first.data_type_ == data_type;
          });
    }
  }
}

1448
bool OperatorWithKernel::SupportsKernelType(
1449
    const OpKernelType& kernel_type, const ExecutionContext& exe_ctx) const {
1450 1451
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1452 1453 1454 1455 1456
  if (kernels_iter == all_op_kernels.end()) return false;
  OpKernelMap& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(kernel_type);

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1457
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
1458
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1459 1460
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1461 1462
  }
#endif
1463 1464 1465 1466 1467

#ifdef PADDLE_WITH_XPU_KP
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
Q
QingshuChen 已提交
1468 1469
        paddle::platform::is_xpu_support_op(
            type_, framework::TransToPhiDataType(kernel_type.data_type_));
1470 1471 1472 1473 1474 1475 1476 1477 1478
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      auto tmp_kernel_type = kernel_type;
      tmp_kernel_type.library_type_ = LibraryType::kKP;
      return kernels.find(tmp_kernel_type) != kernels.end();
    }
    return kernel_iter != kernels.end() &&
Q
QingshuChen 已提交
1479 1480
           paddle::platform::is_xpu_support_op(
               type_, framework::TransToPhiDataType(kernel_type.data_type_));
1481 1482 1483
  }
#endif

1484
// NOTE(jiahongyu): If MKLDNN can be used, the function SupportsKernelType needs
1485 1486 1487 1488 1489
// to check whether current op supports MKLDNN kernel. There are three
// statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1490
#ifdef PADDLE_WITH_MKLDNN
1491
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
1492 1493 1494
      this->CanMKLDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kMKLDNN;
1495
    tmp_kernel_type.data_layout_ = framework::DataLayout::ONEDNN;
1496 1497 1498 1499
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1500 1501 1502 1503 1504 1505 1506 1507
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kCUDNN;
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1508
  return kernel_iter != kernels.end();
1509 1510
}

1511 1512
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1513
  return ctx.HasAttr("use_mkldnn") && ctx.Attr<bool>("use_mkldnn") &&
1514 1515
         platform::is_cpu_place(ctx.GetPlace()) &&
         this->SupportsMKLDNN(data_type);
1516 1517
}

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
bool OperatorWithKernel::CanCUDNNBeUsed(const framework::ExecutionContext& ctx,
                                        proto::VarType::Type data_type) const {
  bool use_cudnn = ctx.HasAttr("use_cudnn") && ctx.Attr<bool>("use_cudnn") &&
                   paddle::platform::is_gpu_place(ctx.GetPlace());

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (use_cudnn) {
    auto& dev_ctx = ctx.device_context<phi::GPUContext>();
    use_cudnn &= (dev_ctx.cudnn_handle() != nullptr);
  }
#endif  // PADDLE_WITH_CUDA || PADDLE_WITH_HIP

#if defined(PADDLE_WITH_CUDA)
  if (use_cudnn && data_type == framework::proto::VarType::BF16) {
    PADDLE_ENFORCE_GE(
        platform::DnnVersion(),
        8100,
        platform::errors::InvalidArgument(
            "bfloat16 can only be used when CUDNN_VERSION >= 8100"));
  }
#endif  // PADDLE_WITH_CUDA

  return use_cudnn && this->SupportsCUDNN(data_type);
}

1543 1544 1545 1546 1547 1548 1549
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1550
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1551 1552
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1553
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1554
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1555 1556
}

L
luotao1 已提交
1557 1558
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1559 1560
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1561 1562 1563
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1564
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1565
    all_kernels_must_compute_runtime_shape_ = true;
1566
  const Scope* cur_scope = &scope;
1567
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1568 1569
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1570
    pre_scope_ = cur_scope;
1571 1572
  } else if (run_phi_kernel_ && impl_ != nullptr && !need_prepare_data_ &&
             !need_prepare_phi_data_) {
1573
    if (!all_kernels_must_compute_runtime_shape_ && impl_->NeedInferShape()) {
1574
      this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
1575
    }
1576
    (*phi_kernel_)(impl_->getKernelContext());
L
luotao1 已提交
1577
  } else {
1578 1579 1580 1581 1582 1583
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1584
    }
1585
    RunImpl(scope, place, runtime_ctx_.get());
L
luotao1 已提交
1586 1587 1588 1589 1590 1591
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1592
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1593
  bool fallback_to_cpu = false;
1594
  auto* dev_ctx = pool.Get(place);
1595

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1606
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1607 1608 1609 1610
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1611

1612 1613 1614 1615 1616 1617
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1618 1619 1620 1621 1622
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1623 1624
  phi::KernelKey phi_kernel_key;
  std::string phi_kernel_name;
1625
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1626
    if (kernel_signature_ == nullptr || phi_kernel_ == nullptr) {
1627 1628 1629
      kernel_signature_.reset(new phi::KernelSignature(
          std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      VLOG(6) << *kernel_signature_.get();
1630 1631 1632 1633 1634

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

1635
      phi_kernel_name = kernel_signature_->name;
1636 1637 1638 1639 1640 1641 1642
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
Q
QingshuChen 已提交
1643 1644
            paddle::platform::is_xpu_support_op(
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1659
                  << phi_kernel_name
1660
                  << ", using_kernel_key:" << *kernel_type_.get();
1661
          auto try_phi_kernel_key =
1662
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1663 1664
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1665 1666
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1667
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1668 1669 1670
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1671
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1672 1673 1674 1675
          }
        }
      }
#endif
1676 1677
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
      phi_kernel_.reset(
1678
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1679
              phi_kernel_name, phi_kernel_key)));
1680

1681
      if (phi_kernel_->IsValid()) {
1682
        VLOG(6) << "Static mode ChoosePhiKernel - kernel name: "
1683 1684
                << phi_kernel_name << " | kernel key: " << phi_kernel_key
                << " | kernel: " << *phi_kernel_;
1685
      } else {
1686
        VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << phi_kernel_name
1687 1688
                << "` not found.";
      }
1689
    } else {
1690
      phi_kernel_name = kernel_signature_->name;
1691 1692

// NOTE(jiahongyu): The registered MKLDNN kernel have library_type =
1693
// LibraryType::kMKLDNN and data_layout_ = DataLayout::ONEDNN. But the default
1694
// values are kPlain, so we need to modify the library_type and data_layout_
1695 1696 1697 1698
// here. There are three statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1699
#ifdef PADDLE_WITH_MKLDNN
1700 1701
      if (!this->DnnFallback() &&
          !paddle::platform::in_mkldnn_white_list(type_) &&
1702 1703
          this->CanMKLDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kMKLDNN;
1704
        kernel_type_->data_layout_ = framework::DataLayout::ONEDNN;
1705 1706 1707
      }
#endif

1708 1709 1710 1711 1712 1713
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (this->CanCUDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kCUDNN;
      }
#endif

1714 1715 1716
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1717 1718 1719 1720
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
Q
QingshuChen 已提交
1721 1722
            paddle::platform::is_xpu_support_op(
                type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1736
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1737
                  << phi_kernel_name
1738
                  << ", using_kernel_key:" << *kernel_type_.get();
1739
          auto try_phi_kernel_key =
1740
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1741 1742
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1743
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1744
            VLOG(3) << "modify XPU KP kernel in static graph: "
1745
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1746 1747 1748
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1749
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1750 1751 1752 1753
          }
        }
      }
#endif
1754
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1755
    }
1756 1757 1758 1759

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1760
#if defined(PADDLE_WITH_XPU)
1761 1762
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
Q
QingshuChen 已提交
1763 1764
        !paddle::platform::is_xpu_support_op(
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1765
#endif
1766 1767 1768 1769
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
Q
QingshuChen 已提交
1770 1771
        paddle::platform::is_xpu_support_op(
            type_, framework::TransToPhiDataType(kernel_type_->data_type_));
1772 1773 1774 1775 1776 1777
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1778
    if (phi_kernel_->IsValid()
1779
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1780 1781
        && !is_xpu_unsupport
#endif
1782 1783 1784
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1785
    ) {
1786
      run_phi_kernel_ = true;
1787 1788 1789
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif

1800 1801 1802
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1803
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1804
          || is_xpu_unsupport
1805
#endif
1806 1807 1808
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
1809
      ) {
1810
        fallback_to_cpu = true;
H
HongyuJia 已提交
1811
        auto phi_cpu_kernel_key = FallBackToCpu(phi_kernel_key, *this);
1812
        phi_kernel_.reset(
1813
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1814
                phi_kernel_name, phi_cpu_kernel_key)));
1815 1816

        dev_ctx = pool.Get(platform::CPUPlace());
1817 1818 1819 1820
        if (phi_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: "
                  << phi_kernel_name << " | kernel key: " << phi_cpu_kernel_key
                  << " | kernel: " << *phi_kernel_;
1821
          run_phi_kernel_ = true;
1822 1823
        }
      }
1824 1825
    }
  }
1826
  if (!run_phi_kernel_) {
1827 1828
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1829
      dev_ctx = pool.Get(kernel_type_->place_);
1830
    }
1831 1832
  }

Y
yuyang18 已提交
1833 1834
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1835 1836
  Scope* transfer_scope = nullptr;
  {
1837
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1838
                                       platform::TracerEventType::OperatorInner,
1839 1840
                                       1,
                                       platform::EventRole::kInnerOp);
1841
    if (need_prepare_data_) {
1842 1843
      transfer_scope = PrepareData(
          scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
1844
    }
1845
  }
Y
yuyang18 已提交
1846 1847 1848 1849
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1850
  if (!all_kernels_must_compute_runtime_shape_) {
1851
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1852
                                       platform::TracerEventType::OperatorInner,
1853 1854
                                       1,
                                       platform::EventRole::kInnerOp);
1855
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1856
    this->Info().infer_shape_(&infer_shape_ctx);
1857 1858
    record_event.End();
    platform::RecordOpInfoSupplement(
1859
        Type(), Attrs(), infer_shape_ctx, *runtime_ctx, Id());
1860
  }
1861 1862 1863 1864 1865

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1866 1867
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1868
  {
1869
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1870
                                       platform::TracerEventType::OperatorInner,
1871 1872
                                       1,
                                       platform::EventRole::kInnerOp);
1873
    if (run_phi_kernel_) {
1874
      phi::KernelContext phi_kernel_context;
1875 1876
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
        // TODO(inference): Now we only suppor dense_tensor cache, we may be
        // support ScalarTensor, SparseTensor in future.
        bool all_dense_tensor_input_{true};
        for (auto& iter : Inputs()) {
          for (auto& name : iter.second) {
            all_dense_tensor_input_ &=
                scope.FindVar(name)->IsType<phi::DenseTensor>();
          }
        }

        std::vector<phi::DenseTensor*> tensors;
        if (all_dense_tensor_input_) {
          for (auto& iter : Inputs()) {
            for (auto& name : iter.second) {
              auto* t = scope.FindVar(name)->GetMutable<phi::DenseTensor>();
              tensors.push_back(t);
            }
          }
        }

        impl_.reset(
1898
            new CacheImpl(new phi::KernelContext(),
1899 1900 1901
                          new RuntimeInferShapeContext(*this, *runtime_ctx),
                          tensors,
                          HasAttr(CacheImpl::kNotAllowInferShapeCahce)));
1902
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
1903
        (*phi_kernel_)(impl_->getKernelContext());
1904
      } else {
1905
        phi::KernelContext phi_kernel_context;
1906 1907
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
1908 1909
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &phi_kernel_context);
        (*phi_kernel_)(&phi_kernel_context);
1910
      }
1911 1912 1913 1914
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1915 1916 1917
    if (fallback_to_cpu) {
      phi_kernel_.release();
    }
1918
  }
D
dzhwinter 已提交
1919

Y
yuyang18 已提交
1920
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1921
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1922
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1923
  }
1924 1925 1926 1927 1928 1929 1930

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1931 1932 1933 1934 1935 1936 1937 1938
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1939

D
dzhwinter 已提交
1940
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1941
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1942
    dev_ctx->Wait();
1943 1944
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1945 1946
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1947
  }
C
chengduoZH 已提交
1948 1949

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1950
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1951
  }
1952 1953 1954 1955 1956 1957 1958

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1959
}
X
Xin Pan 已提交
1960

1961 1962 1963
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1964 1965 1966

// NOTE(jiahongyu): PADDLE_WITH_MKLDNN codes are moved outside function
// GetExpectedKernelType, so that if MKLDNN can be used, the library_type_ and
1967
// data_layout_ of expected_kernel_key need to be adjusted. There are three
1968
// statements in if condition:
1969 1970 1971
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1972
#ifdef PADDLE_WITH_MKLDNN
1973
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
1974 1975
      this->CanMKLDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kMKLDNN;
1976
    expected_kernel_key.data_layout_ = framework::DataLayout::ONEDNN;
1977 1978 1979
  }
#endif

1980 1981 1982 1983 1984 1985
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (this->CanCUDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kCUDNN;
  }
#endif

1986 1987 1988
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1999 2000 2001
      // when the Op that does not have GPUKernel is assigned to GPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
2002 2003
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2004
      if (SupportGPU()) {
2005
        auto& dev_ctx = ctx.device_context();
2006
        expected_kernel_key.place_ = dev_ctx.GetPlace();
2007 2008
      }
#endif
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("npu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have NPUKernel is assigned to NPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
2028 2029 2030
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
2031
        expected_kernel_key.place_ = dev_ctx.GetPlace();
2032 2033 2034
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
2035 2036
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
            << ") has no NPU implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("xpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have XPUKernel is assigned to XPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
#ifdef PADDLE_WITH_XPU
      if (SupportXPU()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no XPU implementation. It will be assigned to CPUPlace.";
2063 2064 2065
      }
    }
  }
C
cc 已提交
2066 2067
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
2068 2069 2070
  return expected_kernel_key;
}

2071
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
2072
    const ExecutionContext& ctx) const {
2073 2074 2075
  kernel_signature_.reset(
      new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  VLOG(6) << *kernel_signature_.get();
2076 2077 2078 2079

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

2080 2081 2082 2083
  auto phi_kernel_name = kernel_signature_->name;
  auto phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
  phi_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      phi_kernel_name, phi_kernel_key)));
2084

2085 2086 2087 2088
  if (phi_kernel_->IsValid()) {
    VLOG(6) << "Static mode ChoosePhiKernel - kernel name: " << phi_kernel_name
            << " | kernel key: " << phi_kernel_key
            << " | kernel: " << *phi_kernel_;
2089
  } else {
2090
    VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << phi_kernel_name
2091 2092
            << "` not found.";
  }
2093
  return phi_kernel_key;
2094 2095 2096 2097 2098 2099 2100
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
2101 2102
      kernels_iter,
      all_op_kernels.end(),
2103
      platform::errors::Unimplemented(
2104 2105 2106 2107 2108 2109
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
2110 2111

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
2112

L
Liu Yiqun 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
2122
#endif
2123 2124

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
2125
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
2126
      (kernel_iter == kernels.end() ||
Q
QingshuChen 已提交
2127 2128 2129
       !paddle::platform::is_xpu_support_op(
           type_,
           framework::TransToPhiDataType(expected_kernel_key.data_type_)))) {
2130
    VLOG(3) << "fluid missing XPU kernel: " << type_
2131 2132 2133 2134 2135
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
2136
#endif
L
Liu-xiandong 已提交
2137 2138

#ifdef PADDLE_WITH_XPU_KP
2139 2140 2141
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
Q
QingshuChen 已提交
2142 2143 2144
        paddle::platform::is_xpu_support_op(
            type_,
            framework::TransToPhiDataType(expected_kernel_key.data_type_));
2145 2146 2147
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
2148
      VLOG(3) << "fluid xpu_kp using rt mode ";
2149 2150
    }
    if (use_xpu_kp_kernel_debug) {
2151
      VLOG(3) << "fluid xpu_kp using debug mode ";
2152 2153 2154
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
2155 2156
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
2157 2158
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
2159
      // if can't find corresponding kernel when is_xpu_kp_support is on
H
HongyuJia 已提交
2160
      // if the fluid do not register related kernel, it can't work and have
2161 2162 2163 2164 2165 2166 2167
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
2168
        VLOG(3) << "fluid using XPU KP kernel: " << type_
2169 2170
                << ", using_kernel_key:" << expected_kernel_key;
      }
2171
    }
Q
QingshuChen 已提交
2172 2173
    bool is_xpu_unsupport = (!paddle::platform::is_xpu_support_op(
        type_, framework::TransToPhiDataType(expected_kernel_key.data_type_)));
2174 2175
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
2176
      VLOG(3) << "fluid missing XPU kernel: " << type_
2177 2178 2179 2180 2181
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
2182 2183 2184
  }
#endif

A
Allen Guo 已提交
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
2195 2196
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
2197
      platform::is_npu_place(expected_kernel_key.place_)) {
2198 2199 2200 2201 2202 2203
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
2204 2205 2206
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
2207
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
2208 2209 2210
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
2222 2223 2224
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
2225
#endif
2226 2227 2228 2229 2230 2231
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator (%s) does not have kernel for %s.",
                                 type_,
                                 KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
2232

2233 2234 2235 2236 2237
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
2238 2239
}

Y
yuyang18 已提交
2240
void OperatorWithKernel::TransferInplaceVarsBack(
2241 2242
    const Scope& scope,
    const std::vector<std::string>& inplace_vars,
Y
yuyang18 已提交
2243 2244
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
2245
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
2246
    auto* origin_var = scope.FindVar(var_name);
2247 2248 2249
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2250
    auto* original_tensor =
C
chengduo 已提交
2251
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
2252
    auto* var = transfer_scope.FindVar(var_name);
2253 2254 2255
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2256
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2257
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
2258
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
2259 2260 2261 2262 2263
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
2264 2265 2266
  }
}

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
2296
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
2316
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
2327
      phi::DenseTensor out;
2328 2329 2330 2331 2332 2333
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
2334
Scope* OperatorWithKernel::PrepareData(
2335 2336
    const Scope& scope,
    const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
2337 2338
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
2339
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
2340

2341
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
2342 2343 2344 2345
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
2346 2347
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
2348 2349 2350
    }
  }

2351 2352 2353 2354 2355 2356 2357 2358 2359
  const auto& name_map = Inputs();
  auto prepare_input_data = [&](const std::string& in_name,
                                std::vector<Variable*>* in_vars,
                                const phi::TensorArgDef* in_def,
                                bool should_skip_input) -> void {
    auto& name_vec = name_map.at(in_name);
    for (size_t i = 0; i < in_vars->size(); ++i) {
      const auto& var_name = name_vec[i];
      auto* var = in_vars->at(i);
X
Xin Pan 已提交
2360

Y
yuyang18 已提交
2361
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
2362
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
2363 2364 2365
        continue;
      }

C
chengduo 已提交
2366
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2367

2368
      // When no_buffer_ins then checking of phi::DenseTensor::holder_ is
2369 2370 2371 2372 2373 2374 2375
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
2376
        // oneDNN shape of Var may differ from kNHWC Var
2377 2378
        // In such situation corressponding resized Var
        // has to be created and registered
2379
        if ((tensor_in->layout() == DataLayout::ONEDNN) &&
2380
            (var->IsType<phi::DenseTensor>() == true) &&
2381
            (expected_kernel_key.data_layout_ != DataLayout::ONEDNN) &&
2382 2383
            (phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
             DataLayout::kNHWC) &&
2384
            (tensor_in->dims().size() >= 3)) {
2385
          // Mixed execution : oneDNN and GPU is not supported!
2386 2387 2388 2389
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
2390
          in_vars->at(i) = trans_var;
2391
          auto out = trans_var->GetMutable<phi::DenseTensor>();
2392
          out->Resize(tensor_in->dims());
2393
          phi::funcs::MatchShapeToLayout(
2394
              out, tensor_in->layout(), DataLayout::kNHWC);
2395
          VLOG(7) << "Created reshaped dummy input based on oneDNN "
2396
                     "phi::DenseTensor , "
2397
                     "but kNHWC layout"
2398
                  << in_name << " in Operator " << type_;
2399
        } else {
2400 2401
          VLOG(7) << "Skip scanning input " << in_name << " in Operator "
                  << type_;
2402 2403 2404 2405 2406
        }
#endif
        continue;
      }

Y
yuyang18 已提交
2407 2408 2409 2410
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
      auto kernel_type_for_var =
          GetKernelTypeForVar(in_name, *tensor_in, expected_kernel_key);
      bool need_trans_dtype =
          kernel_type_for_var.data_type_ != expected_kernel_key.data_type_;
      bool need_trans_layout = NeedTransformLayout(
          kernel_type_for_var.data_layout_, expected_kernel_key.data_layout_);
      if (!need_trans_dtype && !need_trans_layout) {
        if (!run_phi_kernel_ &&
            platform::places_are_same_class(kernel_type_for_var.place_,
                                            expected_kernel_key.place_)) {
          continue;
        }
      }
Y
yuyang18 已提交
2424

2425
      std::unique_ptr<OpKernelType> new_expected_kernel_key = nullptr;
2426 2427
      if (run_phi_kernel_ && in_def != nullptr &&
          in_def->backend != phi::Backend::ALL_BACKEND) {
2428 2429 2430
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if ((in_def->backend != tensor_backend &&
             (in_def->backend != phi::Backend::GPUDNN ||
2431 2432
              tensor_backend != phi::Backend::GPU) &&
             (in_def->backend != phi::Backend::KPS ||
2433 2434 2435
              tensor_backend != phi::Backend::XPU) &&
             (in_def->backend != phi::Backend::ONEDNN ||
              tensor_backend != phi::Backend::CPU)) ||
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
            tensor_in->place().GetType() == AllocationType::GPUPINNED) {
          new_expected_kernel_key = std::make_unique<OpKernelType>(
              expected_kernel_key.data_type_,
              phi::TransToPhiPlace(in_def->backend),
              expected_kernel_key.data_layout_,
              expected_kernel_key.library_type_,
              expected_kernel_key.customized_type_value_);
        }
      }

      if (!need_trans_dtype && !need_trans_layout) {
        if (run_phi_kernel_ && new_expected_kernel_key == nullptr) {
          continue;
        }
Y
yuyang18 已提交
2450 2451
      }

M
minqiyang 已提交
2452
      VLOG(3) << "Transform Variable " << var_name << " from "
2453 2454 2455
              << kernel_type_for_var << " to "
              << (new_expected_kernel_key ? *new_expected_kernel_key
                                          : expected_kernel_key);
Y
yuyang18 已提交
2456

H
HongyuJia 已提交
2457 2458 2459
      // In the inference scenario, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memory explosion
      // over the running of operators.
2460
      // We use a thread_local cache to fix that issue, the key in the cache is
2461 2462 2463 2464 2465
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
2466 2467
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
2468
      // variables, that behavior a lot different.
2469 2470 2471 2472 2473 2474
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
      if (!run_by_executor_) {
        if (new_expected_kernel_key) {
          if ((platform::is_gpu_place(kernel_type_for_var.place_) ||
               platform::is_gpu_place(new_expected_kernel_key->place_))) {
            new_scope = TryCreateTransferScope(
                kernel_type_for_var, *new_expected_kernel_key, &scope);
            enable_cache_transfer_scope_ = true;
          }
        } else if ((platform::is_gpu_place(kernel_type_for_var.place_) ||
                    platform::is_gpu_place(expected_kernel_key.place_))) {
          new_scope = TryCreateTransferScope(
              kernel_type_for_var, expected_kernel_key, &scope);
          enable_cache_transfer_scope_ = true;
        }
2489
      }
2490

2491
      if (!new_scope) {
Y
yuyang18 已提交
2492 2493
        new_scope = &scope.NewScope();
      }
2494 2495 2496 2497
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
2498
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
2499 2500
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
2501
      if (enable_cache_runtime_context_) {
2502 2503
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2504 2505

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2506
      auto* trans_var = new_scope->Var(var_name);
2507
      in_vars->at(i) = trans_var;
L
Leo Chen 已提交
2508 2509 2510 2511 2512 2513 2514

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
2515
            VLOG(4) << "Found inplace between input(" << in_name
L
Leo Chen 已提交
2516 2517 2518 2519 2520 2521 2522 2523 2524
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
2525
      phi::DenseTensor out;
2526 2527 2528 2529 2530
      TransformData(new_expected_kernel_key ? *new_expected_kernel_key
                                            : expected_kernel_key,
                    kernel_type_for_var,
                    *tensor_in,
                    &out);
Y
yuyang18 已提交
2531 2532
      SetTensorToVariable(*var, out, trans_var);
    }
2533 2534 2535 2536
  };

  if (run_phi_kernel_) {
    const auto& input_names = kernel_signature_->input_names;
2537
    const auto& input_defs = phi_kernel_->args_def().input_defs();
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
    PADDLE_ENFORCE_EQ(input_names.size(),
                      input_defs.size(),
                      platform::errors::InvalidArgument(
                          "The size of inputs_args names (%d) must be equal to "
                          "the size of kernel input_defs (%d).",
                          input_names.size(),
                          input_defs.size()));
    for (size_t i = 0; i < input_defs.size(); ++i) {
      auto& in_def = input_defs.at(i);
      std::string input_name = input_names[i];
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      auto& ins_vector = iter->second;
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      prepare_input_data(input_name, &ins_vector, &in_def, should_skip_input);
    }
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
#ifdef PADDLE_WITH_MKLDNN
    // For input that is Extra, only MKLDNN will use Extra Inputs
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      std::vector<Variable*>& input_vars = iter->second;
      prepare_input_data(input_name, &input_vars, nullptr, should_skip_input);
    }
#endif
2573 2574 2575 2576 2577 2578 2579 2580 2581
  } else {
    for (auto& var_name_item : Inputs()) {
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

      std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];
      prepare_input_data(
          var_name_item.first, &input_vars, nullptr, should_skip_input);
    }
Y
yuyang18 已提交
2582
  }
L
Leo Chen 已提交
2583

2584 2585 2586 2587 2588 2589
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
2590 2591 2592 2593 2594 2595

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2596 2597
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2598 2599 2600

  return new_scope;
}
Q
Qiao Longfei 已提交
2601

2602
void OperatorWithKernel::ParseInputDataType(
2603 2604
    const Variable* var,
    const std::string& name,
2605 2606
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
2607 2608 2609
    const phi::DenseTensor* t = nullptr;
    if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2610 2611
    } else if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2612 2613
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
    } else if (var->IsType<phi::SparseCooTensor>()) {
      const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
      PADDLE_ENFORCE_EQ(
          sp_t->initialized(),
          true,
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
                                            Type(),
                                            name));
      *data_type = paddle::framework::TransToProtoVarType(sp_t->dtype());
      return;
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2640 2641
    const std::vector<Variable*>& vars,
    const std::string& name,
2642
    proto::VarType::Type* data_type) const {
2643
  proto::VarType::Type default_data_type =
2644 2645 2646 2647
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
2648 2649 2650
      const phi::DenseTensor* t = nullptr;
      if (var->IsType<phi::DenseTensor>()) {
        t = &var->Get<phi::DenseTensor>();
2651 2652
      } else if (var->IsType<phi::DenseTensor>()) {
        t = &var->Get<phi::DenseTensor>();
2653 2654
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
      } else if (var->IsType<phi::SparseCooTensor>()) {
        const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
        PADDLE_ENFORCE_EQ(
            sp_t->initialized(),
            true,
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(),
                                              name));
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(sp_t->dtype());
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(),
                           name,
                           DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
        *data_type = tmp;
2678
      } else if (var->IsType<LoDTensorArray>()) {
2679 2680 2681 2682
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2683 2684
          }
        }
2685 2686
      }
      if (t != nullptr) {
2687 2688 2689 2690 2691 2692 2693
        PADDLE_ENFORCE_EQ(t->IsInitialized(),
                          true,
                          platform::errors::InvalidArgument(
                              "The %s Op's Input Variable `%s` "
                              "contains uninitialized phi::DenseTensor.",
                              Type(),
                              name));
2694 2695
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2696 2697 2698 2699 2700 2701 2702
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
2703 2704 2705
                           Type(),
                           name,
                           DataTypeToString(tmp),
2706
                           DataTypeToString(*data_type)));
2707 2708 2709 2710 2711 2712
        *data_type = tmp;
      }
    }
  }
}

2713
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2714
    const ExecutionContext& ctx) const {
2715 2716 2717
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2718 2719 2720 2721 2722 2723
  for (auto* name : ctx.InNameList()) {
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2724
  }
2725
  PADDLE_ENFORCE_NE(
2726 2727
      data_type,
      dafault_data_type,
2728 2729
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2730 2731 2732 2733 2734 2735 2736 2737
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2738 2739 2740 2741 2742
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2743
  PADDLE_ENFORCE_NE(
2744 2745
      data_type,
      dafault_data_type,
2746 2747
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
2748
          "data type is empty or not phi::DenseTensor or SelectedRows or "
2749
          "LoDTensorArray.",
2750 2751
          name,
          Type()));
2752
  return data_type;
Y
Yu Yang 已提交
2753
}
2754

2755
phi::DenseTensor* OperatorWithKernel::GetTensorFormInputSafely(
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
2768 2769 2770
  phi::DenseTensor* t = nullptr;
  if (var->IsType<phi::DenseTensor>()) {
    t = var->GetMutable<phi::DenseTensor>();
2771 2772
  } else if (var->IsType<phi::DenseTensor>()) {
    t = var->GetMutable<phi::DenseTensor>();
2773 2774
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2775 2776 2777 2778
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
2779 2780 2781 2782 2783 2784 2785
  PADDLE_ENFORCE_NOT_NULL(t,
                          platform::errors::InvalidArgument(
                              "The phi::DenseTensor of variable %s is nullptr "
                              "when promote complex types."));
  PADDLE_ENFORCE_EQ(
      t->IsInitialized(),
      true,
2786
      platform::errors::InvalidArgument(
2787 2788 2789 2790 2791
          "The phi::DenseTensor in the %s Op's Input Variable %s(%s) is "
          "not initialized.",
          Type(),
          name,
          ctx.InputName(name)));
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
2803 2804
    const ExecutionContext& ctx,
    const std::string& name1,
2805 2806 2807 2808 2809 2810
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2811 2812
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2813 2814 2815 2816 2817 2818 2819

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2820 2821 2822 2823 2824 2825
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
2826
    const std::string& var_name,
2827
    const phi::DenseTensor& tensor,
2828
    const OpKernelType& expected_kernel_type) const {
2829 2830 2831 2832
#ifdef PADDLE_WITH_MKLDNN
  // When the op is first oneDNN op (there was some non oneDNN op
  // previously)
  // then we also need to rotate shape NHWC -> NCWH
2833 2834
  if ((expected_kernel_type.data_layout_ == phi::DataLayout::ONEDNN) &&
      (tensor.layout() != phi::DataLayout::ONEDNN) &&
2835 2836
      phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
          phi::DataLayout::kNHWC) {
2837 2838 2839 2840 2841
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(),
                                   phi::DataLayout::kNHWC);
  }
#endif
2842 2843
  return OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
2844 2845
}

2846
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2847
    const ExecutionContext& ctx) const {
2848
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2849
  if (arg_map_fn_ == nullptr) {
2850 2851 2852 2853
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2854 2855 2856
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2857 2858 2859 2860
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2861 2862
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2863 2864
}

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
static void SetDnnAttrIntoDeviceContext(
    phi::DeviceContext* dev_ctx,
    const Attribute& attr,
    const std::string& attr_name,
    const operators::ExtraAttrPropertySet& attr_propertys) {
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::ONEDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to OneDNNContext.";
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::FLOAT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(float, attr));
        break;
      case proto::AttrType::INT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::STRING:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(std::string, attr));
        break;
      case proto::AttrType::INTS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<int>, attr));
        break;
      case proto::AttrType::FLOATS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<float>, attr));
        break;
      case proto::AttrType::BOOLEAN:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
#ifdef PADDLE_WITH_CUDA
  if (phi::GPUContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::GPUDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to GPUDNNContext.";
    phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::INT:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::BOOLEAN:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
}

2924
void OperatorWithKernel::BuildPhiKernelContext(
2925 2926
    const RuntimeContext& ctx,
    platform::DeviceContext* dev_ctx,
2927 2928
    phi::KernelContext* phi_kernel_context) const {
  phi_kernel_context->SetDeviceContext(dev_ctx);
2929

2930 2931 2932
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
2933

2934 2935 2936
  auto input_defs = phi_kernel_->args_def().input_defs();
  auto attr_defs = phi_kernel_->args_def().attribute_defs();
  auto output_defs = phi_kernel_->args_def().output_defs();
2937

2938 2939 2940 2941 2942 2943 2944 2945 2946
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    // Onednn holds this op's variable's name and init them here.
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->SetInputsName(Inputs());
    one_dnn_ctx->SetOutputsName(Outputs());
  }
#endif

2947 2948
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
2949 2950 2951
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
2952 2953
                        input_names.size(),
                        input_defs.size()));
2954

2955 2956
  PADDLE_ENFORCE_EQ(output_names.size(),
                    output_defs.size(),
2957 2958 2959
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
2960 2961
                        output_names.size(),
                        output_defs.size()));
2962

2963 2964
  PADDLE_ENFORCE_EQ(attr_names.size(),
                    attr_defs.size(),
2965 2966 2967
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
2968 2969
                        attr_names.size(),
                        attr_defs.size()));
2970 2971

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2972
    auto it = ctx.inputs.find(input_names[i]);
2973 2974 2975

    // calcute the start and end index of the input tensors
    size_t start_idx =
2976
        (i == 0 ? 0 : phi_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
2977
    // deal with optional here
2978
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
2979
        (input_defs[i].type_index ==
2980
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
2981
         input_defs[i].type_index ==
2982
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
2983
         input_defs[i].type_index ==
2984 2985
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
2986
      phi_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
H
hong 已提交
2987
      auto end_idx = start_idx + 1;
2988 2989
      phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                           i);
2990

H
hong 已提交
2991 2992 2993 2994
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2995
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2996
      const phi::TensorBase* tensor_in = nullptr;
2997
      auto* var = ins_vector[offset];
2998 2999
      if (var->IsType<phi::DenseTensor>()) {
        tensor_in = &(var->Get<phi::DenseTensor>());
3000
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3001 3002
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
3003
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3004 3005 3006
      } else if (var->IsType<phi::SparseCooTensor>()) {
        tensor_in = &(var->Get<phi::SparseCooTensor>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3007
      } else if (var->IsType<framework::LoDTensorArray>()) {
3008
        need_prepare_phi_data_ = true;
3009 3010
        tensor_in = &(var->Get<framework::LoDTensorArray>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3011 3012 3013
      } else if (var->IsType<framework::Vocab>()) {
        tensor_in = &(var->Get<framework::Vocab>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
3014 3015 3016 3017
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
3018
      }
3019
    }
3020
    // Note: here cannot deal with vector<LoDTensorArray> input
3021
    phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
3022
  }
3023
  VLOG(4) << "Done inputs";
3024 3025

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
3026
    auto it = ctx.outputs.find(output_names[i]);
3027
    size_t start_idx =
3028
        (i == 0 ? 0 : phi_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
3029 3030

    if (it == ctx.outputs.end() || it->second.empty()) {
3031
      VLOG(4) << "Output " << output_names[i] << " not found";
H
hong 已提交
3032 3033 3034 3035
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
3036
      phi_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
H
hong 已提交
3037
      auto end_idx = start_idx + 1;
3038 3039
      phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                            i);
H
hong 已提交
3040 3041 3042 3043
      continue;
    }
    auto& outs_vector = it->second;

3044
    size_t end_idx = start_idx + outs_vector.size();
3045 3046

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
3047
      phi::TensorBase* tensor_out = nullptr;
3048
      auto* var = outs_vector[offset];
3049
      if (var) {
3050 3051
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
3052
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3053 3054
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
3055
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3056 3057 3058
        } else if (var->template IsType<phi::SparseCooTensor>()) {
          tensor_out = var->template GetMutable<phi::SparseCooTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3059
        } else if (var->template IsType<framework::LoDTensorArray>()) {
3060
          tensor_out = var->template GetMutable<framework::LoDTensorArray>();
3061 3062
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
3063
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3064 3065 3066 3067 3068 3069 3070
        } else if (var->template IsType<paddle::framework::RawTensor>()) {
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (!var->IsInitialized()) {
          // The following is for RAW type of var
          tensor_out = var->template GetMutable<paddle::framework::RawTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3071 3072 3073 3074 3075
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
3076
      } else {
3077
        VLOG(4) << "Output " << output_names[i] << " is nullptr";
3078
        phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
3079
      }
3080
    }
3081 3082
    phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
3083
  }
3084
  VLOG(4) << "Done outputs";
3085 3086

  for (size_t i = 0; i < attr_names.size(); ++i) {
3087 3088
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
3089 3090
    // attribute with Variable type has been placed into Inputs(), and
    // we can parse them from RuntimeContext.inputs.
3091 3092 3093 3094 3095 3096 3097
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
3098
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3099
                  phi::Scalar(PADDLE_GET_CONST(float, attr_iter->second))));
3100
              break;
3101 3102 3103 3104
            case proto::AttrType::FLOAT64:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(double, attr_iter->second))));
              break;
3105
            case proto::AttrType::INT:
3106
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
3107
                  phi::Scalar(PADDLE_GET_CONST(int, attr_iter->second))));
3108
              break;
3109 3110 3111 3112
            case proto::AttrType::LONG:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(int64_t, attr_iter->second))));
              break;
3113
            case proto::AttrType::STRING:
3114
              phi_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
R
Ruibiao Chen 已提交
3115
                  PADDLE_GET_CONST(std::string, attr_iter->second))));
3116
              break;
3117 3118 3119 3120
            case proto::AttrType::BOOLEAN:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(bool, attr_iter->second))));
              break;
3121 3122 3123 3124 3125 3126 3127
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
3128
          need_prepare_phi_data_ = true;
3129
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
3130
          phi_kernel_context->EmplaceBackAttr(std::move(
3131
              experimental::MakePhiScalarFromVar(*ins_vector.front())));
3132
        }
3133 3134 3135 3136 3137
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
3138
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3139
                  PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second))));
3140 3141
              break;
            case proto::AttrType::LONGS:
3142
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3143
                  PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second))));
3144 3145
              break;
            case proto::AttrType::INT:
3146
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3147
                  &PADDLE_GET_CONST(int32_t, attr_iter->second), 1)));
3148 3149
              break;
            case proto::AttrType::LONG:
3150
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
3151
                  &PADDLE_GET_CONST(int64_t, attr_iter->second), 1)));
3152 3153 3154 3155 3156 3157 3158 3159
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
3160
          need_prepare_phi_data_ = true;
3161 3162
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
3163
            phi_kernel_context->EmplaceBackAttr(std::move(
3164 3165
                experimental::MakePhiIntArrayFromVar(*ins_vector.front())));
          } else {  // ShapeTensorList
3166
            phi_kernel_context->EmplaceBackAttr(std::move(
3167 3168
                experimental::MakePhiIntArrayFromVarList(ins_vector)));
          }
3169
        }
3170
        break;
3171

3172 3173
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
3174 3175
            attr_iter,
            Attrs().end(),
3176 3177 3178 3179 3180 3181
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3182
                PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second);
3183 3184 3185 3186 3187
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3188
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3189 3190 3191
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3192
                PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second);
3193 3194 3195 3196 3197
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3198
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3199 3200 3201
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3202
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second);
3203 3204 3205 3206 3207
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3208
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3209 3210 3211
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
R
Ruibiao Chen 已提交
3212
                PADDLE_GET_CONST(std::vector<double>, attr_iter->second);
3213 3214 3215 3216 3217
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3218
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3219 3220 3221
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3222
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second);
3223 3224 3225 3226 3227
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3228
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3229 3230 3231 3232 3233
          } break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
3234 3235
                attr_names[i]));
        }
3236 3237
      } break;
      default: {
3238
        if (attr_iter == Attrs().end()) {
3239
          // TODO(chenweihang): remove this backup searching later
3240 3241 3242 3243 3244 3245 3246 3247 3248
          attr_iter = RuntimeAttrs().find(attr_names[i]);
          PADDLE_ENFORCE_NE(attr_iter,
                            RuntimeAttrs().end(),
                            platform::errors::NotFound(
                                "(%s) is not found in AttributeMap when "
                                "buildind static KernelContext.",
                                attr_names[i]));
        }

3249 3250
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
3251
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3252
                PADDLE_GET_CONST(float, attr_iter->second));
3253
            break;
3254 3255 3256 3257
          case phi::AttributeType::FLOAT64:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(double, attr_iter->second));
            break;
3258
          case phi::AttributeType::INT32:
3259
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3260
                PADDLE_GET_CONST(int, attr_iter->second));
3261 3262
            break;
          case phi::AttributeType::BOOL:
3263
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3264
                PADDLE_GET_CONST(bool, attr_iter->second));
3265 3266
            break;
          case phi::AttributeType::INT64:
3267
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3268
                PADDLE_GET_CONST(int64_t, attr_iter->second));
3269 3270
            break;
          case phi::AttributeType::INT32S:
3271
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3272
                PADDLE_GET_CONST(std::vector<int>, attr_iter->second));
3273
            break;
3274 3275 3276 3277
          case phi::AttributeType::BOOLS:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second));
            break;
3278 3279 3280
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
3281
                    PADDLE_GET_CONST(int, attr_iter->second)));
3282
            phi_kernel_context->EmplaceBackAttr(data_type);
3283 3284
          } break;
          case phi::AttributeType::STRING:
3285
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3286
                std::move(PADDLE_GET_CONST(std::string, attr_iter->second)));
3287 3288 3289 3290
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
3291
                phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3292
                    PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second));
3293 3294 3295
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
3296
                    PADDLE_GET_CONST(std::vector<int>, attr_iter->second);
3297 3298
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
3299
                phi_kernel_context->EmplaceBackAttr(vector_int64_attr);
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
3310
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3311
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second));
3312 3313
            break;
          case phi::AttributeType::STRINGS:
3314
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3315
                PADDLE_GET_CONST(std::vector<std::string>, attr_iter->second));
3316 3317 3318 3319 3320 3321
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
3322
        }
3323 3324 3325
      }
    }
  }
3326
  VLOG(4) << "Done attributes";
3327

3328 3329 3330 3331 3332 3333
// Clear All old attrs before add new attrs,
// because sometimes old attrs may be misused.
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->ClearDnnAttr();
3334
    if (!RuntimeAttrs().empty()) need_prepare_phi_data_ = true;
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
  }
#endif

  // Note(YuanRisheng): Now, we can't open code below.
  // Because some unittest run OLD dygraph and ExtraAttr is not supported in OLD
  // dygraph. So, here we use trick that dev_ctx is a global object. We can
  // store ExtraAttr in static graph and when unittest run OLD dygraph, it can
  // obtain these ExtraAttr. We can open this code when OLD dygraph is no longer
  // used.
  /*
  #if defined(PADDLE_WITH_CUDA)
    if(phi::GPUContext::classof(dev_ctx)) {
      phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
      gpu_dnn_ctx->ClearDnnAttr();
    }
  #endif
  */
3352 3353 3354 3355 3356 3357
  // For compatible with Op with extra attrs for specific backend
#if defined(PADDLE_WITH_MKLDNN) || defined(PADDLE_WITH_CUDA)
  auto& runtime_attrs = RuntimeAttrs();
  for (const auto& attr_iter : runtime_attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3358
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  // TODO(chenweihang): Since the pass will still `SetAttr` in the OpDesc,
  // we try to add these Attrs to the RuntimeAttrs, but these OpDesc will lose
  // the RuntimeAttrs information in the process of converting the Graph to
  // the Program, so additional record configuration will be introduced,
  // which increases the The cost of development and understanding, so we
  // still use Attrs to get and the attributes set by these passes from Attrs
  // for the time being. In the future, it is necessary to clarify the
  // positioning of RuntimeAttrs and expand related functions.
  auto& attrs = Attrs();
  for (const auto& attr_iter : attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
H
HongyuJia 已提交
3373
    auto attr_propertys = paddle::operators::GetExtraAttrProperties(attr_name);
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  VLOG(4) << "Done runtime attributes";
#endif

// For compatible with Op with extra input for onednn backend
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto it = ctx.inputs.find(input_name);
      if (it == ctx.inputs.end() || it->second.size() == 0) {
        one_dnn_ctx->SetDnnInput(input_name, nullptr);
      } else {
        auto ins_vector = it->second;
        PADDLE_ENFORCE_EQ(
            ins_vector.size(),
            1UL,
            phi::errors::InvalidArgument(
                "OneDNN's extra input only allows one input tensor."));
        auto* var = ins_vector[0];
        PADDLE_ENFORCE_EQ(var->IsType<phi::DenseTensor>(),
                          true,
                          phi::errors::InvalidArgument(
                              "OneDNN's extra input only can be DenseTensor."));
        one_dnn_ctx->SetDnnInput(input_name, &(var->Get<phi::DenseTensor>()));
      }
    }
  }
  VLOG(4) << "Done runtime extra inputs";
#endif
3408 3409
}

Q
Qiao Longfei 已提交
3410
}  // namespace framework
L
liaogang 已提交
3411
}  // namespace paddle