multi_trainer.cc 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
16

17 18
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"
Z
zhaocaibei123 已提交
19
#include "paddle/fluid/platform/lodtensor_printer.h"
T
tangwei12 已提交
20

T
tangwei12 已提交
21
#if defined PADDLE_WITH_PSCORE
22
#include "paddle/fluid/distributed/ps/service/communicator/communicator.h"
T
tangwei12 已提交
23
#endif
24 25 26 27

namespace paddle {
namespace framework {

28 29
extern Barrier g_barrier;

D
dongdaxiang 已提交
30
void MultiTrainer::Initialize(const TrainerDesc& trainer_desc,
31
                              Dataset* dataset) {
32
  thread_num_ = trainer_desc.thread_num();
33 34
  SetDataset(dataset);

H
hutuxian 已提交
35
  ParseDumpConfig(trainer_desc);
36 37 38
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
  dump_file_num_ = trainer_desc.dump_file_num();
39 40 41 42 43
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
T
Thunderbrook 已提交
44 45 46 47 48 49 50
#ifdef PADDLE_WITH_HETERPS
  for (int i = 0; i < thread_num_; ++i) {
    int num = trainer_desc.worker_places(i);
    platform::CUDAPlace place = platform::CUDAPlace(num);
    places_.push_back(place);
  }
#endif
L
lxsbupt 已提交
51
  user_define_dump_filename_ = trainer_desc.user_define_dump_filename();
52
  // get filelist from trainer_desc here
J
jiaqi 已提交
53
  const std::vector<paddle::framework::DataFeed*> readers =
D
dongdaxiang 已提交
54
      dataset->GetReaders();
55
  VLOG(3) << "readers num: " << readers.size();
56 57 58 59
  // change thread num to readers num
  thread_num_ = readers.size();
  VLOG(3) << "worker thread num: " << thread_num_;
  workers_.resize(thread_num_);
60

T
tangwei12 已提交
61
#if defined PADDLE_WITH_PSCORE
62
  if (trainer_desc.thread_barrier()) {
T
tangwei12 已提交
63
    paddle::distributed::Communicator::GetInstance()->BarrierTriggerReset(
64 65 66
        thread_num_);
  }
#endif
67
  g_barrier.reset(thread_num_);
68 69 70
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
H
hutuxian 已提交
71 72 73 74 75
    workers_[i]->SetNeedDumpField(need_dump_field_);
    workers_[i]->SetNeedDumpParam(need_dump_param_);
    workers_[i]->SetDumpFieldVector(dump_fields_);
    workers_[i]->SetDumpParamVector(dump_param_);
    workers_[i]->InitRandomDumpConfig(trainer_desc);
D
dongdaxiang 已提交
76
    workers_[i]->Initialize(trainer_desc);
77
    workers_[i]->SetDeviceIndex(i);
D
dongdaxiang 已提交
78
    workers_[i]->SetDataFeed(readers[i]);
79
    workers_[i]->SetThreadNum(thread_num_);
80
  }
D
dongdaxiang 已提交
81 82

  // set debug here
83
  SetDebug(trainer_desc.debug());
84 85
}

H
hutuxian 已提交
86
std::string MultiTrainer::GetDumpPath(int tid) {
Y
yaoxuefeng 已提交
87
  if (user_define_dump_filename_ != "") {
88 89 90 91
    return string::format_string("%s/part-%s-%05d",
                                 dump_fields_path_.c_str(),
                                 user_define_dump_filename_.c_str(),
                                 tid);
Y
yaoxuefeng 已提交
92
  }
93 94
  return string::format_string(
      "%s/part-%03d-%05d", dump_fields_path_.c_str(), mpi_rank_, tid);
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
}

void MultiTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
H
hutuxian 已提交
111
        std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
112 113 114
  }
}

115 116 117 118
// call only after all resources are set in current trainer
void MultiTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                  const platform::Place& place) {
  for (int i = 0; i < thread_num_; ++i) {
T
Thunderbrook 已提交
119 120 121
#ifdef PADDLE_WITH_HETERPS
    workers_[i]->SetPlace(places_[i]);
    workers_[i]->SetReaderPlace(places_[i]);
122 123
    workers_[i]->SetDeviceContext(
        platform::DeviceContextPool::Instance().Get(places_[i]));
T
Thunderbrook 已提交
124
#else
125
    workers_[i]->SetPlace(place);
126
    workers_[i]->SetReaderPlace(place);
T
Thunderbrook 已提交
127
#endif
128 129 130
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
T
Thunderbrook 已提交
131
    workers_[i]->CacheProgram(main_program);
132
  }
T
Thunderbrook 已提交
133 134 135 136 137 138 139 140 141 142 143 144
#ifdef PADDLE_WITH_HETERPS
  for (int num = 0; num < thread_num_; ++num) {
    auto place = places_[num];
    Scope* scope = workers_[num]->GetThreadScope();
    auto& block = main_program.Block(0);
    for (auto& var : block.AllVars()) {
      if (var->Persistable()) {
        auto name = var->Name();
        Variable* root_var = root_scope_->FindVar(name);
        if (!root_var) {
          continue;
        }
145
        if (root_var->IsType<phi::SelectedRows>()) {
T
Thunderbrook 已提交
146 147
          continue;
        }
148 149
        phi::DenseTensor* root_tensor =
            root_var->GetMutable<phi::DenseTensor>();
T
Thunderbrook 已提交
150 151
        auto* ptr = scope->Var(name);
        InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
152
        phi::DenseTensor* thread_tensor = ptr->GetMutable<phi::DenseTensor>();
T
Thunderbrook 已提交
153 154 155 156 157
        TensorCopy(*root_tensor, place, thread_tensor);
      }
    }
  }
#endif
D
danleifeng 已提交
158 159 160
  for (auto& var : main_program.Block(0).AllVars()) {
    if (var->Persistable()) {
      auto it = std::find(need_merge_var_names_.begin(),
161 162
                          need_merge_var_names_.end(),
                          var->Name());
D
danleifeng 已提交
163 164 165 166 167 168 169
      if (it == need_merge_var_names_.end() &&
          var->GetType() != proto::VarType::SELECTED_ROWS) {
        VLOG(2) << "train param: " << var->Name();
        trainable_param_.push_back(var->Name());
      }
    }
  }
170 171
}

172
void MultiTrainer::InitOtherEnv(const ProgramDesc& main_program) {
X
xujiaqi01 已提交
173
  if (need_dump_field_ || need_dump_param_) {
174 175
    InitDumpEnv();
  }
Z
zhaocaibei123 已提交
176 177 178 179 180 181 182

#ifdef PADDLE_WITH_PSCORE
  // pull dense param first
  auto communicator = paddle::distributed::Communicator::GetInstance();
  // for unittest which call train_from_dataset but does not call
  // fleet.init_worker() first
  if (communicator == nullptr) {
183
    VLOG(1) << "MultiTrainer::InitOtherEnv Communicator is null!";
Z
zhaocaibei123 已提交
184 185 186 187 188 189
  } else {
    auto& recv_ctx = communicator->GetRecvCtxMap();
    communicator->PullDense(recv_ctx);
    VLOG(3) << "init other env done.";
  }
#endif
190 191
}

192 193 194 195
Scope* MultiTrainer::GetWorkerScope(int thread_id) {
  return workers_[thread_id]->GetThreadScope();
}

196
void MultiTrainer::Run() {
197
  VLOG(3) << "Going to run";
198
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
199 200 201 202 203 204 205
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
206 207 208 209 210 211
  }
  for (auto& th : threads_) {
    th.join();
  }
}

T
Thunderbrook 已提交
212 213
#ifdef PADDLE_WITH_HETERPS
void MultiTrainer::MergeDenseParam() {
D
danleifeng 已提交
214
#ifdef PADDLE_WITH_PSCORE
T
Thunderbrook 已提交
215
  auto communicator = paddle::distributed::Communicator::GetInstance();
D
danleifeng 已提交
216 217 218 219
  auto thread_scope = workers_[0]->GetThreadScope();
  if (communicator == nullptr) {
    for (auto& name : trainable_param_) {
      VLOG(2) << "merge var " << name << " to root scope";
T
Thunderbrook 已提交
220
      Variable* root_var = root_scope_->FindVar(name);
221
      phi::DenseTensor* root_tensor = root_var->GetMutable<phi::DenseTensor>();
T
Thunderbrook 已提交
222
      Variable* var = thread_scope->FindVar(name);
223
      phi::DenseTensor* tensor = var->GetMutable<phi::DenseTensor>();
D
danleifeng 已提交
224 225 226 227 228 229 230 231 232
      TensorCopySync((*tensor), root_tensor->place(), root_tensor);
    }
  } else {
    auto& recv_ctx = communicator->GetRecvCtxMap();
    for (auto& iter : recv_ctx) {
      auto& varnames = iter.second;
      for (auto& name : varnames) {
        VLOG(2) << "merge var " << name << " to root scope";
        Variable* root_var = root_scope_->FindVar(name);
233 234
        phi::DenseTensor* root_tensor =
            root_var->GetMutable<phi::DenseTensor>();
D
danleifeng 已提交
235
        Variable* var = thread_scope->FindVar(name);
236
        phi::DenseTensor* tensor = var->GetMutable<phi::DenseTensor>();
D
danleifeng 已提交
237 238
        TensorCopySync((*tensor), root_tensor->place(), root_tensor);
      }
T
Thunderbrook 已提交
239 240
    }
  }
T
Thunderbrook 已提交
241
#endif
T
Thunderbrook 已提交
242 243 244 245
}
#endif

template <typename T>
246 247 248
void MultiTrainer::MergeToRootScope(phi::DenseTensor* root_tensor,
                                    phi::DenseTensor* tensor) {
  phi::DenseTensor tmp_root;
T
Thunderbrook 已提交
249 250
  TensorCopy(*root_tensor, platform::CPUPlace(), &tmp_root);
  T* tmp_root_data = tmp_root.data<T>();
251
  phi::DenseTensor tmp_tensor;
T
Thunderbrook 已提交
252 253 254 255 256 257 258 259
  TensorCopy(*tensor, platform::CPUPlace(), &tmp_tensor);
  T* data = tmp_tensor.data<T>();
  for (int i = 0; i < tmp_tensor.numel(); i++) {
    tmp_root_data[i] += data[i];
  }
  TensorCopy(tmp_root, platform::CPUPlace(), root_tensor);
}

260
void MultiTrainer::Finalize() {
X
xujiaqi01 已提交
261
  if (need_dump_field_ || need_dump_param_) {
262 263
    FinalizeDumpEnv();
  }
T
Thunderbrook 已提交
264 265 266 267 268
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
    Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
269
    phi::DenseTensor* root_tensor = root_var->GetMutable<phi::DenseTensor>();
T
Thunderbrook 已提交
270

W
wangguanqun 已提交
271
    for (int j = 1; j < thread_num_; j++) {
T
Thunderbrook 已提交
272 273 274 275 276 277
      Scope* cur_thread_scope = workers_[j]->GetThreadScope();
      Variable* thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      if (thread_var == nullptr) {
        continue;
      }
278 279
      phi::DenseTensor* thread_tensor =
          thread_var->GetMutable<phi::DenseTensor>();
T
Thunderbrook 已提交
280 281
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
282 283 284
    if (framework::TransToProtoVarType(root_tensor->dtype()) == proto_type) {  \
      if (framework::TransToProtoVarType(thread_tensor->dtype()) !=            \
          proto_type) {                                                        \
T
Thunderbrook 已提交
285 286
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
287 288
                << ", root tensor type=" << root_tensor->dtype()               \
                << ", thread tensor type=" << thread_tensor->dtype();          \
T
Thunderbrook 已提交
289 290 291 292 293 294 295 296
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }
W
wangguanqun 已提交
297
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
298 299
  MergeDenseParam();
#endif
Z
zhaocaibei123 已提交
300 301 302 303 304

#if defined PADDLE_WITH_PSCORE
  auto communicator = paddle::distributed::Communicator::GetInstance();
  // for unittest which does not call fleet.init_worker() first
  if (communicator == nullptr) {
305
    VLOG(1) << "MultiTrainer::Finalize communicator is null!";
Z
zhaocaibei123 已提交
306
  } else {
307 308 309 310
    if (communicator->_worker_ptr != nullptr) {
      communicator->_worker_ptr->Flush();
      VLOG(1) << "MultiTrainer::Finalize ps client flush done";
    } else {
311
      VLOG(1) << "communicator->_worker_ptr is null";
312
    }
Z
zhaocaibei123 已提交
313 314
  }
#endif
315 316
  root_scope_->DropKids();
}
D
Dong Daxiang 已提交
317

318 319
}  // end namespace framework
}  // end namespace paddle