multi_trainer.cc 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
16

17 18
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"
Z
zhaocaibei123 已提交
19
#include "paddle/fluid/platform/lodtensor_printer.h"
T
tangwei12 已提交
20

T
tangwei12 已提交
21
#if defined PADDLE_WITH_PSCORE
22
#include "paddle/fluid/distributed/ps/service/communicator/communicator.h"
T
tangwei12 已提交
23
#endif
24 25 26 27

namespace paddle {
namespace framework {

D
dongdaxiang 已提交
28
void MultiTrainer::Initialize(const TrainerDesc& trainer_desc,
29
                              Dataset* dataset) {
30
  thread_num_ = trainer_desc.thread_num();
31 32
  SetDataset(dataset);

H
hutuxian 已提交
33
  ParseDumpConfig(trainer_desc);
34 35 36
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
  dump_file_num_ = trainer_desc.dump_file_num();
37 38 39 40 41
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
T
Thunderbrook 已提交
42 43 44 45 46 47 48
#ifdef PADDLE_WITH_HETERPS
  for (int i = 0; i < thread_num_; ++i) {
    int num = trainer_desc.worker_places(i);
    platform::CUDAPlace place = platform::CUDAPlace(num);
    places_.push_back(place);
  }
#endif
L
lxsbupt 已提交
49
  user_define_dump_filename_ = trainer_desc.user_define_dump_filename();
50
  // get filelist from trainer_desc here
J
jiaqi 已提交
51
  const std::vector<paddle::framework::DataFeed*> readers =
D
dongdaxiang 已提交
52
      dataset->GetReaders();
53
  VLOG(3) << "readers num: " << readers.size();
54 55 56 57
  // change thread num to readers num
  thread_num_ = readers.size();
  VLOG(3) << "worker thread num: " << thread_num_;
  workers_.resize(thread_num_);
58

T
tangwei12 已提交
59
#if defined PADDLE_WITH_PSCORE
60
  if (trainer_desc.thread_barrier()) {
T
tangwei12 已提交
61
    paddle::distributed::Communicator::GetInstance()->BarrierTriggerReset(
62 63 64 65
        thread_num_);
  }
#endif

66 67 68
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
H
hutuxian 已提交
69 70 71 72 73
    workers_[i]->SetNeedDumpField(need_dump_field_);
    workers_[i]->SetNeedDumpParam(need_dump_param_);
    workers_[i]->SetDumpFieldVector(dump_fields_);
    workers_[i]->SetDumpParamVector(dump_param_);
    workers_[i]->InitRandomDumpConfig(trainer_desc);
D
dongdaxiang 已提交
74
    workers_[i]->Initialize(trainer_desc);
75
    workers_[i]->SetDeviceIndex(i);
D
dongdaxiang 已提交
76
    workers_[i]->SetDataFeed(readers[i]);
77
  }
D
dongdaxiang 已提交
78 79

  // set debug here
80
  SetDebug(trainer_desc.debug());
81 82
}

H
hutuxian 已提交
83
std::string MultiTrainer::GetDumpPath(int tid) {
Y
yaoxuefeng 已提交
84
  if (user_define_dump_filename_ != "") {
85 86 87 88
    return string::format_string("%s/part-%s-%05d",
                                 dump_fields_path_.c_str(),
                                 user_define_dump_filename_.c_str(),
                                 tid);
Y
yaoxuefeng 已提交
89
  }
90 91
  return string::format_string(
      "%s/part-%03d-%05d", dump_fields_path_.c_str(), mpi_rank_, tid);
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
}

void MultiTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
H
hutuxian 已提交
108
        std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
109 110 111
  }
}

112 113 114 115
// call only after all resources are set in current trainer
void MultiTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                  const platform::Place& place) {
  for (int i = 0; i < thread_num_; ++i) {
T
Thunderbrook 已提交
116 117 118
#ifdef PADDLE_WITH_HETERPS
    workers_[i]->SetPlace(places_[i]);
    workers_[i]->SetReaderPlace(places_[i]);
119 120
    workers_[i]->SetDeviceContext(
        platform::DeviceContextPool::Instance().Get(places_[i]));
T
Thunderbrook 已提交
121
#else
122
    workers_[i]->SetPlace(place);
123
    workers_[i]->SetReaderPlace(place);
T
Thunderbrook 已提交
124
#endif
125 126 127
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
T
Thunderbrook 已提交
128
    workers_[i]->CacheProgram(main_program);
129
  }
T
Thunderbrook 已提交
130 131 132 133 134 135 136 137 138 139 140 141
#ifdef PADDLE_WITH_HETERPS
  for (int num = 0; num < thread_num_; ++num) {
    auto place = places_[num];
    Scope* scope = workers_[num]->GetThreadScope();
    auto& block = main_program.Block(0);
    for (auto& var : block.AllVars()) {
      if (var->Persistable()) {
        auto name = var->Name();
        Variable* root_var = root_scope_->FindVar(name);
        if (!root_var) {
          continue;
        }
142
        if (root_var->IsType<phi::SelectedRows>()) {
T
Thunderbrook 已提交
143 144
          continue;
        }
145 146
        phi::DenseTensor* root_tensor =
            root_var->GetMutable<phi::DenseTensor>();
T
Thunderbrook 已提交
147 148
        auto* ptr = scope->Var(name);
        InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
149
        phi::DenseTensor* thread_tensor = ptr->GetMutable<phi::DenseTensor>();
T
Thunderbrook 已提交
150 151 152 153 154
        TensorCopy(*root_tensor, place, thread_tensor);
      }
    }
  }
#endif
D
danleifeng 已提交
155 156 157
  for (auto& var : main_program.Block(0).AllVars()) {
    if (var->Persistable()) {
      auto it = std::find(need_merge_var_names_.begin(),
158 159
                          need_merge_var_names_.end(),
                          var->Name());
D
danleifeng 已提交
160 161 162 163 164 165 166
      if (it == need_merge_var_names_.end() &&
          var->GetType() != proto::VarType::SELECTED_ROWS) {
        VLOG(2) << "train param: " << var->Name();
        trainable_param_.push_back(var->Name());
      }
    }
  }
167 168
}

169
void MultiTrainer::InitOtherEnv(const ProgramDesc& main_program) {
X
xujiaqi01 已提交
170
  if (need_dump_field_ || need_dump_param_) {
171 172
    InitDumpEnv();
  }
Z
zhaocaibei123 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186

#ifdef PADDLE_WITH_PSCORE
  // pull dense param first
  auto communicator = paddle::distributed::Communicator::GetInstance();
  // for unittest which call train_from_dataset but does not call
  // fleet.init_worker() first
  if (communicator == nullptr) {
    VLOG(0) << "MultiTrainer::InitOtherEnv Communicator is null!";
  } else {
    auto& recv_ctx = communicator->GetRecvCtxMap();
    communicator->PullDense(recv_ctx);
    VLOG(3) << "init other env done.";
  }
#endif
187 188
}

189 190 191 192
Scope* MultiTrainer::GetWorkerScope(int thread_id) {
  return workers_[thread_id]->GetThreadScope();
}

193
void MultiTrainer::Run() {
194
  VLOG(3) << "Going to run";
195
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
196 197 198 199 200 201 202
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
203 204 205 206 207 208
  }
  for (auto& th : threads_) {
    th.join();
  }
}

T
Thunderbrook 已提交
209 210
#ifdef PADDLE_WITH_HETERPS
void MultiTrainer::MergeDenseParam() {
D
danleifeng 已提交
211
#ifdef PADDLE_WITH_PSCORE
T
Thunderbrook 已提交
212
  auto communicator = paddle::distributed::Communicator::GetInstance();
D
danleifeng 已提交
213 214 215 216
  auto thread_scope = workers_[0]->GetThreadScope();
  if (communicator == nullptr) {
    for (auto& name : trainable_param_) {
      VLOG(2) << "merge var " << name << " to root scope";
T
Thunderbrook 已提交
217
      Variable* root_var = root_scope_->FindVar(name);
218
      phi::DenseTensor* root_tensor = root_var->GetMutable<phi::DenseTensor>();
T
Thunderbrook 已提交
219
      Variable* var = thread_scope->FindVar(name);
220
      phi::DenseTensor* tensor = var->GetMutable<phi::DenseTensor>();
D
danleifeng 已提交
221 222 223 224 225 226 227 228 229
      TensorCopySync((*tensor), root_tensor->place(), root_tensor);
    }
  } else {
    auto& recv_ctx = communicator->GetRecvCtxMap();
    for (auto& iter : recv_ctx) {
      auto& varnames = iter.second;
      for (auto& name : varnames) {
        VLOG(2) << "merge var " << name << " to root scope";
        Variable* root_var = root_scope_->FindVar(name);
230 231
        phi::DenseTensor* root_tensor =
            root_var->GetMutable<phi::DenseTensor>();
D
danleifeng 已提交
232
        Variable* var = thread_scope->FindVar(name);
233
        phi::DenseTensor* tensor = var->GetMutable<phi::DenseTensor>();
D
danleifeng 已提交
234 235
        TensorCopySync((*tensor), root_tensor->place(), root_tensor);
      }
T
Thunderbrook 已提交
236 237
    }
  }
T
Thunderbrook 已提交
238
#endif
T
Thunderbrook 已提交
239 240 241 242
}
#endif

template <typename T>
243 244 245
void MultiTrainer::MergeToRootScope(phi::DenseTensor* root_tensor,
                                    phi::DenseTensor* tensor) {
  phi::DenseTensor tmp_root;
T
Thunderbrook 已提交
246 247
  TensorCopy(*root_tensor, platform::CPUPlace(), &tmp_root);
  T* tmp_root_data = tmp_root.data<T>();
248
  phi::DenseTensor tmp_tensor;
T
Thunderbrook 已提交
249 250 251 252 253 254 255 256
  TensorCopy(*tensor, platform::CPUPlace(), &tmp_tensor);
  T* data = tmp_tensor.data<T>();
  for (int i = 0; i < tmp_tensor.numel(); i++) {
    tmp_root_data[i] += data[i];
  }
  TensorCopy(tmp_root, platform::CPUPlace(), root_tensor);
}

257
void MultiTrainer::Finalize() {
X
xujiaqi01 已提交
258
  if (need_dump_field_ || need_dump_param_) {
259 260
    FinalizeDumpEnv();
  }
T
Thunderbrook 已提交
261 262 263 264 265
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
    Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
266
    phi::DenseTensor* root_tensor = root_var->GetMutable<phi::DenseTensor>();
T
Thunderbrook 已提交
267

W
wangguanqun 已提交
268
    for (int j = 1; j < thread_num_; j++) {
T
Thunderbrook 已提交
269 270 271 272 273 274
      Scope* cur_thread_scope = workers_[j]->GetThreadScope();
      Variable* thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      if (thread_var == nullptr) {
        continue;
      }
275 276
      phi::DenseTensor* thread_tensor =
          thread_var->GetMutable<phi::DenseTensor>();
T
Thunderbrook 已提交
277 278
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
279 280 281
    if (framework::TransToProtoVarType(root_tensor->dtype()) == proto_type) {  \
      if (framework::TransToProtoVarType(thread_tensor->dtype()) !=            \
          proto_type) {                                                        \
T
Thunderbrook 已提交
282 283
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
284 285
                << ", root tensor type=" << root_tensor->dtype()               \
                << ", thread tensor type=" << thread_tensor->dtype();          \
T
Thunderbrook 已提交
286 287 288 289 290 291 292 293
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }
W
wangguanqun 已提交
294
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
295 296
  MergeDenseParam();
#endif
Z
zhaocaibei123 已提交
297 298 299 300 301 302 303

#if defined PADDLE_WITH_PSCORE
  auto communicator = paddle::distributed::Communicator::GetInstance();
  // for unittest which does not call fleet.init_worker() first
  if (communicator == nullptr) {
    VLOG(0) << "MultiTrainer::Finalize communicator is null!";
  } else {
304 305 306 307 308 309
    if (communicator->_worker_ptr != nullptr) {
      communicator->_worker_ptr->Flush();
      VLOG(1) << "MultiTrainer::Finalize ps client flush done";
    } else {
      VLOG(0) << "communicator->_worker_ptr is null";
    }
Z
zhaocaibei123 已提交
310 311
  }
#endif
312 313
  root_scope_->DropKids();
}
D
Dong Daxiang 已提交
314

315 316
}  // end namespace framework
}  // end namespace paddle