multi_trainer.cc 10.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
16

17 18
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"
Z
zhaocaibei123 已提交
19
#include "paddle/fluid/platform/lodtensor_printer.h"
T
tangwei12 已提交
20

T
tangwei12 已提交
21
#if defined PADDLE_WITH_PSCORE
22
#include "paddle/fluid/distributed/ps/service/communicator/communicator.h"
T
tangwei12 已提交
23
#endif
24 25 26 27

namespace paddle {
namespace framework {

D
dongdaxiang 已提交
28
void MultiTrainer::Initialize(const TrainerDesc& trainer_desc,
29
                              Dataset* dataset) {
30
  thread_num_ = trainer_desc.thread_num();
31 32
  SetDataset(dataset);

H
hutuxian 已提交
33
  ParseDumpConfig(trainer_desc);
34 35 36
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
  dump_file_num_ = trainer_desc.dump_file_num();
37 38 39 40 41
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
T
Thunderbrook 已提交
42 43 44 45 46 47 48
#ifdef PADDLE_WITH_HETERPS
  for (int i = 0; i < thread_num_; ++i) {
    int num = trainer_desc.worker_places(i);
    platform::CUDAPlace place = platform::CUDAPlace(num);
    places_.push_back(place);
  }
#endif
49
  // get filelist from trainer_desc here
J
jiaqi 已提交
50
  const std::vector<paddle::framework::DataFeed*> readers =
D
dongdaxiang 已提交
51
      dataset->GetReaders();
52
  VLOG(3) << "readers num: " << readers.size();
53 54 55 56
  // change thread num to readers num
  thread_num_ = readers.size();
  VLOG(3) << "worker thread num: " << thread_num_;
  workers_.resize(thread_num_);
57

T
tangwei12 已提交
58
#if defined PADDLE_WITH_PSCORE
59
  if (trainer_desc.thread_barrier()) {
T
tangwei12 已提交
60
    paddle::distributed::Communicator::GetInstance()->BarrierTriggerReset(
61 62 63 64
        thread_num_);
  }
#endif

65 66 67
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
H
hutuxian 已提交
68 69 70 71 72
    workers_[i]->SetNeedDumpField(need_dump_field_);
    workers_[i]->SetNeedDumpParam(need_dump_param_);
    workers_[i]->SetDumpFieldVector(dump_fields_);
    workers_[i]->SetDumpParamVector(dump_param_);
    workers_[i]->InitRandomDumpConfig(trainer_desc);
D
dongdaxiang 已提交
73
    workers_[i]->Initialize(trainer_desc);
74
    workers_[i]->SetDeviceIndex(i);
D
dongdaxiang 已提交
75
    workers_[i]->SetDataFeed(readers[i]);
76
  }
D
dongdaxiang 已提交
77 78

  // set debug here
79
  SetDebug(trainer_desc.debug());
80 81
}

H
hutuxian 已提交
82
std::string MultiTrainer::GetDumpPath(int tid) {
Y
yaoxuefeng 已提交
83
  if (user_define_dump_filename_ != "") {
84 85 86 87
    return string::format_string("%s/part-%s-%05d",
                                 dump_fields_path_.c_str(),
                                 user_define_dump_filename_.c_str(),
                                 tid);
Y
yaoxuefeng 已提交
88
  }
89 90
  return string::format_string(
      "%s/part-%03d-%05d", dump_fields_path_.c_str(), mpi_rank_, tid);
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
}

void MultiTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
H
hutuxian 已提交
107
        std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
108 109 110
  }
}

111 112 113 114
// call only after all resources are set in current trainer
void MultiTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                  const platform::Place& place) {
  for (int i = 0; i < thread_num_; ++i) {
T
Thunderbrook 已提交
115 116 117
#ifdef PADDLE_WITH_HETERPS
    workers_[i]->SetPlace(places_[i]);
    workers_[i]->SetReaderPlace(places_[i]);
118 119
    workers_[i]->SetDeviceContext(
        platform::DeviceContextPool::Instance().Get(places_[i]));
T
Thunderbrook 已提交
120
#else
121
    workers_[i]->SetPlace(place);
122
    workers_[i]->SetReaderPlace(place);
T
Thunderbrook 已提交
123
#endif
124 125 126
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
T
Thunderbrook 已提交
127
    workers_[i]->CacheProgram(main_program);
128
  }
T
Thunderbrook 已提交
129 130 131 132 133 134 135 136 137 138 139 140
#ifdef PADDLE_WITH_HETERPS
  for (int num = 0; num < thread_num_; ++num) {
    auto place = places_[num];
    Scope* scope = workers_[num]->GetThreadScope();
    auto& block = main_program.Block(0);
    for (auto& var : block.AllVars()) {
      if (var->Persistable()) {
        auto name = var->Name();
        Variable* root_var = root_scope_->FindVar(name);
        if (!root_var) {
          continue;
        }
141
        if (root_var->IsType<phi::SelectedRows>()) {
T
Thunderbrook 已提交
142 143 144 145 146 147 148 149 150 151 152
          continue;
        }
        LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
        auto* ptr = scope->Var(name);
        InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
        LoDTensor* thread_tensor = ptr->GetMutable<LoDTensor>();
        TensorCopy(*root_tensor, place, thread_tensor);
      }
    }
  }
#endif
D
danleifeng 已提交
153 154 155
  for (auto& var : main_program.Block(0).AllVars()) {
    if (var->Persistable()) {
      auto it = std::find(need_merge_var_names_.begin(),
156 157
                          need_merge_var_names_.end(),
                          var->Name());
D
danleifeng 已提交
158 159 160 161 162 163 164
      if (it == need_merge_var_names_.end() &&
          var->GetType() != proto::VarType::SELECTED_ROWS) {
        VLOG(2) << "train param: " << var->Name();
        trainable_param_.push_back(var->Name());
      }
    }
  }
165 166
}

167
void MultiTrainer::InitOtherEnv(const ProgramDesc& main_program) {
X
xujiaqi01 已提交
168
  if (need_dump_field_ || need_dump_param_) {
169 170
    InitDumpEnv();
  }
Z
zhaocaibei123 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184

#ifdef PADDLE_WITH_PSCORE
  // pull dense param first
  auto communicator = paddle::distributed::Communicator::GetInstance();
  // for unittest which call train_from_dataset but does not call
  // fleet.init_worker() first
  if (communicator == nullptr) {
    VLOG(0) << "MultiTrainer::InitOtherEnv Communicator is null!";
  } else {
    auto& recv_ctx = communicator->GetRecvCtxMap();
    communicator->PullDense(recv_ctx);
    VLOG(3) << "init other env done.";
  }
#endif
185 186
}

187 188 189 190
Scope* MultiTrainer::GetWorkerScope(int thread_id) {
  return workers_[thread_id]->GetThreadScope();
}

191
void MultiTrainer::Run() {
192
  VLOG(3) << "Going to run";
193
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
194 195 196 197 198 199 200
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
201 202 203 204 205 206
  }
  for (auto& th : threads_) {
    th.join();
  }
}

T
Thunderbrook 已提交
207 208
#ifdef PADDLE_WITH_HETERPS
void MultiTrainer::MergeDenseParam() {
D
danleifeng 已提交
209
#ifdef PADDLE_WITH_PSCORE
T
Thunderbrook 已提交
210
  auto communicator = paddle::distributed::Communicator::GetInstance();
D
danleifeng 已提交
211 212 213 214
  auto thread_scope = workers_[0]->GetThreadScope();
  if (communicator == nullptr) {
    for (auto& name : trainable_param_) {
      VLOG(2) << "merge var " << name << " to root scope";
T
Thunderbrook 已提交
215 216 217 218
      Variable* root_var = root_scope_->FindVar(name);
      LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
      Variable* var = thread_scope->FindVar(name);
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
D
danleifeng 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232
      TensorCopySync((*tensor), root_tensor->place(), root_tensor);
    }
  } else {
    auto& recv_ctx = communicator->GetRecvCtxMap();
    for (auto& iter : recv_ctx) {
      auto& varnames = iter.second;
      for (auto& name : varnames) {
        VLOG(2) << "merge var " << name << " to root scope";
        Variable* root_var = root_scope_->FindVar(name);
        LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
        Variable* var = thread_scope->FindVar(name);
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        TensorCopySync((*tensor), root_tensor->place(), root_tensor);
      }
T
Thunderbrook 已提交
233 234
    }
  }
T
Thunderbrook 已提交
235
#endif
T
Thunderbrook 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
}
#endif

template <typename T>
void MultiTrainer::MergeToRootScope(LoDTensor* root_tensor, LoDTensor* tensor) {
  LoDTensor tmp_root;
  TensorCopy(*root_tensor, platform::CPUPlace(), &tmp_root);
  T* tmp_root_data = tmp_root.data<T>();
  LoDTensor tmp_tensor;
  TensorCopy(*tensor, platform::CPUPlace(), &tmp_tensor);
  T* data = tmp_tensor.data<T>();
  for (int i = 0; i < tmp_tensor.numel(); i++) {
    tmp_root_data[i] += data[i];
  }
  TensorCopy(tmp_root, platform::CPUPlace(), root_tensor);
}

253
void MultiTrainer::Finalize() {
X
xujiaqi01 已提交
254
  if (need_dump_field_ || need_dump_param_) {
255 256
    FinalizeDumpEnv();
  }
W
wangguanqun 已提交
257

T
Thunderbrook 已提交
258 259 260 261 262 263 264
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
    Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();

W
wangguanqun 已提交
265
    for (int j = 1; j < thread_num_; j++) {
T
Thunderbrook 已提交
266 267 268 269 270 271 272 273 274
      Scope* cur_thread_scope = workers_[j]->GetThreadScope();
      Variable* thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      if (thread_var == nullptr) {
        continue;
      }
      LoDTensor* thread_tensor = thread_var->GetMutable<LoDTensor>();
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
275 276 277
    if (framework::TransToProtoVarType(root_tensor->dtype()) == proto_type) {  \
      if (framework::TransToProtoVarType(thread_tensor->dtype()) !=            \
          proto_type) {                                                        \
T
Thunderbrook 已提交
278 279
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
280 281
                << ", root tensor type=" << root_tensor->dtype()               \
                << ", thread tensor type=" << thread_tensor->dtype();          \
T
Thunderbrook 已提交
282 283 284 285 286 287 288 289
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }
W
wangguanqun 已提交
290
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
291 292
  MergeDenseParam();
#endif
Z
zhaocaibei123 已提交
293 294 295 296 297 298 299

#if defined PADDLE_WITH_PSCORE
  auto communicator = paddle::distributed::Communicator::GetInstance();
  // for unittest which does not call fleet.init_worker() first
  if (communicator == nullptr) {
    VLOG(0) << "MultiTrainer::Finalize communicator is null!";
  } else {
Z
zhaocaibei123 已提交
300
    communicator->_worker_ptr->Flush();
Z
zhaocaibei123 已提交
301 302 303
    VLOG(1) << "MultiTrainer::Finalize ps client flush done";
  }
#endif
304 305
  root_scope_->DropKids();
}
D
Dong Daxiang 已提交
306

307 308
}  // end namespace framework
}  // end namespace paddle