multi_trainer.cc 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"
Z
zhaocaibei123 已提交
18
#include "paddle/fluid/platform/lodtensor_printer.h"
T
tangwei12 已提交
19

T
tangwei12 已提交
20
#if defined PADDLE_WITH_PSCORE
21
#include "paddle/fluid/distributed/ps/service/communicator/communicator.h"
T
tangwei12 已提交
22
#endif
23 24 25 26

namespace paddle {
namespace framework {

D
dongdaxiang 已提交
27
void MultiTrainer::Initialize(const TrainerDesc& trainer_desc,
28
                              Dataset* dataset) {
29
  thread_num_ = trainer_desc.thread_num();
30 31
  SetDataset(dataset);

H
hutuxian 已提交
32
  ParseDumpConfig(trainer_desc);
33 34 35 36
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
  dump_file_num_ = trainer_desc.dump_file_num();

37 38 39 40 41
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
T
Thunderbrook 已提交
42 43 44 45 46 47 48
#ifdef PADDLE_WITH_HETERPS
  for (int i = 0; i < thread_num_; ++i) {
    int num = trainer_desc.worker_places(i);
    platform::CUDAPlace place = platform::CUDAPlace(num);
    places_.push_back(place);
  }
#endif
49
  // get filelist from trainer_desc here
J
jiaqi 已提交
50
  const std::vector<paddle::framework::DataFeed*> readers =
D
dongdaxiang 已提交
51
      dataset->GetReaders();
52
  VLOG(3) << "readers num: " << readers.size();
53 54 55 56
  // change thread num to readers num
  thread_num_ = readers.size();
  VLOG(3) << "worker thread num: " << thread_num_;
  workers_.resize(thread_num_);
57

T
tangwei12 已提交
58
#if defined PADDLE_WITH_PSCORE
59
  if (trainer_desc.thread_barrier()) {
T
tangwei12 已提交
60
    paddle::distributed::Communicator::GetInstance()->BarrierTriggerReset(
61 62 63 64
        thread_num_);
  }
#endif

65 66 67
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
H
hutuxian 已提交
68 69 70 71 72
    workers_[i]->SetNeedDumpField(need_dump_field_);
    workers_[i]->SetNeedDumpParam(need_dump_param_);
    workers_[i]->SetDumpFieldVector(dump_fields_);
    workers_[i]->SetDumpParamVector(dump_param_);
    workers_[i]->InitRandomDumpConfig(trainer_desc);
D
dongdaxiang 已提交
73
    workers_[i]->Initialize(trainer_desc);
74
    workers_[i]->SetDeviceIndex(i);
D
dongdaxiang 已提交
75
    workers_[i]->SetDataFeed(readers[i]);
76
  }
D
dongdaxiang 已提交
77 78

  // set debug here
79
  SetDebug(trainer_desc.debug());
80 81
}

H
hutuxian 已提交
82
std::string MultiTrainer::GetDumpPath(int tid) {
Y
yaoxuefeng 已提交
83 84 85 86
  if (user_define_dump_filename_ != "") {
    return string::format_string("%s/part-%s-%05d", dump_fields_path_.c_str(),
                                 user_define_dump_filename_.c_str(), tid);
  }
H
hutuxian 已提交
87 88
  return string::format_string("%s/part-%03d-%05d", dump_fields_path_.c_str(),
                               mpi_rank_, tid);
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
}

void MultiTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
H
hutuxian 已提交
105
        std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
106 107 108
  }
}

109 110 111 112
// call only after all resources are set in current trainer
void MultiTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                  const platform::Place& place) {
  for (int i = 0; i < thread_num_; ++i) {
T
Thunderbrook 已提交
113 114 115
#ifdef PADDLE_WITH_HETERPS
    workers_[i]->SetPlace(places_[i]);
    workers_[i]->SetReaderPlace(places_[i]);
116 117
    workers_[i]->SetDeviceContext(
        platform::DeviceContextPool::Instance().Get(places_[i]));
T
Thunderbrook 已提交
118
#else
119
    workers_[i]->SetPlace(place);
120
    workers_[i]->SetReaderPlace(place);
T
Thunderbrook 已提交
121
#endif
122 123 124
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
T
Thunderbrook 已提交
125
    workers_[i]->CacheProgram(main_program);
126
  }
T
Thunderbrook 已提交
127 128 129 130 131 132 133 134 135 136 137 138
#ifdef PADDLE_WITH_HETERPS
  for (int num = 0; num < thread_num_; ++num) {
    auto place = places_[num];
    Scope* scope = workers_[num]->GetThreadScope();
    auto& block = main_program.Block(0);
    for (auto& var : block.AllVars()) {
      if (var->Persistable()) {
        auto name = var->Name();
        Variable* root_var = root_scope_->FindVar(name);
        if (!root_var) {
          continue;
        }
139
        if (root_var->IsType<pten::SelectedRows>()) {
T
Thunderbrook 已提交
140 141 142 143 144 145 146 147 148 149 150
          continue;
        }
        LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
        auto* ptr = scope->Var(name);
        InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
        LoDTensor* thread_tensor = ptr->GetMutable<LoDTensor>();
        TensorCopy(*root_tensor, place, thread_tensor);
      }
    }
  }
#endif
151 152
}

153
void MultiTrainer::InitOtherEnv(const ProgramDesc& main_program) {
X
xujiaqi01 已提交
154
  if (need_dump_field_ || need_dump_param_) {
155 156
    InitDumpEnv();
  }
Z
zhaocaibei123 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170

#ifdef PADDLE_WITH_PSCORE
  // pull dense param first
  auto communicator = paddle::distributed::Communicator::GetInstance();
  // for unittest which call train_from_dataset but does not call
  // fleet.init_worker() first
  if (communicator == nullptr) {
    VLOG(0) << "MultiTrainer::InitOtherEnv Communicator is null!";
  } else {
    auto& recv_ctx = communicator->GetRecvCtxMap();
    communicator->PullDense(recv_ctx);
    VLOG(3) << "init other env done.";
  }
#endif
171 172
}

173 174 175 176
Scope* MultiTrainer::GetWorkerScope(int thread_id) {
  return workers_[thread_id]->GetThreadScope();
}

177
void MultiTrainer::Run() {
178
  VLOG(3) << "Going to run";
179
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
180 181 182 183 184 185 186
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
187 188 189 190 191 192
  }
  for (auto& th : threads_) {
    th.join();
  }
}

T
Thunderbrook 已提交
193 194
#ifdef PADDLE_WITH_HETERPS
void MultiTrainer::MergeDenseParam() {
T
Thunderbrook 已提交
195
#ifdef PADDLE_WTIH_PSCORE
T
Thunderbrook 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208
  auto communicator = paddle::distributed::Communicator::GetInstance();
  auto& recv_ctx = communicator->GetRecvCtxMap();
  Scope* thread_scope = workers_[0]->GetThreadScope();
  for (auto& iter : recv_ctx) {
    auto& varnames = iter.second;
    for (auto& name : varnames) {
      Variable* root_var = root_scope_->FindVar(name);
      LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
      Variable* var = thread_scope->FindVar(name);
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      TensorCopy((*tensor), root_tensor->place(), root_tensor);
    }
  }
T
Thunderbrook 已提交
209
#endif
T
Thunderbrook 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
}
#endif

template <typename T>
void MultiTrainer::MergeToRootScope(LoDTensor* root_tensor, LoDTensor* tensor) {
  LoDTensor tmp_root;
  TensorCopy(*root_tensor, platform::CPUPlace(), &tmp_root);
  T* tmp_root_data = tmp_root.data<T>();
  LoDTensor tmp_tensor;
  TensorCopy(*tensor, platform::CPUPlace(), &tmp_tensor);
  T* data = tmp_tensor.data<T>();
  for (int i = 0; i < tmp_tensor.numel(); i++) {
    tmp_root_data[i] += data[i];
  }
  TensorCopy(tmp_root, platform::CPUPlace(), root_tensor);
}

227
void MultiTrainer::Finalize() {
X
xujiaqi01 已提交
228
  if (need_dump_field_ || need_dump_param_) {
229 230
    FinalizeDumpEnv();
  }
W
wangguanqun 已提交
231

T
Thunderbrook 已提交
232 233 234 235 236 237 238
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
    Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();

W
wangguanqun 已提交
239
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
240
    for (size_t j = 0; j < places_.size(); j++) {
W
wangguanqun 已提交
241 242 243
#else
    for (int j = 1; j < thread_num_; j++) {
#endif
T
Thunderbrook 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
      Scope* cur_thread_scope = workers_[j]->GetThreadScope();
      Variable* thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      if (thread_var == nullptr) {
        continue;
      }
      LoDTensor* thread_tensor = thread_var->GetMutable<LoDTensor>();
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
    if (root_tensor->type() == proto_type) {                                   \
      if (thread_tensor->type() != proto_type) {                               \
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
                << ", root tensor type=" << root_tensor->type()                \
                << ", thread tensor type=" << thread_tensor->type();           \
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }
W
wangguanqun 已提交
267
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
268 269
  MergeDenseParam();
#endif
Z
zhaocaibei123 已提交
270 271 272 273 274 275 276 277 278 279 280

#if defined PADDLE_WITH_PSCORE
  auto communicator = paddle::distributed::Communicator::GetInstance();
  // for unittest which does not call fleet.init_worker() first
  if (communicator == nullptr) {
    VLOG(0) << "MultiTrainer::Finalize communicator is null!";
  } else {
    communicator->_worker_ptr->flush();
    VLOG(1) << "MultiTrainer::Finalize ps client flush done";
  }
#endif
281 282
  root_scope_->DropKids();
}
D
Dong Daxiang 已提交
283

284 285
}  // end namespace framework
}  // end namespace paddle