multi_trainer.cc 11.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
16

17 18
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"
Z
zhaocaibei123 已提交
19
#include "paddle/fluid/platform/lodtensor_printer.h"
T
tangwei12 已提交
20

T
tangwei12 已提交
21
#if defined PADDLE_WITH_PSCORE
22
#include "paddle/fluid/distributed/ps/service/communicator/communicator.h"
T
tangwei12 已提交
23
#endif
24 25 26 27

namespace paddle {
namespace framework {

D
dongdaxiang 已提交
28
void MultiTrainer::Initialize(const TrainerDesc& trainer_desc,
29
                              Dataset* dataset) {
30
  thread_num_ = trainer_desc.thread_num();
31 32
  SetDataset(dataset);

H
hutuxian 已提交
33
  ParseDumpConfig(trainer_desc);
34 35 36
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
  dump_file_num_ = trainer_desc.dump_file_num();
37 38 39 40 41
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
T
Thunderbrook 已提交
42 43 44 45 46 47 48
#ifdef PADDLE_WITH_HETERPS
  for (int i = 0; i < thread_num_; ++i) {
    int num = trainer_desc.worker_places(i);
    platform::CUDAPlace place = platform::CUDAPlace(num);
    places_.push_back(place);
  }
#endif
49
  // get filelist from trainer_desc here
J
jiaqi 已提交
50
  const std::vector<paddle::framework::DataFeed*> readers =
D
dongdaxiang 已提交
51
      dataset->GetReaders();
52
  VLOG(3) << "readers num: " << readers.size();
53 54 55 56
  // change thread num to readers num
  thread_num_ = readers.size();
  VLOG(3) << "worker thread num: " << thread_num_;
  workers_.resize(thread_num_);
57

T
tangwei12 已提交
58
#if defined PADDLE_WITH_PSCORE
59
  if (trainer_desc.thread_barrier()) {
T
tangwei12 已提交
60
    paddle::distributed::Communicator::GetInstance()->BarrierTriggerReset(
61 62 63 64
        thread_num_);
  }
#endif

65 66 67
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
H
hutuxian 已提交
68 69 70 71 72
    workers_[i]->SetNeedDumpField(need_dump_field_);
    workers_[i]->SetNeedDumpParam(need_dump_param_);
    workers_[i]->SetDumpFieldVector(dump_fields_);
    workers_[i]->SetDumpParamVector(dump_param_);
    workers_[i]->InitRandomDumpConfig(trainer_desc);
D
dongdaxiang 已提交
73
    workers_[i]->Initialize(trainer_desc);
74
    workers_[i]->SetDeviceIndex(i);
D
dongdaxiang 已提交
75
    workers_[i]->SetDataFeed(readers[i]);
76
  }
D
dongdaxiang 已提交
77 78

  // set debug here
79
  SetDebug(trainer_desc.debug());
80 81
}

H
hutuxian 已提交
82
std::string MultiTrainer::GetDumpPath(int tid) {
Y
yaoxuefeng 已提交
83
  if (user_define_dump_filename_ != "") {
84 85 86 87
    return string::format_string("%s/part-%s-%05d",
                                 dump_fields_path_.c_str(),
                                 user_define_dump_filename_.c_str(),
                                 tid);
Y
yaoxuefeng 已提交
88
  }
89 90
  return string::format_string(
      "%s/part-%03d-%05d", dump_fields_path_.c_str(), mpi_rank_, tid);
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
}

void MultiTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
H
hutuxian 已提交
107
        std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
108 109 110
  }
}

111 112 113 114
// call only after all resources are set in current trainer
void MultiTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                  const platform::Place& place) {
  for (int i = 0; i < thread_num_; ++i) {
T
Thunderbrook 已提交
115 116 117
#ifdef PADDLE_WITH_HETERPS
    workers_[i]->SetPlace(places_[i]);
    workers_[i]->SetReaderPlace(places_[i]);
118 119
    workers_[i]->SetDeviceContext(
        platform::DeviceContextPool::Instance().Get(places_[i]));
T
Thunderbrook 已提交
120
#else
121
    workers_[i]->SetPlace(place);
122
    workers_[i]->SetReaderPlace(place);
T
Thunderbrook 已提交
123
#endif
124 125 126
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
T
Thunderbrook 已提交
127
    workers_[i]->CacheProgram(main_program);
128
  }
T
Thunderbrook 已提交
129 130 131 132 133 134 135 136 137 138 139 140
#ifdef PADDLE_WITH_HETERPS
  for (int num = 0; num < thread_num_; ++num) {
    auto place = places_[num];
    Scope* scope = workers_[num]->GetThreadScope();
    auto& block = main_program.Block(0);
    for (auto& var : block.AllVars()) {
      if (var->Persistable()) {
        auto name = var->Name();
        Variable* root_var = root_scope_->FindVar(name);
        if (!root_var) {
          continue;
        }
141
        if (root_var->IsType<phi::SelectedRows>()) {
T
Thunderbrook 已提交
142 143
          continue;
        }
144 145
        phi::DenseTensor* root_tensor =
            root_var->GetMutable<phi::DenseTensor>();
T
Thunderbrook 已提交
146 147
        auto* ptr = scope->Var(name);
        InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
148
        phi::DenseTensor* thread_tensor = ptr->GetMutable<phi::DenseTensor>();
T
Thunderbrook 已提交
149 150 151 152 153
        TensorCopy(*root_tensor, place, thread_tensor);
      }
    }
  }
#endif
D
danleifeng 已提交
154 155 156
  for (auto& var : main_program.Block(0).AllVars()) {
    if (var->Persistable()) {
      auto it = std::find(need_merge_var_names_.begin(),
157 158
                          need_merge_var_names_.end(),
                          var->Name());
D
danleifeng 已提交
159 160 161 162 163 164 165
      if (it == need_merge_var_names_.end() &&
          var->GetType() != proto::VarType::SELECTED_ROWS) {
        VLOG(2) << "train param: " << var->Name();
        trainable_param_.push_back(var->Name());
      }
    }
  }
166 167
}

168
void MultiTrainer::InitOtherEnv(const ProgramDesc& main_program) {
X
xujiaqi01 已提交
169
  if (need_dump_field_ || need_dump_param_) {
170 171
    InitDumpEnv();
  }
Z
zhaocaibei123 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185

#ifdef PADDLE_WITH_PSCORE
  // pull dense param first
  auto communicator = paddle::distributed::Communicator::GetInstance();
  // for unittest which call train_from_dataset but does not call
  // fleet.init_worker() first
  if (communicator == nullptr) {
    VLOG(0) << "MultiTrainer::InitOtherEnv Communicator is null!";
  } else {
    auto& recv_ctx = communicator->GetRecvCtxMap();
    communicator->PullDense(recv_ctx);
    VLOG(3) << "init other env done.";
  }
#endif
186 187
}

188 189 190 191
Scope* MultiTrainer::GetWorkerScope(int thread_id) {
  return workers_[thread_id]->GetThreadScope();
}

192
void MultiTrainer::Run() {
193
  VLOG(3) << "Going to run";
194
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
195 196 197 198 199 200 201
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
202 203 204 205 206 207
  }
  for (auto& th : threads_) {
    th.join();
  }
}

T
Thunderbrook 已提交
208 209
#ifdef PADDLE_WITH_HETERPS
void MultiTrainer::MergeDenseParam() {
D
danleifeng 已提交
210
#ifdef PADDLE_WITH_PSCORE
T
Thunderbrook 已提交
211
  auto communicator = paddle::distributed::Communicator::GetInstance();
D
danleifeng 已提交
212 213 214 215
  auto thread_scope = workers_[0]->GetThreadScope();
  if (communicator == nullptr) {
    for (auto& name : trainable_param_) {
      VLOG(2) << "merge var " << name << " to root scope";
T
Thunderbrook 已提交
216
      Variable* root_var = root_scope_->FindVar(name);
217
      phi::DenseTensor* root_tensor = root_var->GetMutable<phi::DenseTensor>();
T
Thunderbrook 已提交
218
      Variable* var = thread_scope->FindVar(name);
219
      phi::DenseTensor* tensor = var->GetMutable<phi::DenseTensor>();
D
danleifeng 已提交
220 221 222 223 224 225 226 227 228
      TensorCopySync((*tensor), root_tensor->place(), root_tensor);
    }
  } else {
    auto& recv_ctx = communicator->GetRecvCtxMap();
    for (auto& iter : recv_ctx) {
      auto& varnames = iter.second;
      for (auto& name : varnames) {
        VLOG(2) << "merge var " << name << " to root scope";
        Variable* root_var = root_scope_->FindVar(name);
229 230
        phi::DenseTensor* root_tensor =
            root_var->GetMutable<phi::DenseTensor>();
D
danleifeng 已提交
231
        Variable* var = thread_scope->FindVar(name);
232
        phi::DenseTensor* tensor = var->GetMutable<phi::DenseTensor>();
D
danleifeng 已提交
233 234
        TensorCopySync((*tensor), root_tensor->place(), root_tensor);
      }
T
Thunderbrook 已提交
235 236
    }
  }
T
Thunderbrook 已提交
237
#endif
T
Thunderbrook 已提交
238 239 240 241
}
#endif

template <typename T>
242 243 244
void MultiTrainer::MergeToRootScope(phi::DenseTensor* root_tensor,
                                    phi::DenseTensor* tensor) {
  phi::DenseTensor tmp_root;
T
Thunderbrook 已提交
245 246
  TensorCopy(*root_tensor, platform::CPUPlace(), &tmp_root);
  T* tmp_root_data = tmp_root.data<T>();
247
  phi::DenseTensor tmp_tensor;
T
Thunderbrook 已提交
248 249 250 251 252 253 254 255
  TensorCopy(*tensor, platform::CPUPlace(), &tmp_tensor);
  T* data = tmp_tensor.data<T>();
  for (int i = 0; i < tmp_tensor.numel(); i++) {
    tmp_root_data[i] += data[i];
  }
  TensorCopy(tmp_root, platform::CPUPlace(), root_tensor);
}

256
void MultiTrainer::Finalize() {
X
xujiaqi01 已提交
257
  if (need_dump_field_ || need_dump_param_) {
258 259
    FinalizeDumpEnv();
  }
T
Thunderbrook 已提交
260 261 262 263 264
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
    Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
265
    phi::DenseTensor* root_tensor = root_var->GetMutable<phi::DenseTensor>();
T
Thunderbrook 已提交
266

W
wangguanqun 已提交
267
    for (int j = 1; j < thread_num_; j++) {
T
Thunderbrook 已提交
268 269 270 271 272 273
      Scope* cur_thread_scope = workers_[j]->GetThreadScope();
      Variable* thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      if (thread_var == nullptr) {
        continue;
      }
274 275
      phi::DenseTensor* thread_tensor =
          thread_var->GetMutable<phi::DenseTensor>();
T
Thunderbrook 已提交
276 277
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
278 279 280
    if (framework::TransToProtoVarType(root_tensor->dtype()) == proto_type) {  \
      if (framework::TransToProtoVarType(thread_tensor->dtype()) !=            \
          proto_type) {                                                        \
T
Thunderbrook 已提交
281 282
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
283 284
                << ", root tensor type=" << root_tensor->dtype()               \
                << ", thread tensor type=" << thread_tensor->dtype();          \
T
Thunderbrook 已提交
285 286 287 288 289 290 291 292
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }
W
wangguanqun 已提交
293
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
294 295
  MergeDenseParam();
#endif
Z
zhaocaibei123 已提交
296 297 298 299 300 301 302

#if defined PADDLE_WITH_PSCORE
  auto communicator = paddle::distributed::Communicator::GetInstance();
  // for unittest which does not call fleet.init_worker() first
  if (communicator == nullptr) {
    VLOG(0) << "MultiTrainer::Finalize communicator is null!";
  } else {
303 304 305 306 307 308
    if (communicator->_worker_ptr != nullptr) {
      communicator->_worker_ptr->Flush();
      VLOG(1) << "MultiTrainer::Finalize ps client flush done";
    } else {
      VLOG(0) << "communicator->_worker_ptr is null";
    }
Z
zhaocaibei123 已提交
309 310
  }
#endif
311 312
  root_scope_->DropKids();
}
D
Dong Daxiang 已提交
313

314 315
}  // end namespace framework
}  // end namespace paddle