multi_trainer.cc 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
16

17 18
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"
Z
zhaocaibei123 已提交
19
#include "paddle/fluid/platform/lodtensor_printer.h"
T
tangwei12 已提交
20

T
tangwei12 已提交
21
#if defined PADDLE_WITH_PSCORE
22
#include "paddle/fluid/distributed/ps/service/communicator/communicator.h"
T
tangwei12 已提交
23
#endif
24 25 26 27

namespace paddle {
namespace framework {

D
dongdaxiang 已提交
28
void MultiTrainer::Initialize(const TrainerDesc& trainer_desc,
29
                              Dataset* dataset) {
30
  thread_num_ = trainer_desc.thread_num();
31 32
  SetDataset(dataset);

H
hutuxian 已提交
33
  ParseDumpConfig(trainer_desc);
34 35 36
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
  dump_file_num_ = trainer_desc.dump_file_num();
37 38 39 40 41
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
T
Thunderbrook 已提交
42 43 44 45 46 47 48
#ifdef PADDLE_WITH_HETERPS
  for (int i = 0; i < thread_num_; ++i) {
    int num = trainer_desc.worker_places(i);
    platform::CUDAPlace place = platform::CUDAPlace(num);
    places_.push_back(place);
  }
#endif
49
  // get filelist from trainer_desc here
J
jiaqi 已提交
50
  const std::vector<paddle::framework::DataFeed*> readers =
D
dongdaxiang 已提交
51
      dataset->GetReaders();
52
  VLOG(3) << "readers num: " << readers.size();
53 54 55 56
  // change thread num to readers num
  thread_num_ = readers.size();
  VLOG(3) << "worker thread num: " << thread_num_;
  workers_.resize(thread_num_);
57

T
tangwei12 已提交
58
#if defined PADDLE_WITH_PSCORE
59
  if (trainer_desc.thread_barrier()) {
T
tangwei12 已提交
60
    paddle::distributed::Communicator::GetInstance()->BarrierTriggerReset(
61 62 63 64
        thread_num_);
  }
#endif

65 66 67
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
H
hutuxian 已提交
68 69 70 71 72
    workers_[i]->SetNeedDumpField(need_dump_field_);
    workers_[i]->SetNeedDumpParam(need_dump_param_);
    workers_[i]->SetDumpFieldVector(dump_fields_);
    workers_[i]->SetDumpParamVector(dump_param_);
    workers_[i]->InitRandomDumpConfig(trainer_desc);
D
dongdaxiang 已提交
73
    workers_[i]->Initialize(trainer_desc);
74
    workers_[i]->SetDeviceIndex(i);
D
dongdaxiang 已提交
75
    workers_[i]->SetDataFeed(readers[i]);
76
  }
D
dongdaxiang 已提交
77 78

  // set debug here
79
  SetDebug(trainer_desc.debug());
80 81
}

H
hutuxian 已提交
82
std::string MultiTrainer::GetDumpPath(int tid) {
Y
yaoxuefeng 已提交
83 84 85 86
  if (user_define_dump_filename_ != "") {
    return string::format_string("%s/part-%s-%05d", dump_fields_path_.c_str(),
                                 user_define_dump_filename_.c_str(), tid);
  }
H
hutuxian 已提交
87 88
  return string::format_string("%s/part-%03d-%05d", dump_fields_path_.c_str(),
                               mpi_rank_, tid);
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
}

void MultiTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
H
hutuxian 已提交
105
        std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
106 107 108
  }
}

109 110 111 112
// call only after all resources are set in current trainer
void MultiTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                  const platform::Place& place) {
  for (int i = 0; i < thread_num_; ++i) {
T
Thunderbrook 已提交
113 114 115
#ifdef PADDLE_WITH_HETERPS
    workers_[i]->SetPlace(places_[i]);
    workers_[i]->SetReaderPlace(places_[i]);
116 117
    workers_[i]->SetDeviceContext(
        platform::DeviceContextPool::Instance().Get(places_[i]));
T
Thunderbrook 已提交
118
#else
119
    workers_[i]->SetPlace(place);
120
    workers_[i]->SetReaderPlace(place);
T
Thunderbrook 已提交
121
#endif
122 123 124
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
T
Thunderbrook 已提交
125
    workers_[i]->CacheProgram(main_program);
126
  }
T
Thunderbrook 已提交
127 128 129 130 131 132 133 134 135 136 137 138
#ifdef PADDLE_WITH_HETERPS
  for (int num = 0; num < thread_num_; ++num) {
    auto place = places_[num];
    Scope* scope = workers_[num]->GetThreadScope();
    auto& block = main_program.Block(0);
    for (auto& var : block.AllVars()) {
      if (var->Persistable()) {
        auto name = var->Name();
        Variable* root_var = root_scope_->FindVar(name);
        if (!root_var) {
          continue;
        }
139
        if (root_var->IsType<phi::SelectedRows>()) {
T
Thunderbrook 已提交
140 141 142 143 144 145 146 147 148 149 150
          continue;
        }
        LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
        auto* ptr = scope->Var(name);
        InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
        LoDTensor* thread_tensor = ptr->GetMutable<LoDTensor>();
        TensorCopy(*root_tensor, place, thread_tensor);
      }
    }
  }
#endif
D
danleifeng 已提交
151 152 153 154 155 156 157 158 159 160 161
  for (auto& var : main_program.Block(0).AllVars()) {
    if (var->Persistable()) {
      auto it = std::find(need_merge_var_names_.begin(),
                          need_merge_var_names_.end(), var->Name());
      if (it == need_merge_var_names_.end() &&
          var->GetType() != proto::VarType::SELECTED_ROWS) {
        VLOG(2) << "train param: " << var->Name();
        trainable_param_.push_back(var->Name());
      }
    }
  }
162 163
}

164
void MultiTrainer::InitOtherEnv(const ProgramDesc& main_program) {
X
xujiaqi01 已提交
165
  if (need_dump_field_ || need_dump_param_) {
166 167
    InitDumpEnv();
  }
Z
zhaocaibei123 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181

#ifdef PADDLE_WITH_PSCORE
  // pull dense param first
  auto communicator = paddle::distributed::Communicator::GetInstance();
  // for unittest which call train_from_dataset but does not call
  // fleet.init_worker() first
  if (communicator == nullptr) {
    VLOG(0) << "MultiTrainer::InitOtherEnv Communicator is null!";
  } else {
    auto& recv_ctx = communicator->GetRecvCtxMap();
    communicator->PullDense(recv_ctx);
    VLOG(3) << "init other env done.";
  }
#endif
182 183
}

184 185 186 187
Scope* MultiTrainer::GetWorkerScope(int thread_id) {
  return workers_[thread_id]->GetThreadScope();
}

188
void MultiTrainer::Run() {
189
  VLOG(3) << "Going to run";
190
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
191 192 193 194 195 196 197
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
198 199 200 201 202 203
  }
  for (auto& th : threads_) {
    th.join();
  }
}

T
Thunderbrook 已提交
204 205
#ifdef PADDLE_WITH_HETERPS
void MultiTrainer::MergeDenseParam() {
D
danleifeng 已提交
206
#ifdef PADDLE_WITH_PSCORE
T
Thunderbrook 已提交
207
  auto communicator = paddle::distributed::Communicator::GetInstance();
D
danleifeng 已提交
208 209 210 211
  auto thread_scope = workers_[0]->GetThreadScope();
  if (communicator == nullptr) {
    for (auto& name : trainable_param_) {
      VLOG(2) << "merge var " << name << " to root scope";
T
Thunderbrook 已提交
212 213 214 215
      Variable* root_var = root_scope_->FindVar(name);
      LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
      Variable* var = thread_scope->FindVar(name);
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
D
danleifeng 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229
      TensorCopySync((*tensor), root_tensor->place(), root_tensor);
    }
  } else {
    auto& recv_ctx = communicator->GetRecvCtxMap();
    for (auto& iter : recv_ctx) {
      auto& varnames = iter.second;
      for (auto& name : varnames) {
        VLOG(2) << "merge var " << name << " to root scope";
        Variable* root_var = root_scope_->FindVar(name);
        LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
        Variable* var = thread_scope->FindVar(name);
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        TensorCopySync((*tensor), root_tensor->place(), root_tensor);
      }
T
Thunderbrook 已提交
230 231
    }
  }
T
Thunderbrook 已提交
232
#endif
T
Thunderbrook 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
}
#endif

template <typename T>
void MultiTrainer::MergeToRootScope(LoDTensor* root_tensor, LoDTensor* tensor) {
  LoDTensor tmp_root;
  TensorCopy(*root_tensor, platform::CPUPlace(), &tmp_root);
  T* tmp_root_data = tmp_root.data<T>();
  LoDTensor tmp_tensor;
  TensorCopy(*tensor, platform::CPUPlace(), &tmp_tensor);
  T* data = tmp_tensor.data<T>();
  for (int i = 0; i < tmp_tensor.numel(); i++) {
    tmp_root_data[i] += data[i];
  }
  TensorCopy(tmp_root, platform::CPUPlace(), root_tensor);
}

250
void MultiTrainer::Finalize() {
X
xujiaqi01 已提交
251
  if (need_dump_field_ || need_dump_param_) {
252 253
    FinalizeDumpEnv();
  }
W
wangguanqun 已提交
254

T
Thunderbrook 已提交
255 256 257 258 259 260 261
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
    Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();

W
wangguanqun 已提交
262
    for (int j = 1; j < thread_num_; j++) {
T
Thunderbrook 已提交
263 264 265 266 267 268 269 270 271
      Scope* cur_thread_scope = workers_[j]->GetThreadScope();
      Variable* thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      if (thread_var == nullptr) {
        continue;
      }
      LoDTensor* thread_tensor = thread_var->GetMutable<LoDTensor>();
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
272 273 274
    if (framework::TransToProtoVarType(root_tensor->dtype()) == proto_type) {  \
      if (framework::TransToProtoVarType(thread_tensor->dtype()) !=            \
          proto_type) {                                                        \
T
Thunderbrook 已提交
275 276
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
277 278
                << ", root tensor type=" << root_tensor->dtype()               \
                << ", thread tensor type=" << thread_tensor->dtype();          \
T
Thunderbrook 已提交
279 280 281 282 283 284 285 286
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }
W
wangguanqun 已提交
287
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
288 289
  MergeDenseParam();
#endif
Z
zhaocaibei123 已提交
290 291 292 293 294 295 296

#if defined PADDLE_WITH_PSCORE
  auto communicator = paddle::distributed::Communicator::GetInstance();
  // for unittest which does not call fleet.init_worker() first
  if (communicator == nullptr) {
    VLOG(0) << "MultiTrainer::Finalize communicator is null!";
  } else {
Z
zhaocaibei123 已提交
297
    communicator->_worker_ptr->Flush();
Z
zhaocaibei123 已提交
298 299 300
    VLOG(1) << "MultiTrainer::Finalize ps client flush done";
  }
#endif
301 302
  root_scope_->DropKids();
}
D
Dong Daxiang 已提交
303

304 305
}  // end namespace framework
}  // end namespace paddle