variable_index.py 28.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import numpy as np
from . import unique_name
from . import core
W
WeiXin 已提交
19
import paddle
20
import warnings
21 22 23 24

MAX_INTEGER = 2**31 - 1


W
WeiXin 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
def is_list_tuple(index, contain_type):
    def _is_list_tuple(item):
        if not (isinstance(item, (list, tuple)) or type(item) == contain_type):
            return False
        if isinstance(item, (tuple, list)):
            for s in item:
                if not _is_list_tuple(s):
                    return False
        return True

    if not isinstance(index, (tuple, list)):
        return False
    for s in index:
        if not _is_list_tuple(s):
            return False
    return True


def is_one_dim_list(index, contain_type):
    if isinstance(index, list):
        for i in index:
            if not isinstance(i, contain_type):
                return False
    else:
        return False
    return True


def get_list_index_shape(var_dims, index_dims):
    var_dims_size = len(var_dims)
    index_dims_size = len(index_dims)

    out_dims_size = var_dims_size - index_dims[0] + index_dims_size - 1

    out_dims_shape = [1] * out_dims_size

61
    out_dims_shape[: index_dims_size - 1] = index_dims[1:]
W
WeiXin 已提交
62

63
    out_dims_shape[index_dims_size - 1 :] = var_dims[index_dims[0] :]
W
WeiXin 已提交
64 65 66 67 68 69 70
    return out_dims_shape


class SliceInfo:
    def __init__(self):
        self.pre_shape = None
        self.indexes = []
W
WeiXin 已提交
71
        self.dtype = None
W
WeiXin 已提交
72 73

    def update(self, index):
74
        if is_list_tuple(index, int) or isinstance(
75 76
            index, (paddle.fluid.Variable, np.ndarray)
        ):
W
WeiXin 已提交
77 78 79 80
            # convert index to Tensor
            if not isinstance(index, paddle.fluid.Variable):
                index = paddle.assign(index)

W
WeiXin 已提交
81 82 83 84 85
            if self.dtype is None:
                self.dtype = index.dtype
            else:
                if index.dtype != self.dtype:
                    raise IndexError(
86 87 88 89
                        "Data type of Tensor/List index should be same. The current data type is {}, but the previous data type is {}.".format(
                            index.dtype, self.dtype
                        )
                    )
W
WeiXin 已提交
90

W
WeiXin 已提交
91 92 93 94 95 96
            self.indexes.append(index)

            if self.pre_shape is None:
                self.pre_shape = index.shape
            else:
                if self.pre_shape != index.shape:
97
                    # broadcast
98 99 100
                    cur_shape = paddle.broadcast_shape(
                        self.pre_shape, index.shape
                    )
W
WeiXin 已提交
101
                    for i in range(len(self.indexes)):
102
                        self.indexes[i] = paddle.broadcast_to(
103 104
                            self.indexes[i], cur_shape
                        )
W
WeiXin 已提交
105 106 107
                self.pre_shape = self.indexes[-1].shape
        else:
            raise ValueError(
108 109 110 111
                "Index should be list/tuple of int or Tensor, but received {}.".format(
                    index
                )
            )
W
WeiXin 已提交
112 113 114 115 116 117 118 119 120

    def shape_stride(self, shape):
        s = [1] * len(shape)
        for i in range(len(shape) - 2, -1, -1):
            s[i] = shape[i + 1] * s[i + 1]

        return s

    def numel(self, shape):
121
        return reduce(lambda x, y: x * y, shape, 1)
W
WeiXin 已提交
122 123 124 125 126 127

    def get_offset_stride(self, tensor_shape):
        for index in self.indexes:
            if not isinstance(index, paddle.fluid.Variable):
                raise ValueError(
                    "only support list/tensor index, but received {}.".format(
128 129 130
                        type(index)
                    )
                )
W
WeiXin 已提交
131 132 133

        if len(self.indexes) <= len(tensor_shape) or len(self.indexes) == 1:
            shape = paddle.stack(self.indexes)
134 135 136
            axes = list(range(1, len(self.pre_shape) + 1)) + [
                0,
            ]
W
WeiXin 已提交
137 138 139

        else:
            raise ValueError(
140 141 142 143
                "too many indices for tensor: tensor is {}-dimensional, but {} were indexed".format(
                    len(tensor_shape), self.pre_shape[0]
                )
            )
W
WeiXin 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

        shape_transpose = paddle.transpose(shape, axes)
        return shape_transpose

    def get_item(self, tensor):
        shape_transpose = self.get_offset_stride(tensor.shape)
        index = paddle.assign(shape_transpose)
        return paddle.gather_nd(tensor, index)

    def set_item(self, tensor_origin, value):
        if not isinstance(value, paddle.fluid.Variable):
            value = paddle.assign(value)
        tensor_type = None

        if tensor_origin.dtype in [
159 160
            core.VarDesc.VarType.FP32,
            core.VarDesc.VarType.FP64,
W
WeiXin 已提交
161 162 163 164 165 166 167 168 169 170 171 172
        ]:
            tensor = tensor_origin
        else:
            tensor_type = tensor_origin.dtype
            tensor = tensor_origin.astype(core.VarDesc.VarType.FP32)

        if value.dtype != tensor.dtype:
            value = value.astype(tensor.dtype)

        shape_transpose = self.get_offset_stride(tensor_origin.shape)
        index = paddle.assign(shape_transpose)

173 174 175 176 177 178 179
        gather_tensor_shape = get_list_index_shape(
            tensor.shape,
            [
                len(self.indexes),
            ]
            + list(self.indexes[-1].shape),
        )
W
WeiXin 已提交
180

181 182 183
        value_dims_bd = [
            1,
        ] * len(gather_tensor_shape)
184
        value_dims_bd[-len(value.shape) :] = list(value.shape)
W
WeiXin 已提交
185 186

        for i in range(len(gather_tensor_shape)):
187
            if not (
188 189
                len(value_dims_bd) == 0
                or value_dims_bd[i] == gather_tensor_shape[i]
190 191 192 193 194 195 196
                or value_dims_bd[i] == 1
            ):
                raise ValueError(
                    "{} can not broadcast into {}".format(
                        value.shape, gather_tensor_shape
                    )
                )
W
WeiXin 已提交
197 198 199

        value_broadcast = paddle.broadcast_to(value, gather_tensor_shape)

200
        value_1d = value_broadcast.reshape(
201 202
            [-1] + gather_tensor_shape[len(index.shape) - 1 :]
        )
W
WeiXin 已提交
203 204 205 206

        index_1d = index.reshape([-1, index.shape[-1]])

        tensor_stride = paddle.assign(
207 208
            self.shape_stride(tensor.shape[: index.shape[-1]])
        )
W
WeiXin 已提交
209 210 211 212 213
        inds = []
        for i in range(index_1d.shape[0]):
            temp = (index_1d[i] * tensor_stride).sum()
            inds.append(temp)
        index_1d = paddle.stack(inds).reshape([-1])
214
        t_reshape = tensor.reshape([-1] + list(tensor.shape[index.shape[-1] :]))
W
WeiXin 已提交
215 216 217 218 219 220 221 222
        out = paddle.scatter(t_reshape, index_1d, value_1d)
        if tensor_type is not None:
            out = out.astype(tensor_type)
        tensor_origin[:] = out.reshape(tensor_origin.shape)

        return tensor_origin


223 224
def replace_ellipsis(var, item):
    from .framework import Variable
225

226 227 228 229 230 231 232 233 234 235
    # Use slice(None) to replace Ellipsis.
    # For var, var.shape = [3,4,5,6]
    #
    #   var[..., 1:2] -> var[:, :, :, 1:2]
    #   var[0, ...] -> var[0]
    #   var[0, ..., 1:2] -> var[0, :, :, 1:2]

    item = list(item)

    # Remove Variable to skip bug when counting Ellipsis
W
WeiXin 已提交
236
    item_remove_var = [
237 238
        ele
        for ele in item
239
        if not isinstance(ele, (Variable, np.ndarray)) and ele is not None
W
WeiXin 已提交
240
    ]
241 242 243 244 245 246 247 248 249 250 251
    ell_count = item_remove_var.count(Ellipsis)
    if ell_count == 0:
        return item
    elif ell_count > 1:
        raise IndexError("An index can only have a single ellipsis ('...')")

    ell_idx = item.index(Ellipsis)

    if ell_idx == len(item) - 1:
        return item[:-1]
    else:
252 253 254
        item[ell_idx : ell_idx + 1] = [slice(None)] * (
            len(var.shape) - len(item) + item.count(None) + 1
        )
255 256 257 258

    return item


W
WeiXin 已提交
259 260 261 262 263 264 265 266 267 268
def replace_ndarray(item):
    new_item = []
    for slice_item in item:
        if isinstance(slice_item, np.ndarray):
            new_item.append(paddle.assign(slice_item))
        else:
            new_item.append(slice_item)
    return new_item


269 270 271 272 273 274 275 276 277 278 279
def replace_none(item):
    new_item = []
    none_axes = []
    for i, slice_item in enumerate(item):
        if slice_item is None:
            none_axes.append(i)
        else:
            new_item.append(slice_item)
    return new_item, none_axes


280 281
def is_integer_or_scalar_tensor(ele):
    from .framework import Variable
282

283 284 285
    if isinstance(ele, int):
        return True
    elif isinstance(ele, Variable):
J
JYChen 已提交
286 287 288 289 290 291 292 293 294
        # NOTE(zoooo0820): For compatibility, if FLAGS_set_to_1d is set to True,
        # 1-D tensor is still treated as a scalar, which means basic indexing.
        # This will be removed in future.
        if paddle.get_flags('FLAGS_set_to_1d')['FLAGS_set_to_1d']:
            if len(ele.shape) == 1 and ele.shape[0] == 1:
                warnings.warn(
                    "1-D Tensor will be treat as advanced indexing in future version. Currently, 1-D Tensor means a scalar, not vector, and please modify it to 0-D Tensor. If advanced indexing is needed, please use `export FLAGS_set_to_1d=False` to set the flag."
                )
                return True
295
        if len(ele.shape) == 0:
296 297 298 299
            return True
    return False


300 301
def is_bool_tensor(ele):
    from .framework import Variable
302

303 304 305 306 307
    if isinstance(ele, Variable) and ele.dtype == paddle.bool:
        return True
    return False


308 309 310
def deal_attrs(attrs, attr, attr_name, tensor_attr_name, inputs, infer_flags):
    from .framework import Variable

311 312
    if paddle.utils._contain_var(attr):
        inputs[tensor_attr_name] = paddle.utils._convert_to_tensor_list(
313 314
            attr, dtype="int64"
        )
315 316 317 318 319 320 321 322 323 324
        for i, dim in enumerate(attr):
            if isinstance(dim, Variable):
                attrs[attr_name].append(-1)
                infer_flags[i] = -1
            else:
                attrs[attr_name].append(dim)
    else:
        attrs[attr_name] = attr


325
# the item is a tensor of bool
326 327
def get_value_for_bool_tensor(var, item):
    if len(item.shape) > len(var.shape):
328 329 330 331 332
        raise IndexError(
            "The dims of bool index doesn't match indexed array, "
            "the dims of bool index except to be equal or less "
            "than {}, but received {}.".format(len(var.shape), len(item.shape))
        )
333 334 335 336 337
    i = 0
    item_shape = item.shape
    while i < len(item.shape):
        dim_len = item_shape[i]
        if dim_len != -1 and var.shape[i] != -1 and dim_len != var.shape[i]:
338
            raise IndexError(
339 340 341 342 343
                "The dimension of bool index doesn't match indexed array along "
                "dimension {}, the target dimension is {}, but received {}.".format(
                    i, var.shape[i], dim_len
                )
            )
344 345
        i += 1
    empty_shape = [0] + list(var.shape[i:])
346 347 348 349

    def idx_not_empty(var, item):
        from ..tensor import gather_nd

350
        bool_2_idx = paddle.nonzero(item == True)
351 352
        return gather_nd(var, bool_2_idx)

353
    from paddle.static.nn import cond
354 355

    return cond(
356 357 358
        item.any(),
        lambda: idx_not_empty(var, item),
        lambda: paddle.empty(empty_shape, var.dtype),
359
    )
360 361


362 363 364 365 366 367 368 369 370 371
def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """
372
    from .framework import default_main_program, Variable
373

W
WeiXin 已提交
374 375 376
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
377 378

    if not isinstance(item, tuple):
379
        item = (item,)
380 381 382 383 384 385

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []
386
    reverse_axes = []
387 388

    use_strided_slice = False
W
WeiXin 已提交
389
    item = replace_ndarray(item)
390
    item = replace_ellipsis(var, item)
391
    item, none_axes = replace_none(item)
W
WeiXin 已提交
392
    slice_info = SliceInfo()
393 394 395 396
    is_tensor_array = (
        hasattr(var, "desc")
        and var.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
    )
397 398

    for dim, slice_item in enumerate(item):
399 400 401 402
        if is_integer_or_scalar_tensor(slice_item) and not is_bool_tensor(
            slice_item
        ):
            if (
403 404
                not is_tensor_array
                and isinstance(slice_item, int)
405 406 407 408
                and var.shape[dim] is not None
                and var.shape[dim] >= 0
                and slice_item >= var.shape[dim]
            ):
409 410 411 412 413 414 415 416
                # For python, if users write a, b = var, the __getitem__
                # method will iterate through 0, 1, 2 ... until __getitem__
                # throws an IndexError, then stop. The var[0], var[1] will
                # be given to a, b respectively. If more values are given,
                # the unpack size would cause error.
                # We raises IndexError here to support grammar like `a, b = var`
                raise IndexError(
                    "slice_item %d at dim %d should be >= 0 and < var.shape[%d]: %d"
417 418
                    % (slice_item, dim, dim, var.shape[dim])
                )
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
            decrease_axes.append(dim)
            start = slice_item
            step = 1
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            step = 1 if step is None else step

434 435 436
            if start is None:
                start = 0 if step > 0 else MAX_INTEGER
            if end is None:
437
                if (
438
                    paddle.in_dynamic_mode() or not is_tensor_array
439
                ) and var.shape[dim] != -1:
440 441 442
                    end = var.shape[dim] if step > 0 else -1
                else:
                    end = MAX_INTEGER if step > 0 else -1
443

444
        elif isinstance(slice_item, list):
Z
zyfncg 已提交
445
            all_bool = True
W
WeiXin 已提交
446 447 448 449 450

            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

451
            for i in slice_item:
Z
zyfncg 已提交
452 453 454
                if type(i) is int:
                    all_bool = False
                elif not isinstance(i, bool):
455 456
                    raise TypeError("Only support int or bool in index list.")

457 458
            if len(item) != 1:
                raise IndexError(
459 460 461 462
                    "When index contains a list, its length must be 1, but received {}.".format(
                        len(item)
                    )
                )
Z
zyfncg 已提交
463 464 465 466
            new_slice_item = []
            if all_bool:
                if len(slice_item) != var.shape[0]:
                    raise IndexError(
467 468 469 470 471
                        "The dimension of bool index doesn't match indexed array along "
                        "dimension 0, the target dimension is {}, but received {}.".format(
                            var.shape[0], len(slice_item)
                        )
                    )
472 473 474 475
                for idx, ele in enumerate(slice_item):
                    if ele is True:
                        new_slice_item.append(idx)
                slice_item = new_slice_item
Z
zyfncg 已提交
476 477 478 479 480 481 482 483 484
            else:
                for idx, ele in enumerate(slice_item):
                    if type(ele) is int:
                        new_slice_item.append(ele)
                    elif ele is True:
                        new_slice_item.append(1)
                    else:
                        new_slice_item.append(0)
                slice_item = new_slice_item
485

486 487
            from ..tensor import index_select

488
            idx = paddle.assign(np.array(slice_item).astype("int32"))
489 490
            return index_select(var, index=idx, axis=0)

W
wanghuancoder 已提交
491
        elif isinstance(slice_item, (Variable, core.eager.Tensor)):
W
WeiXin 已提交
492
            if len(item) == 1:
493
                from ..tensor import index_select
Z
zyfncg 已提交
494

W
WeiXin 已提交
495
                if slice_item.dtype == paddle.bool:
496
                    return get_value_for_bool_tensor(var, slice_item)
W
WeiXin 已提交
497 498 499 500 501 502 503 504 505
                else:
                    if len(slice_item.shape) == 1:
                        return index_select(var, index=slice_item, axis=0)
                    else:
                        slice_info.update(slice_item)
                        continue
            else:
                slice_info.update(slice_item)
                continue
506

507 508
        else:
            raise IndexError(
509 510 511 512
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    slice_item
                )
            )
513 514 515 516 517 518 519

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)
        use_strided_slice = True if step != 1 else use_strided_slice

W
WeiXin 已提交
520 521 522
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
523 524 525 526
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    item
                )
            )
W
WeiXin 已提交
527 528
        return slice_info.get_item(var)

529 530 531 532 533
    inputs = {'Input': [var]}
    attrs = {
        'axes': axes,
        'starts': [],
        'ends': [],
534
        'decrease_axis': decrease_axes,
535 536 537 538 539 540 541
    }
    if use_strided_slice:
        attrs['strides'] = []

    infer_flags = [1] * len(axes)
    deal_attrs(attrs, starts, "starts", "StartsTensorList", inputs, infer_flags)
    deal_attrs(attrs, ends, "ends", "EndsTensorList", inputs, infer_flags)
542 543 544
    deal_attrs(
        attrs, steps, "strides", "StridesTensorList", inputs, infer_flags
    )
545 546 547 548 549
    attrs['infer_flags'] = infer_flags

    out = var
    if len(axes) > 0:
        op_type = "strided_slice" if use_strided_slice else "slice"
550
        if paddle.in_dynamic_mode() and op_type == "slice":
551 552 553 554 555 556 557 558
            if "StartsTensorList" in inputs.keys():
                st = inputs['StartsTensorList']
            else:
                st = attrs['starts']
            if "EndsTensorList" in inputs.keys():
                end = inputs['EndsTensorList']
            else:
                end = attrs['ends']
559 560 561
            out = paddle._C_ops.slice(
                var, axes, st, end, attrs['infer_flags'], attrs['decrease_axis']
            )
562 563 564 565
        else:
            target_block = default_main_program().current_block()

            slice_out_var = target_block.create_var(
566 567 568 569 570 571 572 573 574 575 576
                name=unique_name.generate_with_ignorable_key(
                    var.name + "_" + op_type
                ),
                dtype=var.dtype,
            )
            target_block.append_op(
                type=op_type,
                inputs=inputs,
                outputs={'Out': [slice_out_var]},
                attrs=attrs,
            )
577
            out = slice_out_var
578

579
    if len(reverse_axes) > 0:
580
        from .layers.tensor import reverse
581

582 583
        out = reverse(out, axis=reverse_axes)

584 585 586 587 588
    # NOTE(zoooo0820): When all axes are decreased, the output will be 1-D
    # with FLAGS_set_to_1d=True. In this case, one `None` should be pop out,
    # otherwise the output shape will be not correct.
    set_to_1d = paddle.get_flags('FLAGS_set_to_1d')['FLAGS_set_to_1d']
    if set_to_1d and len(decrease_axes) == len(var.shape):
589 590 591
        warnings.warn(
            "Warning: In Tensor '__getitem__', if the number of scalar elements in the index is equal to the rank of the Tensor, the output should be 0-D. In order to be consistent with the behavior of previous versions, it will be processed to 1-D. But it is not correct and will be removed in release 2.6. If 1-D is still wanted, please modify the index element from scalar to slice (e.g. 'x[i]' => 'x[i:i+1]')."
        )
592 593
        none_axes = none_axes[1:]

594 595 596 597 598 599 600 601 602 603 604
    if len(none_axes) > 0:
        # Deal with cases that decrease_axes is not empty
        # For example:
        # # x.shape: (2,3,4)
        # out = x[0, 0:2, None] # out.shape : (2, 1, 4)
        for idx, axis in enumerate(none_axes):
            l = len([i for i in decrease_axes if i < axis])
            new_axis = axis - l
            none_axes[idx] = new_axis

        from ..tensor import unsqueeze
605

606
        out = unsqueeze(out, axis=none_axes)
607 608 609 610

    return out


611
def _setitem_for_tensor_array(var, item, value):
612 613 614 615 616 617 618
    """branches for tensor array setitem operation.
    A item can be a:
    (1) int/Variable, which is a simple number/variable such as [1], [-2]
    (2) Slice, which is represented by bounds such as [2:-1]
    (3) Tuple, which includes the above two cases such as [2:-1, 1]
    If item is case (1), we perform paddle.tensor.array_write,
    in other cases, we raise a NotImplementedError.
619
    """
620
    from ..framework import LayerHelper, core
621
    from .framework import Variable
622 623

    assert (
624
        not paddle.in_dynamic_mode()
625 626
    ), "setitem for tensor_array must be called in static graph mode."
    if isinstance(item, (Variable, int)):
627
        from paddle.jit.dy2static.variable_trans_func import (
628 629
            to_static_variable,
        )
630 631
        from paddle import cast
        from paddle.tensor import array_write
632

633 634 635 636 637
        item = paddle.cast(to_static_variable(item), dtype='int64')
        value = to_static_variable(value)
        array_write(x=value, i=item, array=var)
    else:
        raise NotImplementedError(
638 639 640 641
            "Only support __setitem__ by Int/Variable in tensor_array, but gets {}".format(
                type(item)
            )
        )
642 643


644 645
def _setitem_impl_(var, item, value):
    from .framework import default_main_program, Variable
646
    from paddle.fluid import core
647

648 649
    if var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        return _setitem_for_tensor_array(var, item, value)
650 651

    inputs = {'Input': var}
W
WeiXin 已提交
652 653 654
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
655 656
    # 1. Parse item
    if not isinstance(item, tuple):
657
        item = (item,)
658 659 660 661 662 663 664

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []

W
WeiXin 已提交
665
    item = replace_ndarray(item)
666
    item = replace_ellipsis(var, item)
667
    item, none_axes = replace_none(item)
W
WeiXin 已提交
668
    slice_info = SliceInfo()
Z
zyfncg 已提交
669 670
    dim = 0
    for _, slice_item in enumerate(item):
671 672 673
        if is_integer_or_scalar_tensor(slice_item) and not is_bool_tensor(
            slice_item
        ):
674 675 676 677 678 679 680 681 682 683 684
            decrease_axes.append(dim)
            start = slice_item
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER
            step = 1

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
Z
zyfncg 已提交
685
                dim += 1
686 687 688 689 690 691 692
                continue

            step = 1 if step is None else step

            if not isinstance(step, Variable) and step == 0:
                raise ValueError(
                    "When assign a value to a paddle.Tensor, step can not be 0, "
693 694
                    "but received step is {}.".format(step)
                )
695 696 697 698 699 700 701 702 703 704 705 706

            if isinstance(step, Variable) and (start is None or end is None):
                raise ValueError(
                    "When assign a value to a paddle.Tensor, it's not supported that "
                    "the start or end is None when the type of step is paddle.Tensor."
                )

            if start is None:
                start = 0 if step > 0 else MAX_INTEGER

            if end is None:
                end = MAX_INTEGER if step > 0 else (0 - MAX_INTEGER)
Z
zyfncg 已提交
707 708 709 710 711 712 713
        elif isinstance(slice_item, list):
            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

            for i in slice_item:
                if not isinstance(i, bool):
714 715 716
                    raise TypeError(
                        "Doesn't support {} in index list.".format(type(i))
                    )
Z
zyfncg 已提交
717 718 719

            if len(item) != 1:
                raise IndexError(
720 721 722 723
                    "When index contains a bool list, its length must be 1, but received {}.".format(
                        len(item)
                    )
                )
Z
zyfncg 已提交
724

725
            idx_tensor = paddle.assign(slice_item)
Z
zyfncg 已提交
726 727 728 729 730 731
            return set_value_for_bool_tensor(var, idx_tensor, value)

        elif isinstance(slice_item, Variable):
            if slice_item.dtype == core.VarDesc.VarType.BOOL:
                if len(item) != 1:
                    raise IndexError(
732 733 734 735
                        "When index contains a bool tensor, its length must be 1, but received {}.".format(
                            len(item)
                        )
                    )
Z
zyfncg 已提交
736 737 738 739
                return set_value_for_bool_tensor(var, slice_item, value)
            else:
                slice_info.update(slice_item)
                continue
740 741
        else:
            raise IndexError(
Z
zyfncg 已提交
742
                "Valid index accept int, slice, ellipsis, None, list of bool, Variable, "
743 744
                "but received {}.".format(slice_item)
            )
745 746 747 748 749 750

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)

Z
zyfncg 已提交
751
        dim += 1
W
WeiXin 已提交
752 753 754
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
755 756 757 758
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    item
                )
            )
W
WeiXin 已提交
759
        return slice_info.set_item(var, value)
760 761 762 763 764
    attrs = {
        'axes': axes,
        'starts': starts,
        'ends': ends,
        'steps': steps,
Z
zyfncg 已提交
765
        'decrease_axes': decrease_axes,
766
        'none_axes': none_axes,
767 768
    }

769 770 771 772
    if paddle.utils._contain_var(starts):
        inputs['StartsTensorList'] = paddle.utils._convert_to_tensor_list(
            starts
        )
773
        del attrs['starts']
774 775
    if paddle.utils._contain_var(ends):
        inputs['EndsTensorList'] = paddle.utils._convert_to_tensor_list(ends)
776
        del attrs['ends']
777 778
    if paddle.utils._contain_var(steps):
        inputs['StepsTensorList'] = paddle.utils._convert_to_tensor_list(steps)
779 780 781 782 783 784 785
        del attrs['steps']

    # 2. Parse value
    dtype = var.dtype
    attrs['dtype'] = dtype

    from .data_feeder import convert_dtype
786

787 788
    #  2.1 value is an integer, float or complex
    if isinstance(value, (bool, int, float, complex)):
789 790 791 792 793
        value = np.array([value]).astype(convert_dtype(dtype))

    #  2.2 value is a np.ndarray
    if isinstance(value, np.ndarray):
        shape = list(value.shape)
794 795
        values = value.ravel().tolist()
        attrs["values"] = values
796 797
        attrs["shape"] = shape

W
wanghuancoder 已提交
798
    elif isinstance(value, (Variable, core.eager.Tensor)):
799 800 801 802 803
        inputs["ValueTensor"] = value
    else:
        raise TypeError(
            "Only support to assign an integer, float, numpy.ndarray or "
            "paddle.Tensor to a paddle.Tensor, but received {}".format(
804 805 806
                type(value)
            )
        )
807

808
    if paddle.in_dynamic_mode():
Z
zyfncg 已提交
809 810
        var._bump_inplace_version()

811
    cur_block = default_main_program().current_block()
812 813 814 815 816 817 818
    cur_block.append_op(
        type="set_value",
        inputs=inputs,
        outputs={'Out': var},
        attrs=attrs,
        inplace_map={"Input": "Out"},
    )
819 820

    return var
Z
zyfncg 已提交
821 822


823
# the item is a tensor of bool
Z
zyfncg 已提交
824 825
def set_value_for_bool_tensor(var, item, value):
    if len(item.shape) > len(var.shape):
826 827 828 829 830
        raise IndexError(
            "The dims of bool index doesn't match indexed array, "
            "the dims of bool index except to be equal or less "
            "than {}, but received {}.".format(len(var.shape), len(item.shape))
        )
Z
zyfncg 已提交
831
    for i, dim_len in enumerate(item.shape):
832
        if dim_len != -1 and var.shape[i] != -1 and dim_len != var.shape[i]:
Z
zyfncg 已提交
833 834
            raise IndexError(
                "The dimension of bool index doesn't match indexed array along "
835 836 837 838
                "dimension {}, the target dimension is {}, but received {}.".format(
                    i, var.shape[i], dim_len
                )
            )
Z
zyfncg 已提交
839 840 841 842 843 844

    def idx_not_empty(var, item, value):
        from .framework import Variable
        from ..tensor import gather_nd, scatter_nd_add

        if not isinstance(value, Variable):
845
            value = paddle.assign(value).cast(var.dtype)
Z
zyfncg 已提交
846

847
        idx = paddle.nonzero(item)
Z
zyfncg 已提交
848 849 850 851 852
        gather_val = gather_nd(var, idx)
        gather_val_new = value - gather_val
        out = scatter_nd_add(var, idx, gather_val_new)
        var[:] = out

853
    from paddle.static.nn import cond
854

Z
zyfncg 已提交
855 856 857 858
    # If all the bool index is False, just do nothing
    cond(item.any(), lambda: idx_not_empty(var, item, value))

    return var