variable_index.py 27.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import numpy as np
from . import unique_name
from . import core
W
WeiXin 已提交
19
import paddle
20
import warnings
21 22 23 24

MAX_INTEGER = 2**31 - 1


W
WeiXin 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
def is_list_tuple(index, contain_type):
    def _is_list_tuple(item):
        if not (isinstance(item, (list, tuple)) or type(item) == contain_type):
            return False
        if isinstance(item, (tuple, list)):
            for s in item:
                if not _is_list_tuple(s):
                    return False
        return True

    if not isinstance(index, (tuple, list)):
        return False
    for s in index:
        if not _is_list_tuple(s):
            return False
    return True


def is_one_dim_list(index, contain_type):
    if isinstance(index, list):
        for i in index:
            if not isinstance(i, contain_type):
                return False
    else:
        return False
    return True


def get_list_index_shape(var_dims, index_dims):
    var_dims_size = len(var_dims)
    index_dims_size = len(index_dims)

    out_dims_size = var_dims_size - index_dims[0] + index_dims_size - 1

    out_dims_shape = [1] * out_dims_size

61
    out_dims_shape[: index_dims_size - 1] = index_dims[1:]
W
WeiXin 已提交
62

63
    out_dims_shape[index_dims_size - 1 :] = var_dims[index_dims[0] :]
W
WeiXin 已提交
64 65 66 67 68 69 70
    return out_dims_shape


class SliceInfo:
    def __init__(self):
        self.pre_shape = None
        self.indexes = []
W
WeiXin 已提交
71
        self.dtype = None
W
WeiXin 已提交
72 73

    def update(self, index):
74
        if is_list_tuple(index, int) or isinstance(
75 76
            index, (paddle.fluid.Variable, np.ndarray)
        ):
W
WeiXin 已提交
77 78 79 80
            # convert index to Tensor
            if not isinstance(index, paddle.fluid.Variable):
                index = paddle.assign(index)

W
WeiXin 已提交
81 82 83 84 85
            if self.dtype is None:
                self.dtype = index.dtype
            else:
                if index.dtype != self.dtype:
                    raise IndexError(
86 87 88 89
                        "Data type of Tensor/List index should be same. The current data type is {}, but the previous data type is {}.".format(
                            index.dtype, self.dtype
                        )
                    )
W
WeiXin 已提交
90

W
WeiXin 已提交
91 92 93 94 95 96
            self.indexes.append(index)

            if self.pre_shape is None:
                self.pre_shape = index.shape
            else:
                if self.pre_shape != index.shape:
97
                    # broadcast
98 99 100
                    cur_shape = paddle.broadcast_shape(
                        self.pre_shape, index.shape
                    )
W
WeiXin 已提交
101
                    for i in range(len(self.indexes)):
102
                        self.indexes[i] = paddle.broadcast_to(
103 104
                            self.indexes[i], cur_shape
                        )
W
WeiXin 已提交
105 106 107
                self.pre_shape = self.indexes[-1].shape
        else:
            raise ValueError(
108 109 110 111
                "Index should be list/tuple of int or Tensor, but received {}.".format(
                    index
                )
            )
W
WeiXin 已提交
112 113 114 115 116 117 118 119 120

    def shape_stride(self, shape):
        s = [1] * len(shape)
        for i in range(len(shape) - 2, -1, -1):
            s[i] = shape[i + 1] * s[i + 1]

        return s

    def numel(self, shape):
121
        return reduce(lambda x, y: x * y, shape, 1)
W
WeiXin 已提交
122 123 124 125 126 127

    def get_offset_stride(self, tensor_shape):
        for index in self.indexes:
            if not isinstance(index, paddle.fluid.Variable):
                raise ValueError(
                    "only support list/tensor index, but received {}.".format(
128 129 130
                        type(index)
                    )
                )
W
WeiXin 已提交
131 132 133

        if len(self.indexes) <= len(tensor_shape) or len(self.indexes) == 1:
            shape = paddle.stack(self.indexes)
134 135 136
            axes = list(range(1, len(self.pre_shape) + 1)) + [
                0,
            ]
W
WeiXin 已提交
137 138 139

        else:
            raise ValueError(
140 141 142 143
                "too many indices for tensor: tensor is {}-dimensional, but {} were indexed".format(
                    len(tensor_shape), self.pre_shape[0]
                )
            )
W
WeiXin 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

        shape_transpose = paddle.transpose(shape, axes)
        return shape_transpose

    def get_item(self, tensor):
        shape_transpose = self.get_offset_stride(tensor.shape)
        index = paddle.assign(shape_transpose)
        return paddle.gather_nd(tensor, index)

    def set_item(self, tensor_origin, value):

        if not isinstance(value, paddle.fluid.Variable):
            value = paddle.assign(value)
        tensor_type = None

        if tensor_origin.dtype in [
160 161
            core.VarDesc.VarType.FP32,
            core.VarDesc.VarType.FP64,
W
WeiXin 已提交
162 163 164 165 166 167 168 169 170 171 172 173
        ]:
            tensor = tensor_origin
        else:
            tensor_type = tensor_origin.dtype
            tensor = tensor_origin.astype(core.VarDesc.VarType.FP32)

        if value.dtype != tensor.dtype:
            value = value.astype(tensor.dtype)

        shape_transpose = self.get_offset_stride(tensor_origin.shape)
        index = paddle.assign(shape_transpose)

174 175 176 177 178 179 180
        gather_tensor_shape = get_list_index_shape(
            tensor.shape,
            [
                len(self.indexes),
            ]
            + list(self.indexes[-1].shape),
        )
W
WeiXin 已提交
181

182 183 184
        value_dims_bd = [
            1,
        ] * len(gather_tensor_shape)
185
        value_dims_bd[-len(value.shape) :] = list(value.shape)
W
WeiXin 已提交
186 187

        for i in range(len(gather_tensor_shape)):
188
            if not (
189 190
                len(value_dims_bd) == 0
                or value_dims_bd[i] == gather_tensor_shape[i]
191 192 193 194 195 196 197
                or value_dims_bd[i] == 1
            ):
                raise ValueError(
                    "{} can not broadcast into {}".format(
                        value.shape, gather_tensor_shape
                    )
                )
W
WeiXin 已提交
198 199 200

        value_broadcast = paddle.broadcast_to(value, gather_tensor_shape)

201
        value_1d = value_broadcast.reshape(
202 203
            [-1] + gather_tensor_shape[len(index.shape) - 1 :]
        )
W
WeiXin 已提交
204 205 206 207

        index_1d = index.reshape([-1, index.shape[-1]])

        tensor_stride = paddle.assign(
208 209
            self.shape_stride(tensor.shape[: index.shape[-1]])
        )
W
WeiXin 已提交
210 211 212 213 214
        inds = []
        for i in range(index_1d.shape[0]):
            temp = (index_1d[i] * tensor_stride).sum()
            inds.append(temp)
        index_1d = paddle.stack(inds).reshape([-1])
215
        t_reshape = tensor.reshape([-1] + list(tensor.shape[index.shape[-1] :]))
W
WeiXin 已提交
216 217 218 219 220 221 222 223
        out = paddle.scatter(t_reshape, index_1d, value_1d)
        if tensor_type is not None:
            out = out.astype(tensor_type)
        tensor_origin[:] = out.reshape(tensor_origin.shape)

        return tensor_origin


224 225
def replace_ellipsis(var, item):
    from .framework import Variable
226

227 228 229 230 231 232 233 234 235 236
    # Use slice(None) to replace Ellipsis.
    # For var, var.shape = [3,4,5,6]
    #
    #   var[..., 1:2] -> var[:, :, :, 1:2]
    #   var[0, ...] -> var[0]
    #   var[0, ..., 1:2] -> var[0, :, :, 1:2]

    item = list(item)

    # Remove Variable to skip bug when counting Ellipsis
W
WeiXin 已提交
237
    item_remove_var = [
238 239
        ele
        for ele in item
240
        if not isinstance(ele, (Variable, np.ndarray)) and ele is not None
W
WeiXin 已提交
241
    ]
242 243 244 245 246 247 248 249 250 251 252
    ell_count = item_remove_var.count(Ellipsis)
    if ell_count == 0:
        return item
    elif ell_count > 1:
        raise IndexError("An index can only have a single ellipsis ('...')")

    ell_idx = item.index(Ellipsis)

    if ell_idx == len(item) - 1:
        return item[:-1]
    else:
253 254 255
        item[ell_idx : ell_idx + 1] = [slice(None)] * (
            len(var.shape) - len(item) + item.count(None) + 1
        )
256 257 258 259

    return item


W
WeiXin 已提交
260 261 262 263 264 265 266 267 268 269
def replace_ndarray(item):
    new_item = []
    for slice_item in item:
        if isinstance(slice_item, np.ndarray):
            new_item.append(paddle.assign(slice_item))
        else:
            new_item.append(slice_item)
    return new_item


270 271 272 273 274 275 276 277 278 279 280
def replace_none(item):
    new_item = []
    none_axes = []
    for i, slice_item in enumerate(item):
        if slice_item is None:
            none_axes.append(i)
        else:
            new_item.append(slice_item)
    return new_item, none_axes


281 282
def is_integer_or_scalar_tensor(ele):
    from .framework import Variable
283

284 285 286
    if isinstance(ele, int):
        return True
    elif isinstance(ele, Variable):
287
        if len(ele.shape) == 0:
288 289 290 291
            return True
    return False


292 293
def is_bool_tensor(ele):
    from .framework import Variable
294

295 296 297 298 299
    if isinstance(ele, Variable) and ele.dtype == paddle.bool:
        return True
    return False


300 301 302
def deal_attrs(attrs, attr, attr_name, tensor_attr_name, inputs, infer_flags):
    from .framework import Variable

303 304
    if paddle.utils._contain_var(attr):
        inputs[tensor_attr_name] = paddle.utils._convert_to_tensor_list(
305 306
            attr, dtype="int64"
        )
307 308 309 310 311 312 313 314 315 316
        for i, dim in enumerate(attr):
            if isinstance(dim, Variable):
                attrs[attr_name].append(-1)
                infer_flags[i] = -1
            else:
                attrs[attr_name].append(dim)
    else:
        attrs[attr_name] = attr


317
# the item is a tensor of bool
318 319
def get_value_for_bool_tensor(var, item):
    if len(item.shape) > len(var.shape):
320 321 322 323 324
        raise IndexError(
            "The dims of bool index doesn't match indexed array, "
            "the dims of bool index except to be equal or less "
            "than {}, but received {}.".format(len(var.shape), len(item.shape))
        )
325 326 327 328 329
    i = 0
    item_shape = item.shape
    while i < len(item.shape):
        dim_len = item_shape[i]
        if dim_len != -1 and var.shape[i] != -1 and dim_len != var.shape[i]:
330
            raise IndexError(
331 332 333 334 335
                "The dimension of bool index doesn't match indexed array along "
                "dimension {}, the target dimension is {}, but received {}.".format(
                    i, var.shape[i], dim_len
                )
            )
336 337
        i += 1
    empty_shape = [0] + list(var.shape[i:])
338 339 340 341

    def idx_not_empty(var, item):
        from ..tensor import gather_nd

342
        bool_2_idx = paddle.nonzero(item == True)
343 344
        return gather_nd(var, bool_2_idx)

345
    from paddle.static.nn import cond
346 347

    return cond(
348 349 350
        item.any(),
        lambda: idx_not_empty(var, item),
        lambda: paddle.empty(empty_shape, var.dtype),
351
    )
352 353


354 355 356 357 358 359 360 361 362 363
def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """
364
    from .framework import default_main_program, Variable
365

W
WeiXin 已提交
366 367 368
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
369 370

    if not isinstance(item, tuple):
371
        item = (item,)
372 373 374 375 376 377

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []
378
    reverse_axes = []
379 380

    use_strided_slice = False
W
WeiXin 已提交
381
    item = replace_ndarray(item)
382
    item = replace_ellipsis(var, item)
383
    item, none_axes = replace_none(item)
W
WeiXin 已提交
384
    slice_info = SliceInfo()
385 386 387 388
    is_tensor_array = (
        hasattr(var, "desc")
        and var.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
    )
389 390

    for dim, slice_item in enumerate(item):
391 392 393 394
        if is_integer_or_scalar_tensor(slice_item) and not is_bool_tensor(
            slice_item
        ):
            if (
395 396
                not is_tensor_array
                and isinstance(slice_item, int)
397 398 399 400
                and var.shape[dim] is not None
                and var.shape[dim] >= 0
                and slice_item >= var.shape[dim]
            ):
401 402 403 404 405 406 407 408
                # For python, if users write a, b = var, the __getitem__
                # method will iterate through 0, 1, 2 ... until __getitem__
                # throws an IndexError, then stop. The var[0], var[1] will
                # be given to a, b respectively. If more values are given,
                # the unpack size would cause error.
                # We raises IndexError here to support grammar like `a, b = var`
                raise IndexError(
                    "slice_item %d at dim %d should be >= 0 and < var.shape[%d]: %d"
409 410
                    % (slice_item, dim, dim, var.shape[dim])
                )
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
            decrease_axes.append(dim)
            start = slice_item
            step = 1
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            step = 1 if step is None else step

426 427 428
            if start is None:
                start = 0 if step > 0 else MAX_INTEGER
            if end is None:
429
                if (
430
                    paddle.fluid.framework._non_static_mode()
431
                    or not is_tensor_array
432
                ) and var.shape[dim] != -1:
433 434 435
                    end = var.shape[dim] if step > 0 else -1
                else:
                    end = MAX_INTEGER if step > 0 else -1
436

437
        elif isinstance(slice_item, list):
Z
zyfncg 已提交
438
            all_bool = True
W
WeiXin 已提交
439 440 441 442 443

            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

444
            for i in slice_item:
Z
zyfncg 已提交
445 446 447
                if type(i) is int:
                    all_bool = False
                elif not isinstance(i, bool):
448 449
                    raise TypeError("Only support int or bool in index list.")

450 451
            if len(item) != 1:
                raise IndexError(
452 453 454 455
                    "When index contains a list, its length must be 1, but received {}.".format(
                        len(item)
                    )
                )
Z
zyfncg 已提交
456 457 458 459
            new_slice_item = []
            if all_bool:
                if len(slice_item) != var.shape[0]:
                    raise IndexError(
460 461 462 463 464
                        "The dimension of bool index doesn't match indexed array along "
                        "dimension 0, the target dimension is {}, but received {}.".format(
                            var.shape[0], len(slice_item)
                        )
                    )
465 466 467 468
                for idx, ele in enumerate(slice_item):
                    if ele is True:
                        new_slice_item.append(idx)
                slice_item = new_slice_item
Z
zyfncg 已提交
469 470 471 472 473 474 475 476 477
            else:
                for idx, ele in enumerate(slice_item):
                    if type(ele) is int:
                        new_slice_item.append(ele)
                    elif ele is True:
                        new_slice_item.append(1)
                    else:
                        new_slice_item.append(0)
                slice_item = new_slice_item
478

479 480
            from ..tensor import index_select

481
            idx = paddle.assign(np.array(slice_item).astype("int32"))
482 483
            return index_select(var, index=idx, axis=0)

W
wanghuancoder 已提交
484
        elif isinstance(slice_item, (Variable, core.eager.Tensor)):
W
WeiXin 已提交
485
            if len(item) == 1:
486

487
                from ..tensor import index_select
Z
zyfncg 已提交
488

W
WeiXin 已提交
489
                if slice_item.dtype == paddle.bool:
490
                    return get_value_for_bool_tensor(var, slice_item)
W
WeiXin 已提交
491 492 493 494 495 496 497 498 499
                else:
                    if len(slice_item.shape) == 1:
                        return index_select(var, index=slice_item, axis=0)
                    else:
                        slice_info.update(slice_item)
                        continue
            else:
                slice_info.update(slice_item)
                continue
500

501 502
        else:
            raise IndexError(
503 504 505 506
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    slice_item
                )
            )
507 508 509 510 511 512 513

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)
        use_strided_slice = True if step != 1 else use_strided_slice

W
WeiXin 已提交
514 515 516
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
517 518 519 520
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    item
                )
            )
W
WeiXin 已提交
521 522
        return slice_info.get_item(var)

523 524 525 526 527
    inputs = {'Input': [var]}
    attrs = {
        'axes': axes,
        'starts': [],
        'ends': [],
528
        'decrease_axis': decrease_axes,
529 530 531 532 533 534 535
    }
    if use_strided_slice:
        attrs['strides'] = []

    infer_flags = [1] * len(axes)
    deal_attrs(attrs, starts, "starts", "StartsTensorList", inputs, infer_flags)
    deal_attrs(attrs, ends, "ends", "EndsTensorList", inputs, infer_flags)
536 537 538
    deal_attrs(
        attrs, steps, "strides", "StridesTensorList", inputs, infer_flags
    )
539 540 541 542 543
    attrs['infer_flags'] = infer_flags

    out = var
    if len(axes) > 0:
        op_type = "strided_slice" if use_strided_slice else "slice"
544 545 546 547 548 549 550 551 552
        if paddle.fluid.framework.in_dygraph_mode() and op_type == "slice":
            if "StartsTensorList" in inputs.keys():
                st = inputs['StartsTensorList']
            else:
                st = attrs['starts']
            if "EndsTensorList" in inputs.keys():
                end = inputs['EndsTensorList']
            else:
                end = attrs['ends']
553 554 555
            out = paddle._C_ops.slice(
                var, axes, st, end, attrs['infer_flags'], attrs['decrease_axis']
            )
556 557 558 559
        else:
            target_block = default_main_program().current_block()

            slice_out_var = target_block.create_var(
560 561 562 563 564 565 566 567 568 569 570
                name=unique_name.generate_with_ignorable_key(
                    var.name + "_" + op_type
                ),
                dtype=var.dtype,
            )
            target_block.append_op(
                type=op_type,
                inputs=inputs,
                outputs={'Out': [slice_out_var]},
                attrs=attrs,
            )
571
            out = slice_out_var
572

573
    if len(reverse_axes) > 0:
574
        from .layers.tensor import reverse
575

576 577
        out = reverse(out, axis=reverse_axes)

578 579 580 581 582
    # NOTE(zoooo0820): When all axes are decreased, the output will be 1-D
    # with FLAGS_set_to_1d=True. In this case, one `None` should be pop out,
    # otherwise the output shape will be not correct.
    set_to_1d = paddle.get_flags('FLAGS_set_to_1d')['FLAGS_set_to_1d']
    if set_to_1d and len(decrease_axes) == len(var.shape):
583 584 585
        warnings.warn(
            "Warning: In Tensor '__getitem__', if the number of scalar elements in the index is equal to the rank of the Tensor, the output should be 0-D. In order to be consistent with the behavior of previous versions, it will be processed to 1-D. But it is not correct and will be removed in release 2.6. If 1-D is still wanted, please modify the index element from scalar to slice (e.g. 'x[i]' => 'x[i:i+1]')."
        )
586 587
        none_axes = none_axes[1:]

588 589 590 591 592 593 594 595 596 597 598
    if len(none_axes) > 0:
        # Deal with cases that decrease_axes is not empty
        # For example:
        # # x.shape: (2,3,4)
        # out = x[0, 0:2, None] # out.shape : (2, 1, 4)
        for idx, axis in enumerate(none_axes):
            l = len([i for i in decrease_axes if i < axis])
            new_axis = axis - l
            none_axes[idx] = new_axis

        from ..tensor import unsqueeze
599

600
        out = unsqueeze(out, axis=none_axes)
601 602 603 604

    return out


605
def _setitem_for_tensor_array(var, item, value):
606 607 608 609 610 611 612
    """branches for tensor array setitem operation.
    A item can be a:
    (1) int/Variable, which is a simple number/variable such as [1], [-2]
    (2) Slice, which is represented by bounds such as [2:-1]
    (3) Tuple, which includes the above two cases such as [2:-1, 1]
    If item is case (1), we perform paddle.tensor.array_write,
    in other cases, we raise a NotImplementedError.
613 614 615
    """
    from ..framework import LayerHelper, core, _non_static_mode
    from .framework import Variable
616 617 618

    assert (
        not _non_static_mode()
619 620
    ), "setitem for tensor_array must be called in static graph mode."
    if isinstance(item, (Variable, int)):
621
        from paddle.jit.dy2static.variable_trans_func import (
622 623
            to_static_variable,
        )
624 625
        from paddle import cast
        from paddle.tensor import array_write
626

627 628 629 630 631
        item = paddle.cast(to_static_variable(item), dtype='int64')
        value = to_static_variable(value)
        array_write(x=value, i=item, array=var)
    else:
        raise NotImplementedError(
632 633 634 635
            "Only support __setitem__ by Int/Variable in tensor_array, but gets {}".format(
                type(item)
            )
        )
636 637


638 639
def _setitem_impl_(var, item, value):
    from .framework import default_main_program, Variable
640
    from paddle.fluid import core
641

642 643
    if var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        return _setitem_for_tensor_array(var, item, value)
644 645

    inputs = {'Input': var}
W
WeiXin 已提交
646 647 648
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
649 650
    # 1. Parse item
    if not isinstance(item, tuple):
651
        item = (item,)
652 653 654 655 656 657 658

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []

W
WeiXin 已提交
659
    item = replace_ndarray(item)
660
    item = replace_ellipsis(var, item)
661
    item, none_axes = replace_none(item)
W
WeiXin 已提交
662
    slice_info = SliceInfo()
Z
zyfncg 已提交
663 664
    dim = 0
    for _, slice_item in enumerate(item):
665 666 667
        if is_integer_or_scalar_tensor(slice_item) and not is_bool_tensor(
            slice_item
        ):
668 669 670 671 672 673 674 675 676 677 678
            decrease_axes.append(dim)
            start = slice_item
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER
            step = 1

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
Z
zyfncg 已提交
679
                dim += 1
680 681 682 683 684 685 686
                continue

            step = 1 if step is None else step

            if not isinstance(step, Variable) and step == 0:
                raise ValueError(
                    "When assign a value to a paddle.Tensor, step can not be 0, "
687 688
                    "but received step is {}.".format(step)
                )
689 690 691 692 693 694 695 696 697 698 699 700

            if isinstance(step, Variable) and (start is None or end is None):
                raise ValueError(
                    "When assign a value to a paddle.Tensor, it's not supported that "
                    "the start or end is None when the type of step is paddle.Tensor."
                )

            if start is None:
                start = 0 if step > 0 else MAX_INTEGER

            if end is None:
                end = MAX_INTEGER if step > 0 else (0 - MAX_INTEGER)
Z
zyfncg 已提交
701 702 703 704 705 706 707
        elif isinstance(slice_item, list):
            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

            for i in slice_item:
                if not isinstance(i, bool):
708 709 710
                    raise TypeError(
                        "Doesn't support {} in index list.".format(type(i))
                    )
Z
zyfncg 已提交
711 712 713

            if len(item) != 1:
                raise IndexError(
714 715 716 717
                    "When index contains a bool list, its length must be 1, but received {}.".format(
                        len(item)
                    )
                )
Z
zyfncg 已提交
718

719
            idx_tensor = paddle.assign(slice_item)
Z
zyfncg 已提交
720 721 722 723 724 725
            return set_value_for_bool_tensor(var, idx_tensor, value)

        elif isinstance(slice_item, Variable):
            if slice_item.dtype == core.VarDesc.VarType.BOOL:
                if len(item) != 1:
                    raise IndexError(
726 727 728 729
                        "When index contains a bool tensor, its length must be 1, but received {}.".format(
                            len(item)
                        )
                    )
Z
zyfncg 已提交
730 731 732 733
                return set_value_for_bool_tensor(var, slice_item, value)
            else:
                slice_info.update(slice_item)
                continue
734 735
        else:
            raise IndexError(
Z
zyfncg 已提交
736
                "Valid index accept int, slice, ellipsis, None, list of bool, Variable, "
737 738
                "but received {}.".format(slice_item)
            )
739 740 741 742 743 744

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)

Z
zyfncg 已提交
745
        dim += 1
W
WeiXin 已提交
746 747 748
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
749 750 751 752
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    item
                )
            )
W
WeiXin 已提交
753
        return slice_info.set_item(var, value)
754 755 756 757 758
    attrs = {
        'axes': axes,
        'starts': starts,
        'ends': ends,
        'steps': steps,
Z
zyfncg 已提交
759
        'decrease_axes': decrease_axes,
760
        'none_axes': none_axes,
761 762
    }

763 764 765 766
    if paddle.utils._contain_var(starts):
        inputs['StartsTensorList'] = paddle.utils._convert_to_tensor_list(
            starts
        )
767
        del attrs['starts']
768 769
    if paddle.utils._contain_var(ends):
        inputs['EndsTensorList'] = paddle.utils._convert_to_tensor_list(ends)
770
        del attrs['ends']
771 772
    if paddle.utils._contain_var(steps):
        inputs['StepsTensorList'] = paddle.utils._convert_to_tensor_list(steps)
773 774 775 776 777 778 779
        del attrs['steps']

    # 2. Parse value
    dtype = var.dtype
    attrs['dtype'] = dtype

    from .data_feeder import convert_dtype
780

781 782
    #  2.1 value is an integer, float or complex
    if isinstance(value, (bool, int, float, complex)):
783 784 785 786 787
        value = np.array([value]).astype(convert_dtype(dtype))

    #  2.2 value is a np.ndarray
    if isinstance(value, np.ndarray):
        shape = list(value.shape)
788 789
        values = value.ravel().tolist()
        attrs["values"] = values
790 791
        attrs["shape"] = shape

W
wanghuancoder 已提交
792
    elif isinstance(value, (Variable, core.eager.Tensor)):
793 794 795 796 797
        inputs["ValueTensor"] = value
    else:
        raise TypeError(
            "Only support to assign an integer, float, numpy.ndarray or "
            "paddle.Tensor to a paddle.Tensor, but received {}".format(
798 799 800
                type(value)
            )
        )
801

802
    if paddle.fluid.framework._non_static_mode():
Z
zyfncg 已提交
803 804
        var._bump_inplace_version()

805
    cur_block = default_main_program().current_block()
806 807 808 809 810 811 812
    cur_block.append_op(
        type="set_value",
        inputs=inputs,
        outputs={'Out': var},
        attrs=attrs,
        inplace_map={"Input": "Out"},
    )
813 814

    return var
Z
zyfncg 已提交
815 816


817
# the item is a tensor of bool
Z
zyfncg 已提交
818 819
def set_value_for_bool_tensor(var, item, value):
    if len(item.shape) > len(var.shape):
820 821 822 823 824
        raise IndexError(
            "The dims of bool index doesn't match indexed array, "
            "the dims of bool index except to be equal or less "
            "than {}, but received {}.".format(len(var.shape), len(item.shape))
        )
Z
zyfncg 已提交
825
    for i, dim_len in enumerate(item.shape):
826
        if dim_len != -1 and var.shape[i] != -1 and dim_len != var.shape[i]:
Z
zyfncg 已提交
827 828
            raise IndexError(
                "The dimension of bool index doesn't match indexed array along "
829 830 831 832
                "dimension {}, the target dimension is {}, but received {}.".format(
                    i, var.shape[i], dim_len
                )
            )
Z
zyfncg 已提交
833 834 835 836 837 838

    def idx_not_empty(var, item, value):
        from .framework import Variable
        from ..tensor import gather_nd, scatter_nd_add

        if not isinstance(value, Variable):
839
            value = paddle.assign(value).cast(var.dtype)
Z
zyfncg 已提交
840

841
        idx = paddle.nonzero(item)
Z
zyfncg 已提交
842 843 844 845 846
        gather_val = gather_nd(var, idx)
        gather_val_new = value - gather_val
        out = scatter_nd_add(var, idx, gather_val_new)
        var[:] = out

847
    from paddle.static.nn import cond
848

Z
zyfncg 已提交
849 850 851 852
    # If all the bool index is False, just do nothing
    cond(item.any(), lambda: idx_not_empty(var, item, value))

    return var