variable_index.py 28.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import numpy as np
from . import unique_name
from . import core
W
WeiXin 已提交
19
import paddle
20 21 22 23

MAX_INTEGER = 2**31 - 1


W
WeiXin 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
def is_list_tuple(index, contain_type):
    def _is_list_tuple(item):
        if not (isinstance(item, (list, tuple)) or type(item) == contain_type):
            return False
        if isinstance(item, (tuple, list)):
            for s in item:
                if not _is_list_tuple(s):
                    return False
        return True

    if not isinstance(index, (tuple, list)):
        return False
    for s in index:
        if not _is_list_tuple(s):
            return False
    return True


def is_one_dim_list(index, contain_type):
    if isinstance(index, list):
        for i in index:
            if not isinstance(i, contain_type):
                return False
    else:
        return False
    return True


def get_list_index_shape(var_dims, index_dims):
    var_dims_size = len(var_dims)
    index_dims_size = len(index_dims)

    out_dims_size = var_dims_size - index_dims[0] + index_dims_size - 1

    out_dims_shape = [1] * out_dims_size

60
    out_dims_shape[: index_dims_size - 1] = index_dims[1:]
W
WeiXin 已提交
61

62
    out_dims_shape[index_dims_size - 1 :] = var_dims[index_dims[0] :]
W
WeiXin 已提交
63 64 65 66 67 68 69
    return out_dims_shape


class SliceInfo:
    def __init__(self):
        self.pre_shape = None
        self.indexes = []
W
WeiXin 已提交
70
        self.dtype = None
W
WeiXin 已提交
71 72

    def update(self, index):
73
        if is_list_tuple(index, int) or isinstance(
74 75
            index, (paddle.fluid.Variable, np.ndarray)
        ):
W
WeiXin 已提交
76 77 78 79
            # convert index to Tensor
            if not isinstance(index, paddle.fluid.Variable):
                index = paddle.assign(index)

W
WeiXin 已提交
80 81 82 83 84
            if self.dtype is None:
                self.dtype = index.dtype
            else:
                if index.dtype != self.dtype:
                    raise IndexError(
85 86 87 88
                        "Data type of Tensor/List index should be same. The current data type is {}, but the previous data type is {}.".format(
                            index.dtype, self.dtype
                        )
                    )
W
WeiXin 已提交
89

W
WeiXin 已提交
90 91 92 93 94 95
            self.indexes.append(index)

            if self.pre_shape is None:
                self.pre_shape = index.shape
            else:
                if self.pre_shape != index.shape:
96
                    # broadcast
97 98 99
                    cur_shape = paddle.broadcast_shape(
                        self.pre_shape, index.shape
                    )
W
WeiXin 已提交
100
                    for i in range(len(self.indexes)):
101
                        self.indexes[i] = paddle.broadcast_to(
102 103
                            self.indexes[i], cur_shape
                        )
W
WeiXin 已提交
104 105 106
                self.pre_shape = self.indexes[-1].shape
        else:
            raise ValueError(
107 108 109 110
                "Index should be list/tuple of int or Tensor, but received {}.".format(
                    index
                )
            )
W
WeiXin 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

    def shape_stride(self, shape):
        s = [1] * len(shape)
        for i in range(len(shape) - 2, -1, -1):
            s[i] = shape[i + 1] * s[i + 1]

        return s

    def numel(self, shape):
        return reduce(lambda x, y: x * y, shape)

    def get_offset_stride(self, tensor_shape):
        for index in self.indexes:
            if not isinstance(index, paddle.fluid.Variable):
                raise ValueError(
                    "only support list/tensor index, but received {}.".format(
127 128 129
                        type(index)
                    )
                )
W
WeiXin 已提交
130 131 132

        if len(self.indexes) <= len(tensor_shape) or len(self.indexes) == 1:
            shape = paddle.stack(self.indexes)
133 134 135
            axes = list(range(1, len(self.pre_shape) + 1)) + [
                0,
            ]
W
WeiXin 已提交
136 137 138

        else:
            raise ValueError(
139 140 141 142
                "too many indices for tensor: tensor is {}-dimensional, but {} were indexed".format(
                    len(tensor_shape), self.pre_shape[0]
                )
            )
W
WeiXin 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

        shape_transpose = paddle.transpose(shape, axes)
        return shape_transpose

    def get_item(self, tensor):
        shape_transpose = self.get_offset_stride(tensor.shape)
        index = paddle.assign(shape_transpose)
        return paddle.gather_nd(tensor, index)

    def set_item(self, tensor_origin, value):

        if not isinstance(value, paddle.fluid.Variable):
            value = paddle.assign(value)
        tensor_type = None

        if tensor_origin.dtype in [
159 160
            core.VarDesc.VarType.FP32,
            core.VarDesc.VarType.FP64,
W
WeiXin 已提交
161 162 163 164 165 166 167 168 169 170 171 172
        ]:
            tensor = tensor_origin
        else:
            tensor_type = tensor_origin.dtype
            tensor = tensor_origin.astype(core.VarDesc.VarType.FP32)

        if value.dtype != tensor.dtype:
            value = value.astype(tensor.dtype)

        shape_transpose = self.get_offset_stride(tensor_origin.shape)
        index = paddle.assign(shape_transpose)

173 174 175 176 177 178 179
        gather_tensor_shape = get_list_index_shape(
            tensor.shape,
            [
                len(self.indexes),
            ]
            + list(self.indexes[-1].shape),
        )
W
WeiXin 已提交
180

181 182 183
        value_dims_bd = [
            1,
        ] * len(gather_tensor_shape)
184
        value_dims_bd[-len(value.shape) :] = list(value.shape)
W
WeiXin 已提交
185 186

        for i in range(len(gather_tensor_shape)):
187 188 189 190 191 192 193 194 195
            if not (
                value_dims_bd[i] == gather_tensor_shape[i]
                or value_dims_bd[i] == 1
            ):
                raise ValueError(
                    "{} can not broadcast into {}".format(
                        value.shape, gather_tensor_shape
                    )
                )
W
WeiXin 已提交
196 197 198

        value_broadcast = paddle.broadcast_to(value, gather_tensor_shape)

199
        value_1d = value_broadcast.reshape(
200 201
            [-1] + gather_tensor_shape[len(index.shape) - 1 :]
        )
W
WeiXin 已提交
202 203 204 205

        index_1d = index.reshape([-1, index.shape[-1]])

        tensor_stride = paddle.assign(
206 207
            self.shape_stride(tensor.shape[: index.shape[-1]])
        )
W
WeiXin 已提交
208 209 210 211 212
        inds = []
        for i in range(index_1d.shape[0]):
            temp = (index_1d[i] * tensor_stride).sum()
            inds.append(temp)
        index_1d = paddle.stack(inds).reshape([-1])
213
        t_reshape = tensor.reshape([-1] + list(tensor.shape[index.shape[-1] :]))
W
WeiXin 已提交
214 215 216 217 218 219 220 221
        out = paddle.scatter(t_reshape, index_1d, value_1d)
        if tensor_type is not None:
            out = out.astype(tensor_type)
        tensor_origin[:] = out.reshape(tensor_origin.shape)

        return tensor_origin


222 223
def replace_ellipsis(var, item):
    from .framework import Variable
224

225 226 227 228 229 230 231 232 233 234
    # Use slice(None) to replace Ellipsis.
    # For var, var.shape = [3,4,5,6]
    #
    #   var[..., 1:2] -> var[:, :, :, 1:2]
    #   var[0, ...] -> var[0]
    #   var[0, ..., 1:2] -> var[0, :, :, 1:2]

    item = list(item)

    # Remove Variable to skip bug when counting Ellipsis
W
WeiXin 已提交
235
    item_remove_var = [
236 237
        ele
        for ele in item
238
        if not isinstance(ele, (Variable, np.ndarray)) and ele is not None
W
WeiXin 已提交
239
    ]
240 241 242 243 244 245 246 247 248 249 250
    ell_count = item_remove_var.count(Ellipsis)
    if ell_count == 0:
        return item
    elif ell_count > 1:
        raise IndexError("An index can only have a single ellipsis ('...')")

    ell_idx = item.index(Ellipsis)

    if ell_idx == len(item) - 1:
        return item[:-1]
    else:
251 252 253
        item[ell_idx : ell_idx + 1] = [slice(None)] * (
            len(var.shape) - len(item) + item.count(None) + 1
        )
254 255 256 257

    return item


W
WeiXin 已提交
258 259 260 261 262 263 264 265 266 267
def replace_ndarray(item):
    new_item = []
    for slice_item in item:
        if isinstance(slice_item, np.ndarray):
            new_item.append(paddle.assign(slice_item))
        else:
            new_item.append(slice_item)
    return new_item


268 269 270 271 272 273 274 275 276 277 278
def replace_none(item):
    new_item = []
    none_axes = []
    for i, slice_item in enumerate(item):
        if slice_item is None:
            none_axes.append(i)
        else:
            new_item.append(slice_item)
    return new_item, none_axes


279 280
def is_integer_or_scalar_tensor(ele):
    from .framework import Variable
281

282 283 284 285 286 287 288 289
    if isinstance(ele, int):
        return True
    elif isinstance(ele, Variable):
        if len(ele.shape) == 1 and ele.shape[0] == 1:
            return True
    return False


290 291
def is_bool_tensor(ele):
    from .framework import Variable
292

293 294 295 296 297
    if isinstance(ele, Variable) and ele.dtype == paddle.bool:
        return True
    return False


298 299 300
def deal_attrs(attrs, attr, attr_name, tensor_attr_name, inputs, infer_flags):
    from .framework import Variable

301 302
    if paddle.utils._contain_var(attr):
        inputs[tensor_attr_name] = paddle.utils._convert_to_tensor_list(
303 304
            attr, dtype="int64"
        )
305 306 307 308 309 310 311 312 313 314
        for i, dim in enumerate(attr):
            if isinstance(dim, Variable):
                attrs[attr_name].append(-1)
                infer_flags[i] = -1
            else:
                attrs[attr_name].append(dim)
    else:
        attrs[attr_name] = attr


315
# the item is a tensor of bool
316 317
def get_value_for_bool_tensor(var, item):
    if len(item.shape) > len(var.shape):
318 319 320 321 322
        raise IndexError(
            "The dims of bool index doesn't match indexed array, "
            "the dims of bool index except to be equal or less "
            "than {}, but received {}.".format(len(var.shape), len(item.shape))
        )
323 324 325
    for i, dim_len in enumerate(item.shape):
        if dim_len != var.shape[i]:
            raise IndexError(
326 327 328 329 330
                "The dimension of bool index doesn't match indexed array along "
                "dimension {}, the target dimension is {}, but received {}.".format(
                    i, var.shape[i], dim_len
                )
            )
331 332 333 334

    def idx_not_empty(var, item):
        from ..tensor import gather_nd

335
        bool_2_idx = paddle.nonzero(item == True)
336 337 338 339 340 341 342
        return gather_nd(var, bool_2_idx)

    def idx_empty(var):
        var_shape = list(var.shape)
        var_shape[0] = 0
        return paddle.empty(var_shape, dtype=var.dtype)

343
    from paddle.static.nn import cond
344 345 346 347

    return cond(
        item.any(), lambda: idx_not_empty(var, item), lambda: idx_empty(var)
    )
348 349


350 351 352 353 354 355 356 357 358 359
def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """
360
    from .framework import default_main_program, Variable
361

W
WeiXin 已提交
362 363 364
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
365 366

    if not isinstance(item, tuple):
367
        item = (item,)
368 369 370 371 372 373

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []
374
    reverse_axes = []
375 376

    use_strided_slice = False
W
WeiXin 已提交
377
    item = replace_ndarray(item)
378
    item = replace_ellipsis(var, item)
379
    item, none_axes = replace_none(item)
W
WeiXin 已提交
380
    slice_info = SliceInfo()
381 382 383 384
    is_tensor_array = (
        hasattr(var, "desc")
        and var.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
    )
385 386

    for dim, slice_item in enumerate(item):
387 388 389 390
        if is_integer_or_scalar_tensor(slice_item) and not is_bool_tensor(
            slice_item
        ):
            if (
391 392
                not is_tensor_array
                and isinstance(slice_item, int)
393 394 395 396
                and var.shape[dim] is not None
                and var.shape[dim] >= 0
                and slice_item >= var.shape[dim]
            ):
397 398 399 400 401 402 403 404
                # For python, if users write a, b = var, the __getitem__
                # method will iterate through 0, 1, 2 ... until __getitem__
                # throws an IndexError, then stop. The var[0], var[1] will
                # be given to a, b respectively. If more values are given,
                # the unpack size would cause error.
                # We raises IndexError here to support grammar like `a, b = var`
                raise IndexError(
                    "slice_item %d at dim %d should be >= 0 and < var.shape[%d]: %d"
405 406
                    % (slice_item, dim, dim, var.shape[dim])
                )
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
            decrease_axes.append(dim)
            start = slice_item
            step = 1
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            step = 1 if step is None else step

422 423 424
            if start is None:
                start = 0 if step > 0 else MAX_INTEGER
            if end is None:
425
                if (
426
                    paddle.fluid.framework._non_static_mode()
427
                    or not is_tensor_array
428
                ) and var.shape[dim] != -1:
429 430 431
                    end = var.shape[dim] if step > 0 else -1
                else:
                    end = MAX_INTEGER if step > 0 else -1
432

433
        elif isinstance(slice_item, list):
Z
zyfncg 已提交
434
            all_bool = True
W
WeiXin 已提交
435 436 437 438 439

            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

440
            for i in slice_item:
Z
zyfncg 已提交
441 442 443
                if type(i) is int:
                    all_bool = False
                elif not isinstance(i, bool):
444 445
                    raise TypeError("Only support int or bool in index list.")

446 447
            if len(item) != 1:
                raise IndexError(
448 449 450 451
                    "When index contains a list, its length must be 1, but received {}.".format(
                        len(item)
                    )
                )
Z
zyfncg 已提交
452 453 454 455
            new_slice_item = []
            if all_bool:
                if len(slice_item) != var.shape[0]:
                    raise IndexError(
456 457 458 459 460
                        "The dimension of bool index doesn't match indexed array along "
                        "dimension 0, the target dimension is {}, but received {}.".format(
                            var.shape[0], len(slice_item)
                        )
                    )
461 462 463 464
                for idx, ele in enumerate(slice_item):
                    if ele is True:
                        new_slice_item.append(idx)
                slice_item = new_slice_item
Z
zyfncg 已提交
465 466 467 468 469 470 471 472 473
            else:
                for idx, ele in enumerate(slice_item):
                    if type(ele) is int:
                        new_slice_item.append(ele)
                    elif ele is True:
                        new_slice_item.append(1)
                    else:
                        new_slice_item.append(0)
                slice_item = new_slice_item
474

475 476
            from ..tensor import index_select

477
            idx = paddle.assign(np.array(slice_item).astype("int32"))
478 479
            return index_select(var, index=idx, axis=0)

W
wanghuancoder 已提交
480
        elif isinstance(slice_item, (Variable, core.eager.Tensor)):
W
WeiXin 已提交
481
            if len(item) == 1:
482

483
                from ..tensor import index_select
Z
zyfncg 已提交
484

W
WeiXin 已提交
485
                if slice_item.dtype == paddle.bool:
486
                    return get_value_for_bool_tensor(var, slice_item)
W
WeiXin 已提交
487 488 489 490 491 492 493 494 495
                else:
                    if len(slice_item.shape) == 1:
                        return index_select(var, index=slice_item, axis=0)
                    else:
                        slice_info.update(slice_item)
                        continue
            else:
                slice_info.update(slice_item)
                continue
496

497 498
        else:
            raise IndexError(
499 500 501 502
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    slice_item
                )
            )
503 504 505 506 507 508 509

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)
        use_strided_slice = True if step != 1 else use_strided_slice

W
WeiXin 已提交
510 511 512
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
513 514 515 516
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    item
                )
            )
W
WeiXin 已提交
517 518
        return slice_info.get_item(var)

519 520 521 522 523
    inputs = {'Input': [var]}
    attrs = {
        'axes': axes,
        'starts': [],
        'ends': [],
524
        'decrease_axis': decrease_axes,
525 526 527 528 529 530 531
    }
    if use_strided_slice:
        attrs['strides'] = []

    infer_flags = [1] * len(axes)
    deal_attrs(attrs, starts, "starts", "StartsTensorList", inputs, infer_flags)
    deal_attrs(attrs, ends, "ends", "EndsTensorList", inputs, infer_flags)
532 533 534
    deal_attrs(
        attrs, steps, "strides", "StridesTensorList", inputs, infer_flags
    )
535 536 537 538 539
    attrs['infer_flags'] = infer_flags

    out = var
    if len(axes) > 0:
        op_type = "strided_slice" if use_strided_slice else "slice"
540 541 542 543 544 545 546 547 548
        if paddle.fluid.framework.in_dygraph_mode() and op_type == "slice":
            if "StartsTensorList" in inputs.keys():
                st = inputs['StartsTensorList']
            else:
                st = attrs['starts']
            if "EndsTensorList" in inputs.keys():
                end = inputs['EndsTensorList']
            else:
                end = attrs['ends']
549 550 551
            out = paddle._C_ops.slice(
                var, axes, st, end, attrs['infer_flags'], attrs['decrease_axis']
            )
552 553 554 555
        else:
            target_block = default_main_program().current_block()

            slice_out_var = target_block.create_var(
556 557 558 559 560 561 562 563 564 565 566
                name=unique_name.generate_with_ignorable_key(
                    var.name + "_" + op_type
                ),
                dtype=var.dtype,
            )
            target_block.append_op(
                type=op_type,
                inputs=inputs,
                outputs={'Out': [slice_out_var]},
                attrs=attrs,
            )
567
            out = slice_out_var
568

569
    if len(reverse_axes) > 0:
570
        from .layers.tensor import reverse
571

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
        out = reverse(out, axis=reverse_axes)

    # Deal with cases when all axes are decreased.
    # After slice, the shape of out is [1], which should have been [], but Paddle doesn't support scalar.
    # In order to ensure the correctness of the final shape of out, one dimension of out needs to be decreased.
    # For example:
    # # x.shape: (2,3,4)
    # out = x[0, 1, 1, None] # out.shape : (1)
    if len(decrease_axes) == len(var.shape):
        none_axes = none_axes[1:]

    if len(none_axes) > 0:
        # Deal with cases that decrease_axes is not empty
        # For example:
        # # x.shape: (2,3,4)
        # out = x[0, 0:2, None] # out.shape : (2, 1, 4)
        for idx, axis in enumerate(none_axes):
            l = len([i for i in decrease_axes if i < axis])
            new_axis = axis - l
            none_axes[idx] = new_axis

        # Deal with cases when all axes are decreased.
        # After slice, the shape of out is [1], which should have been [], but Paddle doesn't support scalar.
        # In order to ensure the correctness of the final shape of out, one dimension of out needs to be decreased.
        # For example:
        # # x.shape: (2,3,4)
        # out = x[0, 1, 1, None] # out.shape : (1)

        from ..tensor import unsqueeze
601

602
        out = unsqueeze(out, axis=none_axes)
603 604 605 606

    return out


607
def _setitem_for_tensor_array(var, item, value):
608 609 610 611 612 613 614
    """branches for tensor array setitem operation.
    A item can be a:
    (1) int/Variable, which is a simple number/variable such as [1], [-2]
    (2) Slice, which is represented by bounds such as [2:-1]
    (3) Tuple, which includes the above two cases such as [2:-1, 1]
    If item is case (1), we perform paddle.tensor.array_write,
    in other cases, we raise a NotImplementedError.
615 616 617
    """
    from ..framework import LayerHelper, core, _non_static_mode
    from .framework import Variable
618 619 620

    assert (
        not _non_static_mode()
621 622
    ), "setitem for tensor_array must be called in static graph mode."
    if isinstance(item, (Variable, int)):
623
        from paddle.jit.dy2static.variable_trans_func import (
624 625
            to_static_variable,
        )
626 627
        from paddle import cast
        from paddle.tensor import array_write
628

629 630 631 632 633
        item = paddle.cast(to_static_variable(item), dtype='int64')
        value = to_static_variable(value)
        array_write(x=value, i=item, array=var)
    else:
        raise NotImplementedError(
634 635 636 637
            "Only support __setitem__ by Int/Variable in tensor_array, but gets {}".format(
                type(item)
            )
        )
638 639


640 641
def _setitem_impl_(var, item, value):
    from .framework import default_main_program, Variable
642
    from paddle.fluid import core
643

644 645
    if var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        return _setitem_for_tensor_array(var, item, value)
646 647

    inputs = {'Input': var}
W
WeiXin 已提交
648 649 650
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
651 652
    # 1. Parse item
    if not isinstance(item, tuple):
653
        item = (item,)
654 655 656 657 658 659 660

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []

W
WeiXin 已提交
661
    item = replace_ndarray(item)
662
    item = replace_ellipsis(var, item)
663
    item, none_axes = replace_none(item)
W
WeiXin 已提交
664
    slice_info = SliceInfo()
Z
zyfncg 已提交
665 666
    dim = 0
    for _, slice_item in enumerate(item):
667 668 669
        if is_integer_or_scalar_tensor(slice_item) and not is_bool_tensor(
            slice_item
        ):
670 671 672 673 674 675 676 677 678 679 680
            decrease_axes.append(dim)
            start = slice_item
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER
            step = 1

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
Z
zyfncg 已提交
681
                dim += 1
682 683 684 685 686 687 688
                continue

            step = 1 if step is None else step

            if not isinstance(step, Variable) and step == 0:
                raise ValueError(
                    "When assign a value to a paddle.Tensor, step can not be 0, "
689 690
                    "but received step is {}.".format(step)
                )
691 692 693 694 695 696 697 698 699 700 701 702

            if isinstance(step, Variable) and (start is None or end is None):
                raise ValueError(
                    "When assign a value to a paddle.Tensor, it's not supported that "
                    "the start or end is None when the type of step is paddle.Tensor."
                )

            if start is None:
                start = 0 if step > 0 else MAX_INTEGER

            if end is None:
                end = MAX_INTEGER if step > 0 else (0 - MAX_INTEGER)
Z
zyfncg 已提交
703 704 705 706 707 708 709
        elif isinstance(slice_item, list):
            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

            for i in slice_item:
                if not isinstance(i, bool):
710 711 712
                    raise TypeError(
                        "Doesn't support {} in index list.".format(type(i))
                    )
Z
zyfncg 已提交
713 714 715

            if len(item) != 1:
                raise IndexError(
716 717 718 719
                    "When index contains a bool list, its length must be 1, but received {}.".format(
                        len(item)
                    )
                )
Z
zyfncg 已提交
720

721
            idx_tensor = paddle.assign(slice_item)
Z
zyfncg 已提交
722 723 724 725 726 727
            return set_value_for_bool_tensor(var, idx_tensor, value)

        elif isinstance(slice_item, Variable):
            if slice_item.dtype == core.VarDesc.VarType.BOOL:
                if len(item) != 1:
                    raise IndexError(
728 729 730 731
                        "When index contains a bool tensor, its length must be 1, but received {}.".format(
                            len(item)
                        )
                    )
Z
zyfncg 已提交
732 733 734 735
                return set_value_for_bool_tensor(var, slice_item, value)
            else:
                slice_info.update(slice_item)
                continue
736 737
        else:
            raise IndexError(
Z
zyfncg 已提交
738
                "Valid index accept int, slice, ellipsis, None, list of bool, Variable, "
739 740
                "but received {}.".format(slice_item)
            )
741 742 743 744 745 746

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)

Z
zyfncg 已提交
747
        dim += 1
W
WeiXin 已提交
748 749 750
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
751 752 753 754
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    item
                )
            )
W
WeiXin 已提交
755
        return slice_info.set_item(var, value)
756 757 758 759 760
    attrs = {
        'axes': axes,
        'starts': starts,
        'ends': ends,
        'steps': steps,
Z
zyfncg 已提交
761
        'decrease_axes': decrease_axes,
762
        'none_axes': none_axes,
763 764
    }

765 766 767 768
    if paddle.utils._contain_var(starts):
        inputs['StartsTensorList'] = paddle.utils._convert_to_tensor_list(
            starts
        )
769
        del attrs['starts']
770 771
    if paddle.utils._contain_var(ends):
        inputs['EndsTensorList'] = paddle.utils._convert_to_tensor_list(ends)
772
        del attrs['ends']
773 774
    if paddle.utils._contain_var(steps):
        inputs['StepsTensorList'] = paddle.utils._convert_to_tensor_list(steps)
775 776 777 778 779 780 781
        del attrs['steps']

    # 2. Parse value
    dtype = var.dtype
    attrs['dtype'] = dtype

    from .data_feeder import convert_dtype
782

783 784 785 786 787 788 789 790 791
    #  2.1 value is an integer of float
    if isinstance(value, (int, float)):
        value = np.array([value]).astype(convert_dtype(dtype))

    #  2.2 value is a np.ndarray
    if isinstance(value, np.ndarray):
        shape = list(value.shape)
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
792
            values = [int(v) for v in value.flat]
793 794 795 796 797 798 799 800 801 802 803 804
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in value.flat]
        elif dtype == core.VarDesc.VarType.FP64:
            value_name = "fp64_values"
            values = [float(v) for v in value.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in value.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in value.flat]
805 806 807
        elif dtype == core.VarDesc.VarType.FP16:
            value_name = "fp16_values"
            values = [float(v) for v in value.flat]
808 809 810
        else:
            raise TypeError(
                "When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
811
                "the data type of the paddle.Tensor must be bool, float32, int32, int64 or float16, but "
812 813
                "received %s." % convert_dtype(dtype)
            )
814 815 816
        attrs[value_name] = values
        attrs["shape"] = shape

W
wanghuancoder 已提交
817
    elif isinstance(value, (Variable, core.eager.Tensor)):
818 819 820 821 822
        inputs["ValueTensor"] = value
    else:
        raise TypeError(
            "Only support to assign an integer, float, numpy.ndarray or "
            "paddle.Tensor to a paddle.Tensor, but received {}".format(
823 824 825
                type(value)
            )
        )
826

827
    if paddle.fluid.framework._non_static_mode():
Z
zyfncg 已提交
828 829
        var._bump_inplace_version()

830
    cur_block = default_main_program().current_block()
831 832 833 834 835 836 837
    cur_block.append_op(
        type="set_value",
        inputs=inputs,
        outputs={'Out': var},
        attrs=attrs,
        inplace_map={"Input": "Out"},
    )
838 839

    return var
Z
zyfncg 已提交
840 841


842
# the item is a tensor of bool
Z
zyfncg 已提交
843 844
def set_value_for_bool_tensor(var, item, value):
    if len(item.shape) > len(var.shape):
845 846 847 848 849
        raise IndexError(
            "The dims of bool index doesn't match indexed array, "
            "the dims of bool index except to be equal or less "
            "than {}, but received {}.".format(len(var.shape), len(item.shape))
        )
Z
zyfncg 已提交
850 851 852 853
    for i, dim_len in enumerate(item.shape):
        if dim_len != var.shape[i]:
            raise IndexError(
                "The dimension of bool index doesn't match indexed array along "
854 855 856 857
                "dimension {}, the target dimension is {}, but received {}.".format(
                    i, var.shape[i], dim_len
                )
            )
Z
zyfncg 已提交
858 859 860 861 862 863

    def idx_not_empty(var, item, value):
        from .framework import Variable
        from ..tensor import gather_nd, scatter_nd_add

        if not isinstance(value, Variable):
864
            value = paddle.assign(value).cast(var.dtype)
Z
zyfncg 已提交
865

866
        idx = paddle.nonzero(item)
Z
zyfncg 已提交
867 868 869 870 871
        gather_val = gather_nd(var, idx)
        gather_val_new = value - gather_val
        out = scatter_nd_add(var, idx, gather_val_new)
        var[:] = out

872
    from paddle.static.nn import cond
873

Z
zyfncg 已提交
874 875 876 877
    # If all the bool index is False, just do nothing
    cond(item.any(), lambda: idx_not_empty(var, item, value))

    return var