variable_index.py 26.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import numpy as np
from . import unique_name
from . import core
W
WeiXin 已提交
19
import paddle
20 21 22 23

MAX_INTEGER = 2**31 - 1


W
WeiXin 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
def is_list_tuple(index, contain_type):
    def _is_list_tuple(item):
        if not (isinstance(item, (list, tuple)) or type(item) == contain_type):
            return False
        if isinstance(item, (tuple, list)):
            for s in item:
                if not _is_list_tuple(s):
                    return False
        return True

    if not isinstance(index, (tuple, list)):
        return False
    for s in index:
        if not _is_list_tuple(s):
            return False
    return True


def is_one_dim_list(index, contain_type):
    if isinstance(index, list):
        for i in index:
            if not isinstance(i, contain_type):
                return False
    else:
        return False
    return True


def get_list_index_shape(var_dims, index_dims):
    var_dims_size = len(var_dims)
    index_dims_size = len(index_dims)

    out_dims_size = var_dims_size - index_dims[0] + index_dims_size - 1

    out_dims_shape = [1] * out_dims_size

60
    out_dims_shape[: index_dims_size - 1] = index_dims[1:]
W
WeiXin 已提交
61

62
    out_dims_shape[index_dims_size - 1 :] = var_dims[index_dims[0] :]
W
WeiXin 已提交
63 64 65 66 67 68 69
    return out_dims_shape


class SliceInfo:
    def __init__(self):
        self.pre_shape = None
        self.indexes = []
W
WeiXin 已提交
70
        self.dtype = None
W
WeiXin 已提交
71 72

    def update(self, index):
73
        if is_list_tuple(index, int) or isinstance(
74 75
            index, (paddle.fluid.Variable, np.ndarray)
        ):
W
WeiXin 已提交
76 77 78 79
            # convert index to Tensor
            if not isinstance(index, paddle.fluid.Variable):
                index = paddle.assign(index)

W
WeiXin 已提交
80 81 82 83 84
            if self.dtype is None:
                self.dtype = index.dtype
            else:
                if index.dtype != self.dtype:
                    raise IndexError(
85 86 87 88
                        "Data type of Tensor/List index should be same. The current data type is {}, but the previous data type is {}.".format(
                            index.dtype, self.dtype
                        )
                    )
W
WeiXin 已提交
89

W
WeiXin 已提交
90 91 92 93 94 95
            self.indexes.append(index)

            if self.pre_shape is None:
                self.pre_shape = index.shape
            else:
                if self.pre_shape != index.shape:
96
                    # broadcast
97 98 99
                    cur_shape = paddle.broadcast_shape(
                        self.pre_shape, index.shape
                    )
W
WeiXin 已提交
100
                    for i in range(len(self.indexes)):
101
                        self.indexes[i] = paddle.broadcast_to(
102 103
                            self.indexes[i], cur_shape
                        )
W
WeiXin 已提交
104 105 106
                self.pre_shape = self.indexes[-1].shape
        else:
            raise ValueError(
107 108 109 110
                "Index should be list/tuple of int or Tensor, but received {}.".format(
                    index
                )
            )
W
WeiXin 已提交
111 112 113 114 115 116 117 118 119

    def shape_stride(self, shape):
        s = [1] * len(shape)
        for i in range(len(shape) - 2, -1, -1):
            s[i] = shape[i + 1] * s[i + 1]

        return s

    def numel(self, shape):
120
        return reduce(lambda x, y: x * y, shape, 1)
W
WeiXin 已提交
121 122 123 124 125 126

    def get_offset_stride(self, tensor_shape):
        for index in self.indexes:
            if not isinstance(index, paddle.fluid.Variable):
                raise ValueError(
                    "only support list/tensor index, but received {}.".format(
127 128 129
                        type(index)
                    )
                )
W
WeiXin 已提交
130 131 132

        if len(self.indexes) <= len(tensor_shape) or len(self.indexes) == 1:
            shape = paddle.stack(self.indexes)
133 134 135
            axes = list(range(1, len(self.pre_shape) + 1)) + [
                0,
            ]
W
WeiXin 已提交
136 137 138

        else:
            raise ValueError(
139 140 141 142
                "too many indices for tensor: tensor is {}-dimensional, but {} were indexed".format(
                    len(tensor_shape), self.pre_shape[0]
                )
            )
W
WeiXin 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

        shape_transpose = paddle.transpose(shape, axes)
        return shape_transpose

    def get_item(self, tensor):
        shape_transpose = self.get_offset_stride(tensor.shape)
        index = paddle.assign(shape_transpose)
        return paddle.gather_nd(tensor, index)

    def set_item(self, tensor_origin, value):

        if not isinstance(value, paddle.fluid.Variable):
            value = paddle.assign(value)
        tensor_type = None

        if tensor_origin.dtype in [
159 160
            core.VarDesc.VarType.FP32,
            core.VarDesc.VarType.FP64,
W
WeiXin 已提交
161 162 163 164 165 166 167 168 169 170 171 172
        ]:
            tensor = tensor_origin
        else:
            tensor_type = tensor_origin.dtype
            tensor = tensor_origin.astype(core.VarDesc.VarType.FP32)

        if value.dtype != tensor.dtype:
            value = value.astype(tensor.dtype)

        shape_transpose = self.get_offset_stride(tensor_origin.shape)
        index = paddle.assign(shape_transpose)

173 174 175 176 177 178 179
        gather_tensor_shape = get_list_index_shape(
            tensor.shape,
            [
                len(self.indexes),
            ]
            + list(self.indexes[-1].shape),
        )
W
WeiXin 已提交
180

181 182 183
        value_dims_bd = [
            1,
        ] * len(gather_tensor_shape)
184
        value_dims_bd[-len(value.shape) :] = list(value.shape)
W
WeiXin 已提交
185 186

        for i in range(len(gather_tensor_shape)):
187
            if not (
188 189
                len(value_dims_bd) == 0
                or value_dims_bd[i] == gather_tensor_shape[i]
190 191 192 193 194 195 196
                or value_dims_bd[i] == 1
            ):
                raise ValueError(
                    "{} can not broadcast into {}".format(
                        value.shape, gather_tensor_shape
                    )
                )
W
WeiXin 已提交
197 198 199

        value_broadcast = paddle.broadcast_to(value, gather_tensor_shape)

200
        value_1d = value_broadcast.reshape(
201 202
            [-1] + gather_tensor_shape[len(index.shape) - 1 :]
        )
W
WeiXin 已提交
203 204 205 206

        index_1d = index.reshape([-1, index.shape[-1]])

        tensor_stride = paddle.assign(
207 208
            self.shape_stride(tensor.shape[: index.shape[-1]])
        )
W
WeiXin 已提交
209 210 211 212 213
        inds = []
        for i in range(index_1d.shape[0]):
            temp = (index_1d[i] * tensor_stride).sum()
            inds.append(temp)
        index_1d = paddle.stack(inds).reshape([-1])
214
        t_reshape = tensor.reshape([-1] + list(tensor.shape[index.shape[-1] :]))
W
WeiXin 已提交
215 216 217 218 219 220 221 222
        out = paddle.scatter(t_reshape, index_1d, value_1d)
        if tensor_type is not None:
            out = out.astype(tensor_type)
        tensor_origin[:] = out.reshape(tensor_origin.shape)

        return tensor_origin


223 224
def replace_ellipsis(var, item):
    from .framework import Variable
225

226 227 228 229 230 231 232 233 234 235
    # Use slice(None) to replace Ellipsis.
    # For var, var.shape = [3,4,5,6]
    #
    #   var[..., 1:2] -> var[:, :, :, 1:2]
    #   var[0, ...] -> var[0]
    #   var[0, ..., 1:2] -> var[0, :, :, 1:2]

    item = list(item)

    # Remove Variable to skip bug when counting Ellipsis
W
WeiXin 已提交
236
    item_remove_var = [
237 238
        ele
        for ele in item
239
        if not isinstance(ele, (Variable, np.ndarray)) and ele is not None
W
WeiXin 已提交
240
    ]
241 242 243 244 245 246 247 248 249 250 251
    ell_count = item_remove_var.count(Ellipsis)
    if ell_count == 0:
        return item
    elif ell_count > 1:
        raise IndexError("An index can only have a single ellipsis ('...')")

    ell_idx = item.index(Ellipsis)

    if ell_idx == len(item) - 1:
        return item[:-1]
    else:
252 253 254
        item[ell_idx : ell_idx + 1] = [slice(None)] * (
            len(var.shape) - len(item) + item.count(None) + 1
        )
255 256 257 258

    return item


W
WeiXin 已提交
259 260 261 262 263 264 265 266 267 268
def replace_ndarray(item):
    new_item = []
    for slice_item in item:
        if isinstance(slice_item, np.ndarray):
            new_item.append(paddle.assign(slice_item))
        else:
            new_item.append(slice_item)
    return new_item


269 270 271 272 273 274 275 276 277 278 279
def replace_none(item):
    new_item = []
    none_axes = []
    for i, slice_item in enumerate(item):
        if slice_item is None:
            none_axes.append(i)
        else:
            new_item.append(slice_item)
    return new_item, none_axes


280 281
def is_integer_or_scalar_tensor(ele):
    from .framework import Variable
282

283 284 285
    if isinstance(ele, int):
        return True
    elif isinstance(ele, Variable):
286
        if len(ele.shape) == 0:
287 288 289 290
            return True
    return False


291 292
def is_bool_tensor(ele):
    from .framework import Variable
293

294 295 296 297 298
    if isinstance(ele, Variable) and ele.dtype == paddle.bool:
        return True
    return False


299 300 301
def deal_attrs(attrs, attr, attr_name, tensor_attr_name, inputs, infer_flags):
    from .framework import Variable

302 303
    if paddle.utils._contain_var(attr):
        inputs[tensor_attr_name] = paddle.utils._convert_to_tensor_list(
304 305
            attr, dtype="int64"
        )
306 307 308 309 310 311 312 313 314 315
        for i, dim in enumerate(attr):
            if isinstance(dim, Variable):
                attrs[attr_name].append(-1)
                infer_flags[i] = -1
            else:
                attrs[attr_name].append(dim)
    else:
        attrs[attr_name] = attr


316
# the item is a tensor of bool
317 318
def get_value_for_bool_tensor(var, item):
    if len(item.shape) > len(var.shape):
319 320 321 322 323
        raise IndexError(
            "The dims of bool index doesn't match indexed array, "
            "the dims of bool index except to be equal or less "
            "than {}, but received {}.".format(len(var.shape), len(item.shape))
        )
324 325 326 327 328
    i = 0
    item_shape = item.shape
    while i < len(item.shape):
        dim_len = item_shape[i]
        if dim_len != -1 and var.shape[i] != -1 and dim_len != var.shape[i]:
329
            raise IndexError(
330 331 332 333 334
                "The dimension of bool index doesn't match indexed array along "
                "dimension {}, the target dimension is {}, but received {}.".format(
                    i, var.shape[i], dim_len
                )
            )
335 336
        i += 1
    empty_shape = [0] + list(var.shape[i:])
337 338 339 340

    def idx_not_empty(var, item):
        from ..tensor import gather_nd

341
        bool_2_idx = paddle.nonzero(item == True)
342 343
        return gather_nd(var, bool_2_idx)

344
    from paddle.static.nn import cond
345 346

    return cond(
347 348 349
        item.any(),
        lambda: idx_not_empty(var, item),
        lambda: paddle.empty(empty_shape, var.dtype),
350
    )
351 352


353 354 355 356 357 358 359 360 361 362
def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """
363
    from .framework import default_main_program, Variable
364

W
WeiXin 已提交
365 366 367
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
368 369

    if not isinstance(item, tuple):
370
        item = (item,)
371 372 373 374 375 376

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []
377
    reverse_axes = []
378 379

    use_strided_slice = False
W
WeiXin 已提交
380
    item = replace_ndarray(item)
381
    item = replace_ellipsis(var, item)
382
    item, none_axes = replace_none(item)
W
WeiXin 已提交
383
    slice_info = SliceInfo()
384 385 386 387
    is_tensor_array = (
        hasattr(var, "desc")
        and var.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
    )
388 389

    for dim, slice_item in enumerate(item):
390 391 392 393
        if is_integer_or_scalar_tensor(slice_item) and not is_bool_tensor(
            slice_item
        ):
            if (
394 395
                not is_tensor_array
                and isinstance(slice_item, int)
396 397 398 399
                and var.shape[dim] is not None
                and var.shape[dim] >= 0
                and slice_item >= var.shape[dim]
            ):
400 401 402 403 404 405 406 407
                # For python, if users write a, b = var, the __getitem__
                # method will iterate through 0, 1, 2 ... until __getitem__
                # throws an IndexError, then stop. The var[0], var[1] will
                # be given to a, b respectively. If more values are given,
                # the unpack size would cause error.
                # We raises IndexError here to support grammar like `a, b = var`
                raise IndexError(
                    "slice_item %d at dim %d should be >= 0 and < var.shape[%d]: %d"
408 409
                    % (slice_item, dim, dim, var.shape[dim])
                )
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
            decrease_axes.append(dim)
            start = slice_item
            step = 1
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            step = 1 if step is None else step

425 426 427
            if start is None:
                start = 0 if step > 0 else MAX_INTEGER
            if end is None:
428
                if (
429
                    paddle.fluid.framework._non_static_mode()
430
                    or not is_tensor_array
431
                ) and var.shape[dim] != -1:
432 433 434
                    end = var.shape[dim] if step > 0 else -1
                else:
                    end = MAX_INTEGER if step > 0 else -1
435

436
        elif isinstance(slice_item, list):
Z
zyfncg 已提交
437
            all_bool = True
W
WeiXin 已提交
438 439 440 441 442

            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

443
            for i in slice_item:
Z
zyfncg 已提交
444 445 446
                if type(i) is int:
                    all_bool = False
                elif not isinstance(i, bool):
447 448
                    raise TypeError("Only support int or bool in index list.")

449 450
            if len(item) != 1:
                raise IndexError(
451 452 453 454
                    "When index contains a list, its length must be 1, but received {}.".format(
                        len(item)
                    )
                )
Z
zyfncg 已提交
455 456 457 458
            new_slice_item = []
            if all_bool:
                if len(slice_item) != var.shape[0]:
                    raise IndexError(
459 460 461 462 463
                        "The dimension of bool index doesn't match indexed array along "
                        "dimension 0, the target dimension is {}, but received {}.".format(
                            var.shape[0], len(slice_item)
                        )
                    )
464 465 466 467
                for idx, ele in enumerate(slice_item):
                    if ele is True:
                        new_slice_item.append(idx)
                slice_item = new_slice_item
Z
zyfncg 已提交
468 469 470 471 472 473 474 475 476
            else:
                for idx, ele in enumerate(slice_item):
                    if type(ele) is int:
                        new_slice_item.append(ele)
                    elif ele is True:
                        new_slice_item.append(1)
                    else:
                        new_slice_item.append(0)
                slice_item = new_slice_item
477

478 479
            from ..tensor import index_select

480
            idx = paddle.assign(np.array(slice_item).astype("int32"))
481 482
            return index_select(var, index=idx, axis=0)

W
wanghuancoder 已提交
483
        elif isinstance(slice_item, (Variable, core.eager.Tensor)):
W
WeiXin 已提交
484
            if len(item) == 1:
485

486
                from ..tensor import index_select
Z
zyfncg 已提交
487

W
WeiXin 已提交
488
                if slice_item.dtype == paddle.bool:
489
                    return get_value_for_bool_tensor(var, slice_item)
W
WeiXin 已提交
490 491 492 493 494 495 496 497 498
                else:
                    if len(slice_item.shape) == 1:
                        return index_select(var, index=slice_item, axis=0)
                    else:
                        slice_info.update(slice_item)
                        continue
            else:
                slice_info.update(slice_item)
                continue
499

500 501
        else:
            raise IndexError(
502 503 504 505
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    slice_item
                )
            )
506 507 508 509 510 511 512

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)
        use_strided_slice = True if step != 1 else use_strided_slice

W
WeiXin 已提交
513 514 515
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
516 517 518 519
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    item
                )
            )
W
WeiXin 已提交
520 521
        return slice_info.get_item(var)

522 523 524 525 526
    inputs = {'Input': [var]}
    attrs = {
        'axes': axes,
        'starts': [],
        'ends': [],
527
        'decrease_axis': decrease_axes,
528 529 530 531 532 533 534
    }
    if use_strided_slice:
        attrs['strides'] = []

    infer_flags = [1] * len(axes)
    deal_attrs(attrs, starts, "starts", "StartsTensorList", inputs, infer_flags)
    deal_attrs(attrs, ends, "ends", "EndsTensorList", inputs, infer_flags)
535 536 537
    deal_attrs(
        attrs, steps, "strides", "StridesTensorList", inputs, infer_flags
    )
538 539 540 541 542
    attrs['infer_flags'] = infer_flags

    out = var
    if len(axes) > 0:
        op_type = "strided_slice" if use_strided_slice else "slice"
543 544 545 546 547 548 549 550 551
        if paddle.fluid.framework.in_dygraph_mode() and op_type == "slice":
            if "StartsTensorList" in inputs.keys():
                st = inputs['StartsTensorList']
            else:
                st = attrs['starts']
            if "EndsTensorList" in inputs.keys():
                end = inputs['EndsTensorList']
            else:
                end = attrs['ends']
552 553 554
            out = paddle._C_ops.slice(
                var, axes, st, end, attrs['infer_flags'], attrs['decrease_axis']
            )
555 556 557 558
        else:
            target_block = default_main_program().current_block()

            slice_out_var = target_block.create_var(
559 560 561 562 563 564 565 566 567 568 569
                name=unique_name.generate_with_ignorable_key(
                    var.name + "_" + op_type
                ),
                dtype=var.dtype,
            )
            target_block.append_op(
                type=op_type,
                inputs=inputs,
                outputs={'Out': [slice_out_var]},
                attrs=attrs,
            )
570
            out = slice_out_var
571

572
    if len(reverse_axes) > 0:
573
        from .layers.tensor import reverse
574

575 576
        out = reverse(out, axis=reverse_axes)

577 578 579 580 581 582 583
    # NOTE(zoooo0820): When all axes are decreased, the output will be 1-D
    # with FLAGS_set_to_1d=True. In this case, one `None` should be pop out,
    # otherwise the output shape will be not correct.
    set_to_1d = paddle.get_flags('FLAGS_set_to_1d')['FLAGS_set_to_1d']
    if set_to_1d and len(decrease_axes) == len(var.shape):
        none_axes = none_axes[1:]

584 585 586 587 588 589 590 591 592 593 594
    if len(none_axes) > 0:
        # Deal with cases that decrease_axes is not empty
        # For example:
        # # x.shape: (2,3,4)
        # out = x[0, 0:2, None] # out.shape : (2, 1, 4)
        for idx, axis in enumerate(none_axes):
            l = len([i for i in decrease_axes if i < axis])
            new_axis = axis - l
            none_axes[idx] = new_axis

        from ..tensor import unsqueeze
595

596
        out = unsqueeze(out, axis=none_axes)
597 598 599 600

    return out


601
def _setitem_for_tensor_array(var, item, value):
602 603 604 605 606 607 608
    """branches for tensor array setitem operation.
    A item can be a:
    (1) int/Variable, which is a simple number/variable such as [1], [-2]
    (2) Slice, which is represented by bounds such as [2:-1]
    (3) Tuple, which includes the above two cases such as [2:-1, 1]
    If item is case (1), we perform paddle.tensor.array_write,
    in other cases, we raise a NotImplementedError.
609 610 611
    """
    from ..framework import LayerHelper, core, _non_static_mode
    from .framework import Variable
612 613 614

    assert (
        not _non_static_mode()
615 616
    ), "setitem for tensor_array must be called in static graph mode."
    if isinstance(item, (Variable, int)):
617
        from paddle.jit.dy2static.variable_trans_func import (
618 619
            to_static_variable,
        )
620 621
        from paddle import cast
        from paddle.tensor import array_write
622

623 624 625 626 627
        item = paddle.cast(to_static_variable(item), dtype='int64')
        value = to_static_variable(value)
        array_write(x=value, i=item, array=var)
    else:
        raise NotImplementedError(
628 629 630 631
            "Only support __setitem__ by Int/Variable in tensor_array, but gets {}".format(
                type(item)
            )
        )
632 633


634 635
def _setitem_impl_(var, item, value):
    from .framework import default_main_program, Variable
636
    from paddle.fluid import core
637

638 639
    if var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        return _setitem_for_tensor_array(var, item, value)
640 641

    inputs = {'Input': var}
W
WeiXin 已提交
642 643 644
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
645 646
    # 1. Parse item
    if not isinstance(item, tuple):
647
        item = (item,)
648 649 650 651 652 653 654

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []

W
WeiXin 已提交
655
    item = replace_ndarray(item)
656
    item = replace_ellipsis(var, item)
657
    item, none_axes = replace_none(item)
W
WeiXin 已提交
658
    slice_info = SliceInfo()
Z
zyfncg 已提交
659 660
    dim = 0
    for _, slice_item in enumerate(item):
661 662 663
        if is_integer_or_scalar_tensor(slice_item) and not is_bool_tensor(
            slice_item
        ):
664 665 666 667 668 669 670 671 672 673 674
            decrease_axes.append(dim)
            start = slice_item
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER
            step = 1

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
Z
zyfncg 已提交
675
                dim += 1
676 677 678 679 680 681 682
                continue

            step = 1 if step is None else step

            if not isinstance(step, Variable) and step == 0:
                raise ValueError(
                    "When assign a value to a paddle.Tensor, step can not be 0, "
683 684
                    "but received step is {}.".format(step)
                )
685 686 687 688 689 690 691 692 693 694 695 696

            if isinstance(step, Variable) and (start is None or end is None):
                raise ValueError(
                    "When assign a value to a paddle.Tensor, it's not supported that "
                    "the start or end is None when the type of step is paddle.Tensor."
                )

            if start is None:
                start = 0 if step > 0 else MAX_INTEGER

            if end is None:
                end = MAX_INTEGER if step > 0 else (0 - MAX_INTEGER)
Z
zyfncg 已提交
697 698 699 700 701 702 703
        elif isinstance(slice_item, list):
            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

            for i in slice_item:
                if not isinstance(i, bool):
704 705 706
                    raise TypeError(
                        "Doesn't support {} in index list.".format(type(i))
                    )
Z
zyfncg 已提交
707 708 709

            if len(item) != 1:
                raise IndexError(
710 711 712 713
                    "When index contains a bool list, its length must be 1, but received {}.".format(
                        len(item)
                    )
                )
Z
zyfncg 已提交
714

715
            idx_tensor = paddle.assign(slice_item)
Z
zyfncg 已提交
716 717 718 719 720 721
            return set_value_for_bool_tensor(var, idx_tensor, value)

        elif isinstance(slice_item, Variable):
            if slice_item.dtype == core.VarDesc.VarType.BOOL:
                if len(item) != 1:
                    raise IndexError(
722 723 724 725
                        "When index contains a bool tensor, its length must be 1, but received {}.".format(
                            len(item)
                        )
                    )
Z
zyfncg 已提交
726 727 728 729
                return set_value_for_bool_tensor(var, slice_item, value)
            else:
                slice_info.update(slice_item)
                continue
730 731
        else:
            raise IndexError(
Z
zyfncg 已提交
732
                "Valid index accept int, slice, ellipsis, None, list of bool, Variable, "
733 734
                "but received {}.".format(slice_item)
            )
735 736 737 738 739 740

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)

Z
zyfncg 已提交
741
        dim += 1
W
WeiXin 已提交
742 743 744
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
745 746 747 748
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    item
                )
            )
W
WeiXin 已提交
749
        return slice_info.set_item(var, value)
750 751 752 753 754
    attrs = {
        'axes': axes,
        'starts': starts,
        'ends': ends,
        'steps': steps,
Z
zyfncg 已提交
755
        'decrease_axes': decrease_axes,
756
        'none_axes': none_axes,
757 758
    }

759 760 761 762
    if paddle.utils._contain_var(starts):
        inputs['StartsTensorList'] = paddle.utils._convert_to_tensor_list(
            starts
        )
763
        del attrs['starts']
764 765
    if paddle.utils._contain_var(ends):
        inputs['EndsTensorList'] = paddle.utils._convert_to_tensor_list(ends)
766
        del attrs['ends']
767 768
    if paddle.utils._contain_var(steps):
        inputs['StepsTensorList'] = paddle.utils._convert_to_tensor_list(steps)
769 770 771 772 773 774 775
        del attrs['steps']

    # 2. Parse value
    dtype = var.dtype
    attrs['dtype'] = dtype

    from .data_feeder import convert_dtype
776

777 778
    #  2.1 value is an integer, float or complex
    if isinstance(value, (bool, int, float, complex)):
779 780 781 782 783
        value = np.array([value]).astype(convert_dtype(dtype))

    #  2.2 value is a np.ndarray
    if isinstance(value, np.ndarray):
        shape = list(value.shape)
784 785
        values = value.ravel().tolist()
        attrs["values"] = values
786 787
        attrs["shape"] = shape

W
wanghuancoder 已提交
788
    elif isinstance(value, (Variable, core.eager.Tensor)):
789 790 791 792 793
        inputs["ValueTensor"] = value
    else:
        raise TypeError(
            "Only support to assign an integer, float, numpy.ndarray or "
            "paddle.Tensor to a paddle.Tensor, but received {}".format(
794 795 796
                type(value)
            )
        )
797

798
    if paddle.fluid.framework._non_static_mode():
Z
zyfncg 已提交
799 800
        var._bump_inplace_version()

801
    cur_block = default_main_program().current_block()
802 803 804 805 806 807 808
    cur_block.append_op(
        type="set_value",
        inputs=inputs,
        outputs={'Out': var},
        attrs=attrs,
        inplace_map={"Input": "Out"},
    )
809 810

    return var
Z
zyfncg 已提交
811 812


813
# the item is a tensor of bool
Z
zyfncg 已提交
814 815
def set_value_for_bool_tensor(var, item, value):
    if len(item.shape) > len(var.shape):
816 817 818 819 820
        raise IndexError(
            "The dims of bool index doesn't match indexed array, "
            "the dims of bool index except to be equal or less "
            "than {}, but received {}.".format(len(var.shape), len(item.shape))
        )
Z
zyfncg 已提交
821
    for i, dim_len in enumerate(item.shape):
822
        if dim_len != -1 and var.shape[i] != -1 and dim_len != var.shape[i]:
Z
zyfncg 已提交
823 824
            raise IndexError(
                "The dimension of bool index doesn't match indexed array along "
825 826 827 828
                "dimension {}, the target dimension is {}, but received {}.".format(
                    i, var.shape[i], dim_len
                )
            )
Z
zyfncg 已提交
829 830 831 832 833 834

    def idx_not_empty(var, item, value):
        from .framework import Variable
        from ..tensor import gather_nd, scatter_nd_add

        if not isinstance(value, Variable):
835
            value = paddle.assign(value).cast(var.dtype)
Z
zyfncg 已提交
836

837
        idx = paddle.nonzero(item)
Z
zyfncg 已提交
838 839 840 841 842
        gather_val = gather_nd(var, idx)
        gather_val_new = value - gather_val
        out = scatter_nd_add(var, idx, gather_val_new)
        var[:] = out

843
    from paddle.static.nn import cond
844

Z
zyfncg 已提交
845 846 847 848
    # If all the bool index is False, just do nothing
    cond(item.any(), lambda: idx_not_empty(var, item, value))

    return var