coalesce_tensor_op.cc 18.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16 17
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/framework/op_version_registry.h"
19 20 21
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/operators/math/math_function.h"
22
#include "paddle/fluid/platform/device_memory_aligment.h"
23 24 25
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/operators/npu_op_runner.h"
#endif
26 27 28 29

namespace paddle {
namespace operators {

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
template <typename DeviceContext>
struct FillConstantVisitor {
  FillConstantVisitor(const DeviceContext &dev_ctx,
                      framework::LoDTensor *tensor, const float value)
      : dev_ctx_(dev_ctx), tensor_(tensor), value_(value) {}

  template <typename T>
  void apply(typename std::enable_if<std::is_same<T, int8_t>::value ||
                                     std::is_same<T, int16_t>::value>::type * =
                 nullptr) const {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Not support data type for set_constant attr"));
  }

  template <typename T>
  void apply(typename std::enable_if<!(std::is_same<T, int8_t>::value ||
                                       std::is_same<T, int16_t>::value)>::type
                 * = nullptr) const {
#ifdef PADDLE_WITH_ASCEND_CL
    if (platform::is_npu_place(dev_ctx_.GetPlace())) {
      FillNpuTensorWithConstant<T>(tensor_, static_cast<T>(value_));
    } else {
      math::SetConstant<DeviceContext, T> set_constant;
      set_constant(dev_ctx_, tensor_, static_cast<T>(value_));
    }
#else
    math::SetConstant<DeviceContext, T> set_constant;
    set_constant(dev_ctx_, tensor_, static_cast<T>(value_));
#endif
  }

  const DeviceContext &dev_ctx_;
  framework::LoDTensor *tensor_;
  float value_;
};

66
template <typename DeviceContext, typename T>
67
class CoalesceTensorOpKernel : public framework::OpKernel<T> {
68 69
 public:
  void Compute(const framework::ExecutionContext &context) const override {
H
hong 已提交
70 71
    auto in_var_names = context.InputNames("Input");
    auto out_var_names = context.OutputNames("Output");
72 73 74
    auto &in_vars = context.MultiInputVar("Input");
    auto out_vars = context.MultiOutputVar("Output");

75
    PADDLE_ENFORCE_GT(in_var_names.size(), static_cast<size_t>(0),
76 77 78 79 80 81 82 83
                      platform::errors::InvalidArgument(
                          "The CoalesceTensor operator has no input."));
    PADDLE_ENFORCE_EQ(in_var_names.size(), out_var_names.size(),
                      platform::errors::InvalidArgument(
                          "The number of CoalesceTensor operator's input and "
                          "output is not match, "
                          "input number is %u, output number is %u.",
                          in_var_names.size(), out_var_names.size()));
84

85
    // Input & Output check: only support LoDTensor
86
    for (size_t i = 0; i < in_var_names.size(); ++i) {
87 88
      PADDLE_ENFORCE_NOT_NULL(
          in_vars[i],
89 90 91
          platform::errors::NotFound("The input variable %s of CoalesceTensor "
                                     "operator does not exist.",
                                     in_var_names[i]));
92 93
      PADDLE_ENFORCE_NOT_NULL(
          out_vars[i],
94 95 96 97 98 99 100 101 102 103 104 105
          platform::errors::NotFound("The output variable %s of CoalesceTensor "
                                     "operator does not exist.",
                                     out_var_names[i]));
      PADDLE_ENFORCE_EQ(in_vars[i]->IsType<framework::LoDTensor>(), true,
                        platform::errors::InvalidArgument(
                            "The input variable %s of CoalesceTensor operator "
                            "is not LoDTensor.",
                            in_var_names[i]));
      PADDLE_ENFORCE_EQ(out_vars[i]->IsType<framework::LoDTensor>(), true,
                        platform::errors::InvalidArgument(
                            "The output variable %s of CoalesceTensor operator "
                            "is not LoDTensor.",
106
                            out_var_names[i]));
107 108 109
    }

    auto in_tensors = context.MultiInput<framework::LoDTensor>("Input");
110
    bool use_align = context.Attr<bool>("use_align");
111
    auto align_size = context.Attr<int>("align_size");
112
    auto size_of_dtype = context.Attr<int>("user_defined_size_of_dtype");
113 114 115

    if (context.Attr<bool>("check_name")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
116 117
        PADDLE_ENFORCE_EQ(
            in_var_names[i], out_var_names[i],
118 119 120 121
            platform::errors::InvalidArgument(
                "The input and output variable of CoalesceTensor operator is "
                "different, %dth input is %s, %dth output is %s.",
                i, in_var_names[i], i, out_var_names[i]));
122 123 124 125 126 127 128 129 130 131 132 133 134
      }
    } else {
      // Init the output as input
      for (size_t i = 0; i < in_tensors.size(); ++i) {
        out_vars[i]->GetMutable<framework::LoDTensor>()->Resize(
            in_tensors[i]->dims());
      }
    }

    auto &dev_ctx = context.template device_context<DeviceContext>();

    // Get numel and dtype
    size_t numel = 0;
135 136
    auto dtype = static_cast<framework::proto::VarType::Type>(
        context.Attr<int>("dtype"));
137 138 139
    if (size_of_dtype == -1) {
      size_of_dtype = framework::SizeOfType(dtype);
    }
140
    GetMemSizeAndDtype(in_tensors, in_var_names, &numel, size_of_dtype,
141
                       context.GetPlace(), use_align, align_size);
142 143 144 145 146 147 148 149

    // Alloc the continuous space
    auto fused_tensor = context.Output<framework::LoDTensor>("FusedOutput");
    fused_tensor->Resize(framework::make_ddim({static_cast<int64_t>(numel)}))
        .mutable_data(context.GetPlace(), dtype);

    // Init the continuous space
    auto out_tensors = context.MultiOutput<framework::LoDTensor>("Output");
C
chengduo 已提交
150
    size_t offset = 0;
151 152
    if (context.Attr<bool>("copy_data")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
C
chengduo 已提交
153 154 155 156
        size_t len = static_cast<size_t>(in_tensors[i]->numel());
        auto sub_tensor = fused_tensor->Slice(
            static_cast<int64_t>(offset), static_cast<int64_t>(offset + len));
        framework::TensorCopy(*in_tensors[i], context.GetPlace(), dev_ctx,
157
                              &sub_tensor);
C
chengduo 已提交
158

159 160 161 162 163
        offset += use_align
                      ? platform::Alignment(len * size_of_dtype,
                                            context.GetPlace(), align_size) /
                            size_of_dtype
                      : len;
164 165
      }
    } else if (context.Attr<bool>("set_constant")) {
166 167 168
      framework::VisitDataType(
          dtype, FillConstantVisitor<DeviceContext>(
                     dev_ctx, fused_tensor, context.Attr<float>("constant")));
169 170 171 172 173 174 175 176 177 178
    } else if (context.Attr<bool>("persist_output")) {
      for (size_t i = 0; i < out_var_names.size(); ++i) {
        size_t len = static_cast<size_t>(out_tensors[i]->numel());
        auto sub_tensor = fused_tensor->Slice(
            static_cast<int64_t>(offset), static_cast<int64_t>(offset + len));
        // some var may not persistable, or persistable var may not init
        if (out_tensors[i]->IsInitialized()) {
          framework::TensorCopy(*out_tensors[i], context.GetPlace(), dev_ctx,
                                &sub_tensor);
        }
179 180 181 182 183
        offset += use_align
                      ? platform::Alignment(len * size_of_dtype,
                                            context.GetPlace(), align_size) /
                            size_of_dtype
                      : len;
184
      }
185 186 187 188
    }

    // Make the outputs point to the continuous space.
    offset = 0;
189 190
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
191

192
    for (size_t i = 0; i < out_tensors.size(); ++i) {
C
chengduo 已提交
193
      size_t len = static_cast<size_t>(out_tensors[i]->numel());
194
      auto dim = out_tensors[i]->dims();
195
      VLOG(4) << len << " " << dim << " " << offset;
196
      out_tensors[i]
C
chengduo 已提交
197 198
          ->ShareDataWith(fused_tensor->Slice(
              static_cast<int64_t>(offset), static_cast<int64_t>(offset + len)))
199
          .Resize(dim);
200
      len = use_align
201 202
                ? platform::Alignment(len * size_of_dtype, context.GetPlace(),
                                      align_size) /
203 204
                      size_of_dtype
                : len;
205
      ss << "output(" << out_var_names[i] << ")  dim:(" << dim << ")"
206 207 208
         << " address: " << out_tensors[i]->data<void>() << " len: " << len
         << ", ";
      offset += len;
209
    }
210 211 212 213 214 215
    PADDLE_ENFORCE_EQ(
        (int64_t)offset, fused_tensor->numel(),
        platform::errors::InvalidArgument(
            "The alloc_space_for_vars's offset: %s is unequal with "
            "fused_tensor's numel: %s.",
            offset, fused_tensor->numel()));
216
    VLOG(10) << ss.str();
217 218
  }

C
chengduo 已提交
219
 private:
220 221 222
  void GetMemSizeAndDtype(
      const std::vector<const framework::LoDTensor *> &lod_tensors,
      const std::vector<std::string> var_names, size_t *numel,
223
      const size_t &size_of_dtype, const platform::Place &place,
224
      const bool use_align = true, const int align_size = -1) const {
225 226 227 228 229 230
    PADDLE_ENFORCE_EQ(
        lod_tensors.size(), var_names.size(),
        platform::errors::InvalidArgument(
            "The number of input tensor and variable does not match, the "
            "number of input tensor is %u, the number of input variable is %u.",
            lod_tensors.size(), var_names.size()));
231
    *numel = 0;
232 233
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
234
    for (size_t i = 0; i < var_names.size(); ++i) {
235
      PADDLE_ENFORCE_EQ(lod_tensors[i]->IsInitialized(), true,
236 237
                        platform::errors::InvalidArgument(
                            "Tensor `%s` is not initialized.", var_names[i]));
238 239

      auto size = lod_tensors[i]->numel();
240 241 242 243
      PADDLE_ENFORCE_GT(
          size, 0,
          platform::errors::InvalidArgument(
              "The number of tensor `%s`'s elements is 0.", var_names[i]));
244 245 246 247 248 249 250
      auto len =
          use_align
              ? platform::Alignment(static_cast<size_t>(size) * size_of_dtype,
                                    place, align_size) /
                    size_of_dtype
              : static_cast<size_t>(size);
      VLOG(4) << size << " " << len;
251
      ss << "input(" << var_names[i] << ") dim:(" << lod_tensors[i]->dims()
252
         << ") "
253 254 255
         << " addres:" << lod_tensors[i]->data<void>() << " len: " << len
         << ", ";
      *numel += len;
256
    }
257
    VLOG(10) << ss.str();
258 259 260
  }
};

261
class CoalesceTensorOp : public framework::OperatorWithKernel {
262 263 264
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

265 266 267 268 269 270
  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->IsRuntime()) {
      return;
    }
    auto use_align = ctx->Attrs().Get<bool>("use_align");
    auto align_size = ctx->Attrs().Get<int>("align_size");
271
    auto size_of_dtype = ctx->Attrs().Get<int>("user_defined_size_of_dtype");
272 273 274

    auto dtype = static_cast<framework::proto::VarType::Type>(
        ctx->Attrs().Get<int>("dtype"));
275 276 277
    if (size_of_dtype == -1) {
      size_of_dtype = framework::SizeOfType(dtype);
    }
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

    auto alignment = [](size_t size, size_t align_size) {
      size_t remaining = size % align_size;
      auto aligned_size =
          remaining == 0 ? size : size + (align_size - remaining);
      VLOG(4) << remaining << " " << size << " " << align_size << " "
              << aligned_size;
      return aligned_size;
    };
    VLOG(4) << "align_size: " << align_size;
    if (use_align && align_size > 0) {
      int64_t numel = 0;
      auto dims = ctx->GetInputsDim("Input");
      for (const auto &dim : dims) {
        auto size = framework::product(dim);
        auto len = use_align
                       ? alignment(static_cast<size_t>(size) * size_of_dtype,
                                   align_size) /
                             size_of_dtype
                       : static_cast<size_t>(size);
        numel += len;
      }
      ctx->SetOutputDim("FusedOutput", framework::make_ddim({numel}));
      VLOG(4) << "FusedOutput size:" << framework::make_ddim({numel});
    }
  }
304 305 306 307 308 309 310 311 312

 protected:
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }
313 314
};

315
class CoalesceTensorOpMaker : public framework::OpProtoAndCheckerMaker {
316 317 318 319
 public:
  void Make() override {
    AddInput("Input",
             "(vector<LoDTensor>) The input tensors of"
320
             " coalesce_tensor operator.")
321 322 323
        .AsDuplicable();
    AddOutput("Output",
              "(vector<LoDTensor>) The output "
324
              "tensors of coalesce_tensor operator. And the address "
325 326 327 328 329
              "of output tensors are continuous, they are sliced from the "
              "tensor of FusedOutput.")
        .AsDuplicable();
    AddOutput("FusedOutput",
              "(LoDTensor) The output tensor "
330
              "of coalesce_tensor operator. And the tensors of"
331
              " Output is sliced from the tensor of FusedOutput.");
332
    AddAttr<int>("dtype", "The output data type.");
333 334 335 336 337
    AddAttr<bool>("copy_data", "Whether to copy the Input value to Output.")
        .SetDefault(false);
    AddAttr<bool>("set_constant",
                  "Whether to set the Output with a constant value.")
        .SetDefault(false);
338 339 340
    AddAttr<bool>("persist_output",
                  "Whether to persist the original Output value.")
        .SetDefault(false);
341 342 343 344 345 346 347 348
    AddAttr<float>("constant",
                   "If set_constant is true, the constant value will be used "
                   "to set the Output.")
        .SetDefault(0.0);
    AddAttr<bool>("check_name",
                  "Whether to check the name of Input and Output to ensure "
                  "they are the same separately.")
        .SetDefault(false);
349 350 351 352
    AddAttr<bool>("use_align",
                  "Whether to consider memory chunk and take alignment into "
                  "account for inputs and outputs.")
        .SetDefault(true);
353 354
    AddAttr<int>("align_size", "The alignment size when use_align is True")
        .SetDefault(-1);
355 356 357 358 359 360 361 362 363
    AddAttr<int>("user_defined_size_of_dtype",
                 "The user defined size of dtype. This is used to coalesce "
                 "grad vars and merged_grad vars at the same time. For some "
                 "strategy, the dtype of fused_grad_vars and the dtype of "
                 "fused_grad_merged_vars are not identical, which will cause "
                 "the shape of these two coalesced vars are different. To "
                 "make sure the shape of these two vars are identical with "
                 "each other, this attr is added.")
        .SetDefault(-1);
364
    AddComment(R"DOC(
365
CoalesceTensor Operator.
366

367
coalesce_tensor is used to make the address of Output
368 369 370 371 372 373 374 375
continuous according to the Input. This Op will alloc a big tensor
according to the tensors of Input, the dtype is the same with those input tensors,
the size is the sum of those input tensors' numel, and the dim of the big
tensor is {sum(numel)}. And the big tensor is stored in FusedOutput.
The tensors of Output are sliced from the tensor of FusedOutput.
Note that, the dtype of Input should be the same, and the dim of Input
and Output should equal.
The tensors of Input and Output could be the same or different. And
376
coalesce_tensor allows copying the value of Input to Output, or
377 378
setting the Output with a constant value, or persist the original Output
value.
379 380 381 382 383 384 385 386

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

387 388
REGISTER_OPERATOR(coalesce_tensor, paddle::operators::CoalesceTensorOp,
                  paddle::operators::CoalesceTensorOpMaker);
389
namespace ops = paddle::operators;
390
namespace plat = paddle::platform;
391
REGISTER_OP_CPU_KERNEL(
392
    coalesce_tensor,
393 394 395
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, double>);
396

397
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
398
REGISTER_OP_CUDA_KERNEL(
399
    coalesce_tensor,
400 401 402 403 404
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext,
                                plat::float16>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, double>);
405
#endif
406

407 408 409 410 411 412 413 414 415 416
#if defined(PADDLE_WITH_ASCEND_CL)
REGISTER_OP_CUDA_KERNEL(
    coalesce_tensor,
    ops::CoalesceTensorOpKernel<paddle::platform::NPUDeviceContext,
                                plat::float16>,
    ops::CoalesceTensorOpKernel<paddle::platform::NPUDeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::NPUDeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::NPUDeviceContext, double>);
#endif

W
WangXi 已提交
417 418 419 420 421 422 423 424 425 426
#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL(
    coalesce_tensor,
    ops::CoalesceTensorOpKernel<paddle::platform::XPUDeviceContext,
                                plat::float16>,
    ops::CoalesceTensorOpKernel<paddle::platform::XPUDeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::XPUDeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::XPUDeviceContext, double>);
#endif

427 428 429 430 431 432 433 434 435 436
#if defined(PADDLE_WITH_ASCEND_CL)
REGISTER_OP_NPU_KERNEL(
    coalesce_tensor,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext,
                                plat::float16>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, double>);
#endif

437 438 439 440 441 442 443 444 445
REGISTER_OP_VERSION(coalesce_tensor)
    .AddCheckpoint(
        R"ROC(
              Upgrade coalesce_tensor: add a new attribute [use_align].)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_align",
            "In order to optionally take memory alignment into account when "
            "coalescing tensors. The default value is true to be compatible "
            "with before.",
446 447 448 449 450 451 452 453 454 455 456
            true))
    .AddCheckpoint(
        R"ROC(
                Upgrade coalesce_tensor: add a new attribute [align_size].)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "align_size",
            "In order to optionally take memory alignment into account when "
            "coalescing tensors. The default value is -1 and use the default "
            "align_size "
            "of each place to be compatible with before.",
            -1));