coalesce_tensor_op.cc 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16 17
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/framework/op_version_registry.h"
19 20 21
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/operators/math/math_function.h"
22
#include "paddle/fluid/platform/device_memory_aligment.h"
23 24 25 26 27

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
28
class CoalesceTensorOpKernel : public framework::OpKernel<T> {
29 30
 public:
  void Compute(const framework::ExecutionContext &context) const override {
H
hong 已提交
31 32
    auto in_var_names = context.InputNames("Input");
    auto out_var_names = context.OutputNames("Output");
33 34 35
    auto &in_vars = context.MultiInputVar("Input");
    auto out_vars = context.MultiOutputVar("Output");

36
    PADDLE_ENFORCE_GT(in_var_names.size(), static_cast<size_t>(0),
37 38 39 40 41 42 43 44
                      platform::errors::InvalidArgument(
                          "The CoalesceTensor operator has no input."));
    PADDLE_ENFORCE_EQ(in_var_names.size(), out_var_names.size(),
                      platform::errors::InvalidArgument(
                          "The number of CoalesceTensor operator's input and "
                          "output is not match, "
                          "input number is %u, output number is %u.",
                          in_var_names.size(), out_var_names.size()));
45

46
    // Input & Output check: only support LoDTensor
47
    for (size_t i = 0; i < in_var_names.size(); ++i) {
48 49
      PADDLE_ENFORCE_NOT_NULL(
          in_vars[i],
50 51 52
          platform::errors::NotFound("The input variable %s of CoalesceTensor "
                                     "operator does not exist.",
                                     in_var_names[i]));
53 54
      PADDLE_ENFORCE_NOT_NULL(
          out_vars[i],
55 56 57 58 59 60 61 62 63 64 65 66
          platform::errors::NotFound("The output variable %s of CoalesceTensor "
                                     "operator does not exist.",
                                     out_var_names[i]));
      PADDLE_ENFORCE_EQ(in_vars[i]->IsType<framework::LoDTensor>(), true,
                        platform::errors::InvalidArgument(
                            "The input variable %s of CoalesceTensor operator "
                            "is not LoDTensor.",
                            in_var_names[i]));
      PADDLE_ENFORCE_EQ(out_vars[i]->IsType<framework::LoDTensor>(), true,
                        platform::errors::InvalidArgument(
                            "The output variable %s of CoalesceTensor operator "
                            "is not LoDTensor.",
67
                            out_var_names[i]));
68 69 70
    }

    auto in_tensors = context.MultiInput<framework::LoDTensor>("Input");
71
    bool use_align = context.Attr<bool>("use_align");
72 73 74

    if (context.Attr<bool>("check_name")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
75 76
        PADDLE_ENFORCE_EQ(
            in_var_names[i], out_var_names[i],
77 78 79 80
            platform::errors::InvalidArgument(
                "The input and output variable of CoalesceTensor operator is "
                "different, %dth input is %s, %dth output is %s.",
                i, in_var_names[i], i, out_var_names[i]));
81 82 83 84 85 86 87 88 89 90 91 92 93
      }
    } else {
      // Init the output as input
      for (size_t i = 0; i < in_tensors.size(); ++i) {
        out_vars[i]->GetMutable<framework::LoDTensor>()->Resize(
            in_tensors[i]->dims());
      }
    }

    auto &dev_ctx = context.template device_context<DeviceContext>();

    // Get numel and dtype
    size_t numel = 0;
94 95 96 97
    auto dtype = static_cast<framework::proto::VarType::Type>(
        context.Attr<int>("dtype"));
    size_t size_of_dtype = framework::SizeOfType(dtype);
    GetMemSizeAndDtype(in_tensors, in_var_names, &numel, size_of_dtype,
98
                       context.GetPlace(), use_align);
99 100 101 102 103 104 105 106

    // Alloc the continuous space
    auto fused_tensor = context.Output<framework::LoDTensor>("FusedOutput");
    fused_tensor->Resize(framework::make_ddim({static_cast<int64_t>(numel)}))
        .mutable_data(context.GetPlace(), dtype);

    // Init the continuous space
    auto out_tensors = context.MultiOutput<framework::LoDTensor>("Output");
C
chengduo 已提交
107
    size_t offset = 0;
108 109
    if (context.Attr<bool>("copy_data")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
C
chengduo 已提交
110 111 112 113
        size_t len = static_cast<size_t>(in_tensors[i]->numel());
        auto sub_tensor = fused_tensor->Slice(
            static_cast<int64_t>(offset), static_cast<int64_t>(offset + len));
        framework::TensorCopy(*in_tensors[i], context.GetPlace(), dev_ctx,
114
                              &sub_tensor);
C
chengduo 已提交
115

116 117 118 119 120
        offset +=
            use_align
                ? platform::Alignment(len * size_of_dtype, context.GetPlace()) /
                      size_of_dtype
                : len;
121 122
      }
    } else if (context.Attr<bool>("set_constant")) {
123
      // TODO(Liu yuang) ADD NPU SET_CONSTANT FUNCTION.
124 125 126
      math::SetConstant<DeviceContext, T> set_constant;
      set_constant(dev_ctx, fused_tensor,
                   static_cast<T>(context.Attr<float>("constant")));
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    } else if (context.Attr<bool>("persist_output")) {
      for (size_t i = 0; i < out_var_names.size(); ++i) {
        size_t len = static_cast<size_t>(out_tensors[i]->numel());
        auto sub_tensor = fused_tensor->Slice(
            static_cast<int64_t>(offset), static_cast<int64_t>(offset + len));
        // some var may not persistable, or persistable var may not init
        if (out_tensors[i]->IsInitialized()) {
          framework::TensorCopy(*out_tensors[i], context.GetPlace(), dev_ctx,
                                &sub_tensor);
        }
        offset +=
            use_align
                ? platform::Alignment(len * size_of_dtype, context.GetPlace()) /
                      size_of_dtype
                : len;
      }
143 144 145 146
    }

    // Make the outputs point to the continuous space.
    offset = 0;
147 148
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
149 150 151 152 153 154 155 156
#if defined(PADDLE_WITH_ASCEND_CL)
    auto stream =
        context.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    platform::NPUMemsetAsync(
        static_cast<void *>(fused_tensor->mutable_data<T>(dev_ctx.GetPlace())),
        0.0, fused_tensor->numel() * sizeof(T), stream);
#endif
157
    for (size_t i = 0; i < out_tensors.size(); ++i) {
C
chengduo 已提交
158
      size_t len = static_cast<size_t>(out_tensors[i]->numel());
159 160
      auto dim = out_tensors[i]->dims();
      out_tensors[i]
C
chengduo 已提交
161 162
          ->ShareDataWith(fused_tensor->Slice(
              static_cast<int64_t>(offset), static_cast<int64_t>(offset + len)))
163
          .Resize(dim);
164 165 166 167
      len = use_align
                ? platform::Alignment(len * size_of_dtype, context.GetPlace()) /
                      size_of_dtype
                : len;
168
      offset += len;
169 170
      ss << "output(" << out_var_names[i] << ")  dim:(" << dim << ")"
         << " address: " << out_tensors[i]->data<void>() << ", ";
171
    }
172 173 174 175 176 177
    PADDLE_ENFORCE_EQ(
        (int64_t)offset, fused_tensor->numel(),
        platform::errors::InvalidArgument(
            "The alloc_space_for_vars's offset: %s is unequal with "
            "fused_tensor's numel: %s.",
            offset, fused_tensor->numel()));
178
    VLOG(10) << ss.str();
179 180
  }

C
chengduo 已提交
181
 private:
182 183 184
  void GetMemSizeAndDtype(
      const std::vector<const framework::LoDTensor *> &lod_tensors,
      const std::vector<std::string> var_names, size_t *numel,
185 186
      const size_t &size_of_dtype, const platform::Place &place,
      const bool use_align = true) const {
187 188 189 190 191 192
    PADDLE_ENFORCE_EQ(
        lod_tensors.size(), var_names.size(),
        platform::errors::InvalidArgument(
            "The number of input tensor and variable does not match, the "
            "number of input tensor is %u, the number of input variable is %u.",
            lod_tensors.size(), var_names.size()));
193
    *numel = 0;
194 195
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
196
    for (size_t i = 0; i < var_names.size(); ++i) {
197
      PADDLE_ENFORCE_EQ(lod_tensors[i]->IsInitialized(), true,
198 199
                        platform::errors::InvalidArgument(
                            "Tensor `%s` is not initialized.", var_names[i]));
200 201

      auto size = lod_tensors[i]->numel();
202 203 204 205
      PADDLE_ENFORCE_GT(
          size, 0,
          platform::errors::InvalidArgument(
              "The number of tensor `%s`'s elements is 0.", var_names[i]));
206
      ss << "input(" << var_names[i] << ") dim:(" << lod_tensors[i]->dims()
207 208
         << ") "
         << " addres:" << lod_tensors[i]->data<void>() << ", ";
209

210 211 212 213 214
      *numel += use_align
                    ? platform::Alignment(
                          static_cast<size_t>(size) * size_of_dtype, place) /
                          size_of_dtype
                    : static_cast<size_t>(size);
215
    }
216
    VLOG(10) << ss.str();
217 218 219
  }
};

220
class CoalesceTensorOp : public framework::OperatorWithKernel {
221 222 223 224
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {}
225 226 227 228 229 230 231 232 233

 protected:
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }
234 235
};

236
class CoalesceTensorOpMaker : public framework::OpProtoAndCheckerMaker {
237 238 239 240
 public:
  void Make() override {
    AddInput("Input",
             "(vector<LoDTensor>) The input tensors of"
241
             " coalesce_tensor operator.")
242 243 244
        .AsDuplicable();
    AddOutput("Output",
              "(vector<LoDTensor>) The output "
245
              "tensors of coalesce_tensor operator. And the address "
246 247 248 249 250
              "of output tensors are continuous, they are sliced from the "
              "tensor of FusedOutput.")
        .AsDuplicable();
    AddOutput("FusedOutput",
              "(LoDTensor) The output tensor "
251
              "of coalesce_tensor operator. And the tensors of"
252
              " Output is sliced from the tensor of FusedOutput.");
253
    AddAttr<int>("dtype", "The output data type.");
254 255 256 257 258
    AddAttr<bool>("copy_data", "Whether to copy the Input value to Output.")
        .SetDefault(false);
    AddAttr<bool>("set_constant",
                  "Whether to set the Output with a constant value.")
        .SetDefault(false);
259 260 261
    AddAttr<bool>("persist_output",
                  "Whether to persist the original Output value.")
        .SetDefault(false);
262 263 264 265 266 267 268 269
    AddAttr<float>("constant",
                   "If set_constant is true, the constant value will be used "
                   "to set the Output.")
        .SetDefault(0.0);
    AddAttr<bool>("check_name",
                  "Whether to check the name of Input and Output to ensure "
                  "they are the same separately.")
        .SetDefault(false);
270 271 272 273
    AddAttr<bool>("use_align",
                  "Whether to consider memory chunk and take alignment into "
                  "account for inputs and outputs.")
        .SetDefault(true);
274
    AddComment(R"DOC(
275
CoalesceTensor Operator.
276

277
coalesce_tensor is used to make the address of Output
278 279 280 281 282 283 284 285
continuous according to the Input. This Op will alloc a big tensor
according to the tensors of Input, the dtype is the same with those input tensors,
the size is the sum of those input tensors' numel, and the dim of the big
tensor is {sum(numel)}. And the big tensor is stored in FusedOutput.
The tensors of Output are sliced from the tensor of FusedOutput.
Note that, the dtype of Input should be the same, and the dim of Input
and Output should equal.
The tensors of Input and Output could be the same or different. And
286
coalesce_tensor allows copying the value of Input to Output, or
287 288
setting the Output with a constant value, or persist the original Output
value.
289 290 291 292 293 294 295 296

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

297 298
REGISTER_OPERATOR(coalesce_tensor, paddle::operators::CoalesceTensorOp,
                  paddle::operators::CoalesceTensorOpMaker);
299
namespace ops = paddle::operators;
300
namespace plat = paddle::platform;
301
REGISTER_OP_CPU_KERNEL(
302
    coalesce_tensor,
303 304 305
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, double>);
306

307
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
308
REGISTER_OP_CUDA_KERNEL(
309
    coalesce_tensor,
310 311 312 313 314
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext,
                                plat::float16>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, double>);
315
#endif
316

W
WangXi 已提交
317 318 319 320 321 322 323 324 325 326
#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL(
    coalesce_tensor,
    ops::CoalesceTensorOpKernel<paddle::platform::XPUDeviceContext,
                                plat::float16>,
    ops::CoalesceTensorOpKernel<paddle::platform::XPUDeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::XPUDeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::XPUDeviceContext, double>);
#endif

327 328 329 330 331 332 333 334 335 336
#if defined(PADDLE_WITH_ASCEND_CL)
REGISTER_OP_NPU_KERNEL(
    coalesce_tensor,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext,
                                plat::float16>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, double>);
#endif

337 338 339 340 341 342 343 344 345 346
REGISTER_OP_VERSION(coalesce_tensor)
    .AddCheckpoint(
        R"ROC(
              Upgrade coalesce_tensor: add a new attribute [use_align].)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_align",
            "In order to optionally take memory alignment into account when "
            "coalescing tensors. The default value is true to be compatible "
            "with before.",
            true));