coalesce_tensor_op.cc 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16 17 18 19 20
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/operators/math/math_function.h"
21
#include "paddle/fluid/platform/device_memory_aligment.h"
22 23 24 25 26

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
27
class CoalesceTensorOp : public framework::OpKernel<T> {
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto &in_var_names = context.Inputs("Input");
    auto &out_var_names = context.Outputs("Output");
    auto &in_vars = context.MultiInputVar("Input");
    auto out_vars = context.MultiOutputVar("Output");

    PADDLE_ENFORCE_GT(in_var_names.size(), static_cast<size_t>(0));
    PADDLE_ENFORCE_EQ(in_var_names.size(), out_var_names.size());

    for (size_t i = 0; i < in_var_names.size(); ++i) {
      // Only support LoDTensor
      PADDLE_ENFORCE_NOT_NULL(in_vars[i], "%s should not be nullptr,",
                              in_var_names[i]);
      PADDLE_ENFORCE_NOT_NULL(out_vars[i], "%s should not be nullptr,",
                              out_var_names[i]);
      PADDLE_ENFORCE(in_vars[i]->IsType<framework::LoDTensor>());
      PADDLE_ENFORCE(out_vars[i]->IsType<framework::LoDTensor>());
    }

    auto in_tensors = context.MultiInput<framework::LoDTensor>("Input");

    if (context.Attr<bool>("check_name")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
        PADDLE_ENFORCE_EQ(in_var_names[i], out_var_names[i]);
      }
    } else {
      // Init the output as input
      for (size_t i = 0; i < in_tensors.size(); ++i) {
        out_vars[i]->GetMutable<framework::LoDTensor>()->Resize(
            in_tensors[i]->dims());
      }
    }

    auto &dev_ctx = context.template device_context<DeviceContext>();

    // Get numel and dtype
    size_t numel = 0;
66 67 68 69
    auto dtype = static_cast<framework::proto::VarType::Type>(
        context.Attr<int>("dtype"));
    size_t size_of_dtype = framework::SizeOfType(dtype);
    GetMemSizeAndDtype(in_tensors, in_var_names, &numel, size_of_dtype,
C
chengduo 已提交
70
                       context.GetPlace());
71 72 73 74 75 76 77 78

    // Alloc the continuous space
    auto fused_tensor = context.Output<framework::LoDTensor>("FusedOutput");
    fused_tensor->Resize(framework::make_ddim({static_cast<int64_t>(numel)}))
        .mutable_data(context.GetPlace(), dtype);

    // Init the continuous space
    auto out_tensors = context.MultiOutput<framework::LoDTensor>("Output");
C
chengduo 已提交
79
    size_t offset = 0;
80 81
    if (context.Attr<bool>("copy_data")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
C
chengduo 已提交
82 83 84 85
        size_t len = static_cast<size_t>(in_tensors[i]->numel());
        auto sub_tensor = fused_tensor->Slice(
            static_cast<int64_t>(offset), static_cast<int64_t>(offset + len));
        framework::TensorCopy(*in_tensors[i], context.GetPlace(), dev_ctx,
86
                              &sub_tensor);
C
chengduo 已提交
87

88 89
        offset += platform::Alignment(len * size_of_dtype, context.GetPlace()) /
                  size_of_dtype;
90 91 92 93 94 95 96 97 98
      }
    } else if (context.Attr<bool>("set_constant")) {
      math::SetConstant<DeviceContext, T> set_constant;
      set_constant(dev_ctx, fused_tensor,
                   static_cast<T>(context.Attr<float>("constant")));
    }

    // Make the outputs point to the continuous space.
    offset = 0;
99 100
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
101
    for (size_t i = 0; i < out_tensors.size(); ++i) {
C
chengduo 已提交
102
      size_t len = static_cast<size_t>(out_tensors[i]->numel());
103 104
      auto dim = out_tensors[i]->dims();
      out_tensors[i]
C
chengduo 已提交
105 106
          ->ShareDataWith(fused_tensor->Slice(
              static_cast<int64_t>(offset), static_cast<int64_t>(offset + len)))
107
          .Resize(dim);
108 109
      len = platform::Alignment(len * size_of_dtype, context.GetPlace()) /
            size_of_dtype;
110
      offset += len;
111 112
      ss << "output(" << out_var_names[i] << ")  dim:(" << dim << ")"
         << " address: " << out_tensors[i]->data<void>() << ", ";
113
    }
114
    VLOG(10) << ss.str();
115 116
  }

C
chengduo 已提交
117
 private:
118 119 120
  void GetMemSizeAndDtype(
      const std::vector<const framework::LoDTensor *> &lod_tensors,
      const std::vector<std::string> var_names, size_t *numel,
121
      const size_t &size_of_dtype, const platform::Place &place) const {
122 123
    PADDLE_ENFORCE_EQ(lod_tensors.size(), var_names.size());
    *numel = 0;
124 125
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
126 127 128 129 130 131
    for (size_t i = 0; i < var_names.size(); ++i) {
      PADDLE_ENFORCE(lod_tensors[i]->IsInitialized(), "%s is not initialized.",
                     var_names[i]);

      auto size = lod_tensors[i]->numel();
      PADDLE_ENFORCE_GT(size, 0);
132 133
      ss << "input(" << var_names[i] << ") dim:(" << lod_tensors[i]->dims()
         << "), ";
134 135
      *numel += platform::Alignment(static_cast<size_t>(size) * size_of_dtype,
                                    place) /
C
chengduo 已提交
136
                size_of_dtype;
137
    }
138 139

    VLOG(10) << ss.str();
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
  }
};

class AllocContinuousSpaceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {}
};

class AllocContinuousSpaceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input",
             "(vector<LoDTensor>) The input tensors of"
155
             " coalesce_tensor operator.")
156 157 158
        .AsDuplicable();
    AddOutput("Output",
              "(vector<LoDTensor>) The output "
159
              "tensors of coalesce_tensor operator. And the address "
160 161 162 163 164
              "of output tensors are continuous, they are sliced from the "
              "tensor of FusedOutput.")
        .AsDuplicable();
    AddOutput("FusedOutput",
              "(LoDTensor) The output tensor "
165
              "of coalesce_tensor operator. And the tensors of"
166
              " Output is sliced from the tensor of FusedOutput.");
167
    AddAttr<int>("dtype", "The output data type.");
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    AddAttr<bool>("copy_data", "Whether to copy the Input value to Output.")
        .SetDefault(false);
    AddAttr<bool>("set_constant",
                  "Whether to set the Output with a constant value.")
        .SetDefault(false);
    AddAttr<float>("constant",
                   "If set_constant is true, the constant value will be used "
                   "to set the Output.")
        .SetDefault(0.0);
    AddAttr<bool>("check_name",
                  "Whether to check the name of Input and Output to ensure "
                  "they are the same separately.")
        .SetDefault(false);
    AddComment(R"DOC(
AllocContinuousSpace Operator.

184
coalesce_tensor is used to make the address of Output
185 186 187 188 189 190 191 192
continuous according to the Input. This Op will alloc a big tensor
according to the tensors of Input, the dtype is the same with those input tensors,
the size is the sum of those input tensors' numel, and the dim of the big
tensor is {sum(numel)}. And the big tensor is stored in FusedOutput.
The tensors of Output are sliced from the tensor of FusedOutput.
Note that, the dtype of Input should be the same, and the dim of Input
and Output should equal.
The tensors of Input and Output could be the same or different. And
193
coalesce_tensor allows copying the value of Input to Output, or
194 195 196 197 198 199 200 201 202
setting the Output with a constant value.

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

203
REGISTER_OPERATOR(coalesce_tensor, paddle::operators::AllocContinuousSpaceOp,
204 205
                  paddle::operators::AllocContinuousSpaceOpMaker);
namespace ops = paddle::operators;
206
namespace plat = paddle::platform;
207
REGISTER_OP_CPU_KERNEL(
208 209 210 211 212
    coalesce_tensor,
    ops::CoalesceTensorOp<paddle::platform::CPUDeviceContext, plat::float16>,
    ops::CoalesceTensorOp<paddle::platform::CPUDeviceContext, int>,
    ops::CoalesceTensorOp<paddle::platform::CPUDeviceContext, float>,
    ops::CoalesceTensorOp<paddle::platform::CPUDeviceContext, double>);
213 214 215

#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL(
216 217 218 219 220
    coalesce_tensor,
    ops::CoalesceTensorOp<paddle::platform::CUDADeviceContext, plat::float16>,
    ops::CoalesceTensorOp<paddle::platform::CUDADeviceContext, int>,
    ops::CoalesceTensorOp<paddle::platform::CUDADeviceContext, float>,
    ops::CoalesceTensorOp<paddle::platform::CUDADeviceContext, double>);
221
#endif