coalesce_tensor_op.cc 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16 17
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/framework/op_version_registry.h"
19 20 21
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/operators/math/math_function.h"
22
#include "paddle/fluid/platform/device_memory_aligment.h"
23 24 25 26 27

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
28
class CoalesceTensorOpKernel : public framework::OpKernel<T> {
29 30
 public:
  void Compute(const framework::ExecutionContext &context) const override {
H
hong 已提交
31 32
    auto in_var_names = context.InputNames("Input");
    auto out_var_names = context.OutputNames("Output");
33 34 35
    auto &in_vars = context.MultiInputVar("Input");
    auto out_vars = context.MultiOutputVar("Output");

36
    PADDLE_ENFORCE_GT(in_var_names.size(), static_cast<size_t>(0),
37 38 39 40 41 42 43 44
                      platform::errors::InvalidArgument(
                          "The CoalesceTensor operator has no input."));
    PADDLE_ENFORCE_EQ(in_var_names.size(), out_var_names.size(),
                      platform::errors::InvalidArgument(
                          "The number of CoalesceTensor operator's input and "
                          "output is not match, "
                          "input number is %u, output number is %u.",
                          in_var_names.size(), out_var_names.size()));
45

46
    // Input & Output check: only support LoDTensor
47
    for (size_t i = 0; i < in_var_names.size(); ++i) {
48 49
      PADDLE_ENFORCE_NOT_NULL(
          in_vars[i],
50 51 52
          platform::errors::NotFound("The input variable %s of CoalesceTensor "
                                     "operator does not exist.",
                                     in_var_names[i]));
53 54
      PADDLE_ENFORCE_NOT_NULL(
          out_vars[i],
55 56 57 58 59 60 61 62 63 64 65 66
          platform::errors::NotFound("The output variable %s of CoalesceTensor "
                                     "operator does not exist.",
                                     out_var_names[i]));
      PADDLE_ENFORCE_EQ(in_vars[i]->IsType<framework::LoDTensor>(), true,
                        platform::errors::InvalidArgument(
                            "The input variable %s of CoalesceTensor operator "
                            "is not LoDTensor.",
                            in_var_names[i]));
      PADDLE_ENFORCE_EQ(out_vars[i]->IsType<framework::LoDTensor>(), true,
                        platform::errors::InvalidArgument(
                            "The output variable %s of CoalesceTensor operator "
                            "is not LoDTensor.",
67
                            out_var_names[i]));
68 69 70
    }

    auto in_tensors = context.MultiInput<framework::LoDTensor>("Input");
71
    bool use_align = context.Attr<bool>("use_align");
72 73 74

    if (context.Attr<bool>("check_name")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
75 76
        PADDLE_ENFORCE_EQ(
            in_var_names[i], out_var_names[i],
77 78 79 80
            platform::errors::InvalidArgument(
                "The input and output variable of CoalesceTensor operator is "
                "different, %dth input is %s, %dth output is %s.",
                i, in_var_names[i], i, out_var_names[i]));
81 82 83 84 85 86 87 88 89 90 91 92 93
      }
    } else {
      // Init the output as input
      for (size_t i = 0; i < in_tensors.size(); ++i) {
        out_vars[i]->GetMutable<framework::LoDTensor>()->Resize(
            in_tensors[i]->dims());
      }
    }

    auto &dev_ctx = context.template device_context<DeviceContext>();

    // Get numel and dtype
    size_t numel = 0;
94 95 96 97
    auto dtype = static_cast<framework::proto::VarType::Type>(
        context.Attr<int>("dtype"));
    size_t size_of_dtype = framework::SizeOfType(dtype);
    GetMemSizeAndDtype(in_tensors, in_var_names, &numel, size_of_dtype,
98
                       context.GetPlace(), use_align);
99 100 101 102 103 104 105 106

    // Alloc the continuous space
    auto fused_tensor = context.Output<framework::LoDTensor>("FusedOutput");
    fused_tensor->Resize(framework::make_ddim({static_cast<int64_t>(numel)}))
        .mutable_data(context.GetPlace(), dtype);

    // Init the continuous space
    auto out_tensors = context.MultiOutput<framework::LoDTensor>("Output");
C
chengduo 已提交
107
    size_t offset = 0;
108 109
    if (context.Attr<bool>("copy_data")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
C
chengduo 已提交
110 111 112 113
        size_t len = static_cast<size_t>(in_tensors[i]->numel());
        auto sub_tensor = fused_tensor->Slice(
            static_cast<int64_t>(offset), static_cast<int64_t>(offset + len));
        framework::TensorCopy(*in_tensors[i], context.GetPlace(), dev_ctx,
114
                              &sub_tensor);
C
chengduo 已提交
115

116 117 118 119 120
        offset +=
            use_align
                ? platform::Alignment(len * size_of_dtype, context.GetPlace()) /
                      size_of_dtype
                : len;
121 122 123 124 125
      }
    } else if (context.Attr<bool>("set_constant")) {
      math::SetConstant<DeviceContext, T> set_constant;
      set_constant(dev_ctx, fused_tensor,
                   static_cast<T>(context.Attr<float>("constant")));
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    } else if (context.Attr<bool>("persist_output")) {
      for (size_t i = 0; i < out_var_names.size(); ++i) {
        size_t len = static_cast<size_t>(out_tensors[i]->numel());
        auto sub_tensor = fused_tensor->Slice(
            static_cast<int64_t>(offset), static_cast<int64_t>(offset + len));
        // some var may not persistable, or persistable var may not init
        if (out_tensors[i]->IsInitialized()) {
          framework::TensorCopy(*out_tensors[i], context.GetPlace(), dev_ctx,
                                &sub_tensor);
        }
        offset +=
            use_align
                ? platform::Alignment(len * size_of_dtype, context.GetPlace()) /
                      size_of_dtype
                : len;
      }
142 143 144 145
    }

    // Make the outputs point to the continuous space.
    offset = 0;
146 147
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
148
    for (size_t i = 0; i < out_tensors.size(); ++i) {
C
chengduo 已提交
149
      size_t len = static_cast<size_t>(out_tensors[i]->numel());
150 151
      auto dim = out_tensors[i]->dims();
      out_tensors[i]
C
chengduo 已提交
152 153
          ->ShareDataWith(fused_tensor->Slice(
              static_cast<int64_t>(offset), static_cast<int64_t>(offset + len)))
154
          .Resize(dim);
155 156 157 158
      len = use_align
                ? platform::Alignment(len * size_of_dtype, context.GetPlace()) /
                      size_of_dtype
                : len;
159
      offset += len;
160 161
      ss << "output(" << out_var_names[i] << ")  dim:(" << dim << ")"
         << " address: " << out_tensors[i]->data<void>() << ", ";
162
    }
163
    VLOG(10) << ss.str();
164 165
  }

C
chengduo 已提交
166
 private:
167 168 169
  void GetMemSizeAndDtype(
      const std::vector<const framework::LoDTensor *> &lod_tensors,
      const std::vector<std::string> var_names, size_t *numel,
170 171
      const size_t &size_of_dtype, const platform::Place &place,
      const bool use_align = true) const {
172 173 174 175 176 177
    PADDLE_ENFORCE_EQ(
        lod_tensors.size(), var_names.size(),
        platform::errors::InvalidArgument(
            "The number of input tensor and variable does not match, the "
            "number of input tensor is %u, the number of input variable is %u.",
            lod_tensors.size(), var_names.size()));
178
    *numel = 0;
179 180
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
181
    for (size_t i = 0; i < var_names.size(); ++i) {
182
      PADDLE_ENFORCE_EQ(lod_tensors[i]->IsInitialized(), true,
183 184
                        platform::errors::InvalidArgument(
                            "Tensor `%s` is not initialized.", var_names[i]));
185 186

      auto size = lod_tensors[i]->numel();
187 188 189 190
      PADDLE_ENFORCE_GT(
          size, 0,
          platform::errors::InvalidArgument(
              "The number of tensor `%s`'s elements is 0.", var_names[i]));
191
      ss << "input(" << var_names[i] << ") dim:(" << lod_tensors[i]->dims()
192 193
         << ") "
         << " addres:" << lod_tensors[i]->data<void>() << ", ";
194 195 196 197 198
      *numel += use_align
                    ? platform::Alignment(
                          static_cast<size_t>(size) * size_of_dtype, place) /
                          size_of_dtype
                    : static_cast<size_t>(size);
199
    }
200 201

    VLOG(10) << ss.str();
202 203 204
  }
};

205
class CoalesceTensorOp : public framework::OperatorWithKernel {
206 207 208 209
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {}
210 211 212 213 214 215 216 217 218

 protected:
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }
219 220
};

221
class CoalesceTensorOpMaker : public framework::OpProtoAndCheckerMaker {
222 223 224 225
 public:
  void Make() override {
    AddInput("Input",
             "(vector<LoDTensor>) The input tensors of"
226
             " coalesce_tensor operator.")
227 228 229
        .AsDuplicable();
    AddOutput("Output",
              "(vector<LoDTensor>) The output "
230
              "tensors of coalesce_tensor operator. And the address "
231 232 233 234 235
              "of output tensors are continuous, they are sliced from the "
              "tensor of FusedOutput.")
        .AsDuplicable();
    AddOutput("FusedOutput",
              "(LoDTensor) The output tensor "
236
              "of coalesce_tensor operator. And the tensors of"
237
              " Output is sliced from the tensor of FusedOutput.");
238
    AddAttr<int>("dtype", "The output data type.");
239 240 241 242 243
    AddAttr<bool>("copy_data", "Whether to copy the Input value to Output.")
        .SetDefault(false);
    AddAttr<bool>("set_constant",
                  "Whether to set the Output with a constant value.")
        .SetDefault(false);
244 245 246
    AddAttr<bool>("persist_output",
                  "Whether to persist the original Output value.")
        .SetDefault(false);
247 248 249 250 251 252 253 254
    AddAttr<float>("constant",
                   "If set_constant is true, the constant value will be used "
                   "to set the Output.")
        .SetDefault(0.0);
    AddAttr<bool>("check_name",
                  "Whether to check the name of Input and Output to ensure "
                  "they are the same separately.")
        .SetDefault(false);
255 256 257 258
    AddAttr<bool>("use_align",
                  "Whether to consider memory chunk and take alignment into "
                  "account for inputs and outputs.")
        .SetDefault(true);
259
    AddComment(R"DOC(
260
CoalesceTensor Operator.
261

262
coalesce_tensor is used to make the address of Output
263 264 265 266 267 268 269 270
continuous according to the Input. This Op will alloc a big tensor
according to the tensors of Input, the dtype is the same with those input tensors,
the size is the sum of those input tensors' numel, and the dim of the big
tensor is {sum(numel)}. And the big tensor is stored in FusedOutput.
The tensors of Output are sliced from the tensor of FusedOutput.
Note that, the dtype of Input should be the same, and the dim of Input
and Output should equal.
The tensors of Input and Output could be the same or different. And
271
coalesce_tensor allows copying the value of Input to Output, or
272 273
setting the Output with a constant value, or persist the original Output
value.
274 275 276 277 278 279 280 281

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

282 283
REGISTER_OPERATOR(coalesce_tensor, paddle::operators::CoalesceTensorOp,
                  paddle::operators::CoalesceTensorOpMaker);
284
namespace ops = paddle::operators;
285
namespace plat = paddle::platform;
286
REGISTER_OP_CPU_KERNEL(
287
    coalesce_tensor,
288 289 290
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, double>);
291 292 293

#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL(
294
    coalesce_tensor,
295 296 297 298 299
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext,
                                plat::float16>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, double>);
300
#endif
301

W
WangXi 已提交
302 303 304 305 306 307 308 309 310 311
#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL(
    coalesce_tensor,
    ops::CoalesceTensorOpKernel<paddle::platform::XPUDeviceContext,
                                plat::float16>,
    ops::CoalesceTensorOpKernel<paddle::platform::XPUDeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::XPUDeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::XPUDeviceContext, double>);
#endif

312 313 314 315 316 317 318 319 320 321
REGISTER_OP_VERSION(coalesce_tensor)
    .AddCheckpoint(
        R"ROC(
              Upgrade coalesce_tensor: add a new attribute [use_align].)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_align",
            "In order to optionally take memory alignment into account when "
            "coalescing tensors. The default value is true to be compatible "
            "with before.",
            true));