coalesce_tensor_op.cc 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16 17
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/framework/op_version_registry.h"
19 20 21
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/operators/math/math_function.h"
22
#include "paddle/fluid/platform/device_memory_aligment.h"
23 24 25 26 27

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
28
class CoalesceTensorOpKernel : public framework::OpKernel<T> {
29 30
 public:
  void Compute(const framework::ExecutionContext &context) const override {
H
hong 已提交
31 32
    auto in_var_names = context.InputNames("Input");
    auto out_var_names = context.OutputNames("Output");
33 34 35
    auto &in_vars = context.MultiInputVar("Input");
    auto out_vars = context.MultiOutputVar("Output");

36
    PADDLE_ENFORCE_GT(in_var_names.size(), static_cast<size_t>(0),
37 38 39 40 41 42 43 44
                      platform::errors::InvalidArgument(
                          "The CoalesceTensor operator has no input."));
    PADDLE_ENFORCE_EQ(in_var_names.size(), out_var_names.size(),
                      platform::errors::InvalidArgument(
                          "The number of CoalesceTensor operator's input and "
                          "output is not match, "
                          "input number is %u, output number is %u.",
                          in_var_names.size(), out_var_names.size()));
45

46
    // Input & Output check: only support LoDTensor
47
    for (size_t i = 0; i < in_var_names.size(); ++i) {
48 49
      PADDLE_ENFORCE_NOT_NULL(
          in_vars[i],
50 51 52
          platform::errors::NotFound("The input variable %s of CoalesceTensor "
                                     "operator does not exist.",
                                     in_var_names[i]));
53 54
      PADDLE_ENFORCE_NOT_NULL(
          out_vars[i],
55 56 57 58 59 60 61 62 63 64 65 66 67
          platform::errors::NotFound("The output variable %s of CoalesceTensor "
                                     "operator does not exist.",
                                     out_var_names[i]));
      PADDLE_ENFORCE_EQ(in_vars[i]->IsType<framework::LoDTensor>(), true,
                        platform::errors::InvalidArgument(
                            "The input variable %s of CoalesceTensor operator "
                            "is not LoDTensor.",
                            in_var_names[i]));
      PADDLE_ENFORCE_EQ(out_vars[i]->IsType<framework::LoDTensor>(), true,
                        platform::errors::InvalidArgument(
                            "The output variable %s of CoalesceTensor operator "
                            "is not LoDTensor.",
                            in_var_names[i]));
68 69 70
    }

    auto in_tensors = context.MultiInput<framework::LoDTensor>("Input");
71
    bool use_align = context.Attr<bool>("use_align");
72 73 74

    if (context.Attr<bool>("check_name")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
75 76
        PADDLE_ENFORCE_EQ(
            in_var_names[i], out_var_names[i],
77 78 79 80
            platform::errors::InvalidArgument(
                "The input and output variable of CoalesceTensor operator is "
                "different, %dth input is %s, %dth output is %s.",
                i, in_var_names[i], i, out_var_names[i]));
81 82 83 84 85 86 87 88 89 90 91 92 93
      }
    } else {
      // Init the output as input
      for (size_t i = 0; i < in_tensors.size(); ++i) {
        out_vars[i]->GetMutable<framework::LoDTensor>()->Resize(
            in_tensors[i]->dims());
      }
    }

    auto &dev_ctx = context.template device_context<DeviceContext>();

    // Get numel and dtype
    size_t numel = 0;
94 95 96 97
    auto dtype = static_cast<framework::proto::VarType::Type>(
        context.Attr<int>("dtype"));
    size_t size_of_dtype = framework::SizeOfType(dtype);
    GetMemSizeAndDtype(in_tensors, in_var_names, &numel, size_of_dtype,
98
                       context.GetPlace(), use_align);
99 100 101 102 103 104 105 106

    // Alloc the continuous space
    auto fused_tensor = context.Output<framework::LoDTensor>("FusedOutput");
    fused_tensor->Resize(framework::make_ddim({static_cast<int64_t>(numel)}))
        .mutable_data(context.GetPlace(), dtype);

    // Init the continuous space
    auto out_tensors = context.MultiOutput<framework::LoDTensor>("Output");
C
chengduo 已提交
107
    size_t offset = 0;
108 109
    if (context.Attr<bool>("copy_data")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
C
chengduo 已提交
110 111 112 113
        size_t len = static_cast<size_t>(in_tensors[i]->numel());
        auto sub_tensor = fused_tensor->Slice(
            static_cast<int64_t>(offset), static_cast<int64_t>(offset + len));
        framework::TensorCopy(*in_tensors[i], context.GetPlace(), dev_ctx,
114
                              &sub_tensor);
C
chengduo 已提交
115

116 117 118 119 120
        offset +=
            use_align
                ? platform::Alignment(len * size_of_dtype, context.GetPlace()) /
                      size_of_dtype
                : len;
121 122 123 124 125 126 127 128 129
      }
    } else if (context.Attr<bool>("set_constant")) {
      math::SetConstant<DeviceContext, T> set_constant;
      set_constant(dev_ctx, fused_tensor,
                   static_cast<T>(context.Attr<float>("constant")));
    }

    // Make the outputs point to the continuous space.
    offset = 0;
130 131
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
132
    for (size_t i = 0; i < out_tensors.size(); ++i) {
C
chengduo 已提交
133
      size_t len = static_cast<size_t>(out_tensors[i]->numel());
134 135
      auto dim = out_tensors[i]->dims();
      out_tensors[i]
C
chengduo 已提交
136 137
          ->ShareDataWith(fused_tensor->Slice(
              static_cast<int64_t>(offset), static_cast<int64_t>(offset + len)))
138
          .Resize(dim);
139 140 141 142
      len = use_align
                ? platform::Alignment(len * size_of_dtype, context.GetPlace()) /
                      size_of_dtype
                : len;
143
      offset += len;
144 145
      ss << "output(" << out_var_names[i] << ")  dim:(" << dim << ")"
         << " address: " << out_tensors[i]->data<void>() << ", ";
146
    }
147
    VLOG(10) << ss.str();
148 149
  }

C
chengduo 已提交
150
 private:
151 152 153
  void GetMemSizeAndDtype(
      const std::vector<const framework::LoDTensor *> &lod_tensors,
      const std::vector<std::string> var_names, size_t *numel,
154 155
      const size_t &size_of_dtype, const platform::Place &place,
      const bool use_align = true) const {
156 157 158 159 160 161
    PADDLE_ENFORCE_EQ(
        lod_tensors.size(), var_names.size(),
        platform::errors::InvalidArgument(
            "The number of input tensor and variable does not match, the "
            "number of input tensor is %u, the number of input variable is %u.",
            lod_tensors.size(), var_names.size()));
162
    *numel = 0;
163 164
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
165
    for (size_t i = 0; i < var_names.size(); ++i) {
166
      PADDLE_ENFORCE_EQ(lod_tensors[i]->IsInitialized(), true,
167 168
                        platform::errors::InvalidArgument(
                            "Tensor `%s` is not initialized.", var_names[i]));
169 170

      auto size = lod_tensors[i]->numel();
171 172 173 174
      PADDLE_ENFORCE_GT(
          size, 0,
          platform::errors::InvalidArgument(
              "The number of tensor `%s`'s elements is 0.", var_names[i]));
175
      ss << "input(" << var_names[i] << ") dim:(" << lod_tensors[i]->dims()
176 177
         << ") "
         << " addres:" << lod_tensors[i]->data<void>() << ", ";
178 179 180 181 182
      *numel += use_align
                    ? platform::Alignment(
                          static_cast<size_t>(size) * size_of_dtype, place) /
                          size_of_dtype
                    : static_cast<size_t>(size);
183
    }
184 185

    VLOG(10) << ss.str();
186 187 188
  }
};

189
class CoalesceTensorOp : public framework::OperatorWithKernel {
190 191 192 193
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {}
194 195 196 197 198 199 200 201 202

 protected:
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }
203 204
};

205
class CoalesceTensorOpMaker : public framework::OpProtoAndCheckerMaker {
206 207 208 209
 public:
  void Make() override {
    AddInput("Input",
             "(vector<LoDTensor>) The input tensors of"
210
             " coalesce_tensor operator.")
211 212 213
        .AsDuplicable();
    AddOutput("Output",
              "(vector<LoDTensor>) The output "
214
              "tensors of coalesce_tensor operator. And the address "
215 216 217 218 219
              "of output tensors are continuous, they are sliced from the "
              "tensor of FusedOutput.")
        .AsDuplicable();
    AddOutput("FusedOutput",
              "(LoDTensor) The output tensor "
220
              "of coalesce_tensor operator. And the tensors of"
221
              " Output is sliced from the tensor of FusedOutput.");
222
    AddAttr<int>("dtype", "The output data type.");
223 224 225 226 227 228 229 230 231 232 233 234 235
    AddAttr<bool>("copy_data", "Whether to copy the Input value to Output.")
        .SetDefault(false);
    AddAttr<bool>("set_constant",
                  "Whether to set the Output with a constant value.")
        .SetDefault(false);
    AddAttr<float>("constant",
                   "If set_constant is true, the constant value will be used "
                   "to set the Output.")
        .SetDefault(0.0);
    AddAttr<bool>("check_name",
                  "Whether to check the name of Input and Output to ensure "
                  "they are the same separately.")
        .SetDefault(false);
236 237 238 239
    AddAttr<bool>("use_align",
                  "Whether to consider memory chunk and take alignment into "
                  "account for inputs and outputs.")
        .SetDefault(true);
240
    AddComment(R"DOC(
241
CoalesceTensor Operator.
242

243
coalesce_tensor is used to make the address of Output
244 245 246 247 248 249 250 251
continuous according to the Input. This Op will alloc a big tensor
according to the tensors of Input, the dtype is the same with those input tensors,
the size is the sum of those input tensors' numel, and the dim of the big
tensor is {sum(numel)}. And the big tensor is stored in FusedOutput.
The tensors of Output are sliced from the tensor of FusedOutput.
Note that, the dtype of Input should be the same, and the dim of Input
and Output should equal.
The tensors of Input and Output could be the same or different. And
252
coalesce_tensor allows copying the value of Input to Output, or
253 254 255 256 257 258 259 260 261
setting the Output with a constant value.

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

262 263
REGISTER_OPERATOR(coalesce_tensor, paddle::operators::CoalesceTensorOp,
                  paddle::operators::CoalesceTensorOpMaker);
264
namespace ops = paddle::operators;
265
namespace plat = paddle::platform;
266
REGISTER_OP_CPU_KERNEL(
267
    coalesce_tensor,
268 269 270
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, double>);
271 272 273

#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL(
274
    coalesce_tensor,
275 276 277 278 279
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext,
                                plat::float16>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, double>);
280
#endif
281 282 283 284 285 286 287 288 289 290 291

REGISTER_OP_VERSION(coalesce_tensor)
    .AddCheckpoint(
        R"ROC(
              Upgrade coalesce_tensor: add a new attribute [use_align].)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_align",
            "In order to optionally take memory alignment into account when "
            "coalescing tensors. The default value is true to be compatible "
            "with before.",
            true));