legacy_backward.yaml 35.4 KB
Newer Older
1
- backward_op : add_double_grad
Z
zyfncg 已提交
2 3 4 5 6 7 8 9 10
  forward : add_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : add_double_grad
  optional : grad_x_grad, grad_y_grad
11
  backward : add_triple_grad
Z
zyfncg 已提交
12
  inplace : (grad_x_grad -> grad_out_grad)
13
  composite : add_double_grad(y, grad_out, grad_x_grad, grad_y_grad, axis, grad_out_grad)
Z
zyfncg 已提交
14

15
- backward_op : add_grad
Z
zyfncg 已提交
16 17 18 19 20 21 22 23 24
  forward : add (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : add_grad
  no_need_buffer : x, y
25
  composite : add_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
26 27 28
  backward : add_double_grad
  inplace : (out_grad -> x_grad)

29 30 31 32 33 34 35 36 37 38
- backward_op : add_triple_grad
  forward : add_double_grad (Tensor y, Tensor grad_out, Tensor grad_grad_x, Tensor grad_grad_y, int axis = -1) -> Tensor(grad_grad_out)
  args : (Tensor grad_grad_x, Tensor grad_grad_y, Tensor grad_grad_out_grad, int axis = -1)
  output : Tensor(grad_grad_x_grad), Tensor(grad_grad_y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [grad_grad_x, grad_grad_y]
  kernel :
    func : add_triple_grad
  inplace : (grad_grad_out_grad -> grad_grad_x_grad)
39
  composite : add_triple_grad (grad_grad_x, grad_grad_y, grad_grad_out_grad, axis, grad_grad_x_grad, grad_grad_y_grad )
40

41
- backward_op : amax_grad
42 43
  forward: amax (Tensor x,  int64_t[] axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis={},  bool keepdim=false, bool reduce_all=false)
44 45 46 47 48 49 50
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : amax_grad

51
- backward_op : amin_grad
52 53
  forward: amin (Tensor x,  int64_t[] axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis={},  bool keepdim=false, bool reduce_all=false)
54 55 56 57 58 59 60
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : amin_grad

61
- backward_op : assign_grad
Z
zyfncg 已提交
62 63 64
  forward : assign (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
65
  composite: assign_grad(out_grad, x_grad)
66
  invoke : assign(out_grad)
Z
zyfncg 已提交
67

68
- backward_op : assign_out__grad
Z
zyfncg 已提交
69 70 71 72 73 74 75 76 77
  forward : assign_out_ (Tensor x, Tensor output) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
  kernel :
    func : assign
  inplace : (out_grad -> x_grad)

78
- backward_op : batch_norm_double_grad
79 80
  forward : batch_norm_grad (Tensor x, Tensor scale, Tensor bias, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor grad_out, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics) -> Tensor(grad_x), Tensor(grad_scale), Tensor(grad_bias)
  args : (Tensor x, Tensor scale, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor grad_out,  Tensor grad_x_grad, Tensor grad_scale_grad, Tensor grad_bias_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics)
Z
zyfncg 已提交
81 82 83 84 85
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, x]
  kernel :
86
    func : batch_norm_double_grad
Z
zyfncg 已提交
87
    data_type : x
88
  optional : out_mean, out_variance, grad_x_grad, grad_scale_grad, grad_bias_grad
Z
zyfncg 已提交
89 90
  inplace : (grad_out -> grad_out_grad)

91
- backward_op : batch_norm_grad
92 93
  forward : batch_norm (Tensor x, Tensor mean, Tensor variance, Tensor scale, Tensor bias, bool is_test, float momentum, float epsilon, str data_layout, bool use_global_stats, bool trainable_statistics) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
  args : (Tensor x, Tensor scale, Tensor bias, Tensor mean_out, Tensor variance_out, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics)
Z
zyfncg 已提交
94 95 96 97 98 99 100 101
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : batch_norm_grad
    data_type : out_grad
  optional : mean_out, variance_out, reserve_space
102
  composite: batch_norm_grad(x, scale, bias, mean_out, variance_out, saved_mean, saved_variance, reserve_space, out_grad, momentum, epsilon, data_layout, is_test, use_global_stats, trainable_statistics)
Z
zyfncg 已提交
103 104
  backward : batch_norm_double_grad

105
- backward_op : cast_grad
106
  forward : cast (Tensor x, DataType dtype) -> Tensor(out)
Z
zyfncg 已提交
107 108
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
109
  invoke : cast (out_grad, x.dtype())
110
  composite: cast_grad(x, out_grad, x_grad)
Z
zyfncg 已提交
111 112
  no_need_buffer : x

113 114 115 116 117 118 119 120 121
- backward_op : channel_shuffle_grad
  forward : channel_shuffle (Tensor x, int groups, str data_format="NCHW") -> Tensor(out)
  args : (Tensor out_grad, int groups, str data_format="NCHW")
  output : Tensor(x_grad)
  infer_meta :
    func : ChannelShuffleGradInferMeta
  kernel :
    func : channel_shuffle_grad

122
- backward_op : concat_double_grad
Z
zyfncg 已提交
123 124 125
  forward : concat_grad (Tensor[] x, Tensor grad_out, Scalar axis) -> Tensor[](grad_x)
  args : (Tensor[] grad_x_grad, Scalar axis = 0)
  output : Tensor(grad_out_grad)
126
  invoke : concat(grad_x_grad, axis)
Z
zyfncg 已提交
127

128
- backward_op : concat_grad
Z
zyfncg 已提交
129 130 131 132 133 134 135 136
  forward : concat (Tensor[] x, Scalar axis) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad, Scalar axis = 0)
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : UnchangedMultiInferMeta
    param : [x]
  kernel :
    func : concat_grad
W
wangzhen38 已提交
137
  composite : concat_grad(x, out_grad, axis, x_grad)
Z
zyfncg 已提交
138 139 140
  no_need_buffer : x
  backward : concat_double_grad

141
- backward_op : conv2d_transpose_double_grad
142 143
  forward : conv2d_transpose_grad(Tensor x, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(grad_x), Tensor(grad_filter)
  args : (Tensor x, Tensor filter, Tensor grad_out, Tensor grad_x_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
144 145 146 147
  output : Tensor(x_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : Conv2dTransposeDoubleGradInferMeta
  kernel :
148
    func : conv2d_transpose_double_grad
149
    data_type : x
Z
zyfncg 已提交
150

151
- backward_op : conv2d_transpose_grad
152
  forward : conv2d_transpose(Tensor x, Tensor filter, int[] strides={1, 1}, int[] paddings={0, 0}, int[] output_padding={}, IntArray output_size={}, str padding_algorithm="EXPLICIT", int groups=1, int[] dilations={1, 1}, str data_format="NCHW") -> Tensor(out)
153
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
154 155
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
156
    func : Conv2dTransposeGradInferMeta
Z
zyfncg 已提交
157 158
  kernel :
    func : conv2d_transpose_grad
159
    data_type : x
Z
zyfncg 已提交
160 161
  backward : conv2d_transpose_double_grad

162
- backward_op : cumsum_grad
W
WangZhen 已提交
163
  forward : cumsum(Tensor x, Scalar axis, bool flatten, bool exclusive, bool reverse) -> Tensor(out)
164
  args : (Tensor x, Tensor out_grad, Scalar axis, bool flatten, bool exclusive, bool reverse)
Z
zyfncg 已提交
165
  output : Tensor(x_grad)
166 167 168 169 170 171
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : cumsum_grad
    data_type: x
G
GGBond8488 已提交
172
  composite: cumsum_grad(x, out_grad, axis, flatten, exclusive, reverse, x_grad)
Z
zyfncg 已提交
173

174
- backward_op : deformable_conv_grad
Z
zyfncg 已提交
175 176 177 178 179 180 181 182 183 184
  forward : deformable_conv(Tensor x, Tensor offset, Tensor filter, Tensor mask, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step) -> Tensor(out)
  args : (Tensor x, Tensor offset, Tensor filter, Tensor mask, Tensor out_grad, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step)
  output : Tensor(x_grad), Tensor(offset_grad), Tensor(filter_grad), Tensor(mask_grad)
  infer_meta :
    func : DeformableConvGradInferMeta
  kernel :
    func : deformable_conv_grad
    data_type : x
  optional : mask

185
- backward_op : depthwise_conv2d_transpose_grad
186
  forward : depthwise_conv2d_transpose(Tensor x, Tensor filter, int[] strides={1, 1}, int[] paddings={0, 0}, int[] output_padding={}, IntArray output_size={}, str padding_algorithm="EXPLICIT", int groups=1, int[] dilations={1, 1}, str data_format="NCHW") -> Tensor(out)
187
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, IntArray output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
Z
zyfncg 已提交
188 189
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
190
    func : Conv2dTransposeGradInferMeta
Z
zyfncg 已提交
191 192
  kernel :
    func : depthwise_conv2d_transpose_grad
193
    data_type : x
Z
zyfncg 已提交
194

195
- backward_op : divide_double_grad
Z
zyfncg 已提交
196 197 198 199 200 201 202 203 204 205 206 207
  forward : divide_grad (Tensor x, Tensor y, Tensor out, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor out, Tensor grad_x, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(y_grad), Tensor(out_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [y, grad_x, grad_x]
  kernel :
    func : divide_double_grad
    data_type : out
  optional : grad_x_grad, grad_y_grad
  inplace : (grad_x_grad -> grad_out_grad)

208
- backward_op : divide_grad
Z
zyfncg 已提交
209 210 211 212 213 214 215 216
  forward : divide (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : divide_grad
217
  composite : divide_grad(x, y, out, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
218 219
  backward : divide_double_grad

220
- backward_op : dropout_grad
221 222
  forward : dropout (Tensor x, Tensor seed_tensor, Scalar p, bool is_test, str mode, int seed, bool fix_seed) -> Tensor(out), Tensor(mask)
  args : (Tensor mask, Tensor out_grad, Scalar p, bool is_test, str mode)
Z
zyfncg 已提交
223 224 225 226 227 228 229
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : dropout_grad

230
- backward_op : einsum_grad
Z
zyfncg 已提交
231 232
  forward : einsum (Tensor[] x, str equation) -> Tensor(out), Tensor[](inner_cache), Tensor[](x_shape)
  args : (Tensor[] x_shape, Tensor[] inner_cache, Tensor out_grad, str equation)
233
  output : Tensor[](x_grad){x_shape.size()}
Z
zyfncg 已提交
234 235 236 237 238 239
  infer_meta :
    func : UnchangedMultiInferMeta
    param : [x_shape]
  kernel :
    func : einsum_grad

240
- backward_op : elementwise_pow_grad
Z
zyfncg 已提交
241
  forward : elementwise_pow(Tensor x, Tensor y) -> Tensor(out)
242
  args : (Tensor x, Tensor y, Tensor out_grad)
Z
zyfncg 已提交
243 244 245 246
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
247
  composite : elementwise_pow_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
248 249 250
  kernel :
    func : elementwise_pow_grad

251
- backward_op : embedding_grad
Z
zyfncg 已提交
252 253 254 255
  forward : embedding (Tensor x, Tensor weight, int64_t padding_idx=-1, bool sparse=false) -> Tensor(out)
  args : (Tensor x, Tensor weight, Tensor out_grad, int64_t padding_idx=-1, bool sparse=false)
  output : Tensor(weight_grad)
  invoke : embedding_grad_impl(x, weight, out_grad, padding_idx, sparse, weight_grad)
W
wanghuancoder 已提交
256
  no_need_buffer : weight
Z
zyfncg 已提交
257

258
- backward_op : exponential__grad
259
  forward : exponential_ (Tensor x, float lam) -> Tensor(out)
260 261 262 263
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
264
  invoke : zeros_like(out_grad)
265

266
- backward_op : fmin_grad
267
  forward : fmin(Tensor x, Tensor y) -> Tensor(out)
Z
zyfncg 已提交
268
  args : (Tensor x, Tensor y, Tensor out_grad)
Z
zyfncg 已提交
269 270 271 272 273 274 275
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : fmin_grad

276
- backward_op : frobenius_norm_grad
Z
zyfncg 已提交
277 278 279 280 281 282 283 284 285
  forward : frobenius_norm(Tensor x, int64_t[] axis,  bool keep_dim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keep_dim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : frobenius_norm_grad

286 287 288 289 290 291 292 293 294 295 296
- backward_op : fused_rope_grad
  forward: fused_rope (Tensor q, Tensor k, Tensor v) -> Tensor(out_q), Tensor(out_k), Tensor(out_v)
  args : (Tensor out_q_grad, Tensor out_k_grad,Tensor out_v_grad)
  output : Tensor(q_grad), Tensor(k_grad), Tensor(v_grad)
  optional : out_k_grad, out_v_grad, k_grad, v_grad
  infer_meta :
    func : FusedRopeGradInferMeta
  kernel :
    func : fused_rope_grad
    data_type : out_q_grad

297
- backward_op : hardswish_grad
298
  forward : hardswish (Tensor x) -> Tensor(out)
299
  args : (Tensor x, Tensor out_grad)
Z
zyfncg 已提交
300 301 302 303 304
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
Z
zyfncg 已提交
305
    func : hardswish_grad
Z
zyfncg 已提交
306 307
  inplace : (out_grad -> x_grad)

308 309 310 311 312 313 314 315 316 317
- backward_op : heaviside_grad
  forward : heaviside (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : heaviside_grad

318
- backward_op : hsigmoid_loss_grad
Z
zhangyuqin1998 已提交
319 320
  forward : hsigmoid_loss (Tensor x, Tensor label, Tensor w, Tensor bias, Tensor path, Tensor code, int num_classes, bool is_sparse) -> Tensor(out), Tensor(pre_out), Tensor(w_out)
  args : (Tensor x, Tensor w, Tensor label, Tensor path, Tensor code, Tensor bias, Tensor pre_out, Tensor out_grad, int num_classes, bool is_sparse)
321 322 323 324 325 326
  output : Tensor(x_grad), Tensor(w_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x ,w, bias]
  optional: path, code, bias
  kernel :
327
    func : hsigmoid_loss_grad
328

329
- backward_op : logsumexp_grad
Z
zyfncg 已提交
330 331 332 333 334 335 336 337 338
  forward : logsumexp(Tensor x, int64_t[] axis,  bool keepdim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keepdim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : logsumexp_grad

339
- backward_op : matmul_double_grad
Z
zyfncg 已提交
340 341 342 343 344 345 346 347
  forward : matmul_grad (Tensor x, Tensor y, Tensor grad_out, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, y, grad_out]
  kernel :
    func : matmul_double_grad
348
  composite : matmul_double_grad(x, y, grad_out, grad_x_grad, grad_y_grad, transpose_x=false, transpose_y=false)
Z
zyfncg 已提交
349 350
  optional : grad_x_grad, grad_y_grad

351
- backward_op : matmul_grad
Z
zyfncg 已提交
352 353 354 355 356 357 358 359 360 361
  forward : matmul (Tensor x, Tensor y, bool transpose_x=false, bool transpose_y=false) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : matmul_grad
  backward : matmul_double_grad

362
- backward_op : max_grad
363 364
  forward: max (Tensor x,  IntArray axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray axis={}, bool keepdim=false, bool reduce_all=false)
Z
zyfncg 已提交
365 366 367 368 369 370
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : max_grad
371
  composite : max_grad(x, out, out_grad, axis, keepdim, reduce_all, x_grad)
Z
zyfncg 已提交
372

373
- backward_op : maximum_grad
Z
zyfncg 已提交
374
  forward : maximum(Tensor x, Tensor y) -> Tensor(out)
375
  args : (Tensor x, Tensor y, Tensor out_grad)
Z
zyfncg 已提交
376 377 378 379 380 381
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : maximum_grad
H
heyanru 已提交
382
  composite : maximum_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
383

384
- backward_op : mean_double_grad
385 386
  forward: mean_grad (Tensor x, Tensor grad_out, IntArray axis={},  bool keepdim=false, bool reduce_all = false) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray axis={},  bool keepdim=false)
Z
zyfncg 已提交
387
  output : Tensor(grad_out_grad)
388
  invoke : mean(grad_x_grad, axis, keepdim)
Z
zyfncg 已提交
389

390
- backward_op : mean_grad
391 392
  forward: mean (Tensor x,  IntArray axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray axis={},  bool keepdim=false, bool reduce_all=false)
Z
zyfncg 已提交
393 394 395 396 397 398 399 400 401
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mean_grad
  backward : mean_double_grad
  no_need_buffer : x

402
- backward_op : min_grad
403 404
  forward: min (Tensor x,  IntArray axis={},  bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray axis={}, bool keepdim=false, bool reduce_all=false)
Z
zyfncg 已提交
405 406 407 408 409 410 411
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : min_grad

412
- backward_op : minimum_grad
Z
zyfncg 已提交
413
  forward : minimum(Tensor x, Tensor y) -> Tensor(out)
414
  args : (Tensor x, Tensor y, Tensor out_grad)
Z
zyfncg 已提交
415 416 417 418 419 420
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : minimum_grad
421
  composite : minimum_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
422

423
- backward_op : mish_grad
Z
zyfncg 已提交
424 425 426 427 428 429 430 431 432 433
  forward : mish (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : mish_grad
  inplace : (out_grad -> x_grad)

434
- backward_op : multiply_double_grad
Z
zyfncg 已提交
435 436 437 438 439 440 441 442 443 444
  forward : multiply_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, y, grad_out]
  kernel :
    func : multiply_double_grad
  optional : grad_x_grad, grad_y_grad
  inplace : (grad_x_grad -> grad_out_grad)
X
xiaoguoguo626807 已提交
445
  backward : multiply_triple_grad
446
  composite : multiply_double_grad(x, y, grad_out, grad_x_grad, grad_y_grad, axis, x_grad, y_grad, grad_out_grad)
Z
zyfncg 已提交
447

448
- backward_op : multiply_grad
Z
zyfncg 已提交
449 450 451 452 453 454 455 456
  forward : multiply (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : multiply_grad
457
  composite: multiply_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
458 459
  backward : multiply_double_grad

X
xiaoguoguo626807 已提交
460 461 462 463 464 465 466 467 468 469 470
- backward_op : multiply_triple_grad
  forward : multiply_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, int aixs = -1) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out)
  args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad)
  infer_meta :
    func : GeneralQuinaryGradInferMeta
    param : [x, y, fwd_grad_out, fwd_grad_grad_x, fwd_grad_grad_y]
  kernel :
    func : multiply_triple_grad
  optional : fwd_grad_grad_x, fwd_grad_grad_y, grad_x_grad, grad_y_grad, grad_grad_out_grad

471
- backward_op : norm_grad
Z
zyfncg 已提交
472 473 474 475 476 477 478 479 480
  forward : norm (Tensor x, int axis, float epsilon, bool is_test) -> Tensor(out), Tensor(norm)
  args : (Tensor x, Tensor norm, Tensor out_grad, int axis, float epsilon, bool is_test)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : norm_grad

481
- backward_op : pad_double_grad
482 483
  forward : pad_grad(Tensor x, Tensor grad_out, int[] paddings, Scalar pad_value) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int[] paddings, Scalar pad_value)
Z
zyfncg 已提交
484 485 486 487 488 489
  output : Tensor(grad_out_grad)
  infer_meta :
    func : PadInferMeta
  kernel :
    func : pad

490
- backward_op : pad_grad
491 492
  forward : pad(Tensor x, int[] paddings, Scalar pad_value) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] paddings, Scalar pad_value)
Z
zyfncg 已提交
493 494 495 496 497 498 499 500
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pad_grad
    param: [out_grad, paddings, pad_value]
  no_need_buffer : x
M
mengziheng 已提交
501
  composite : pad_grad(x, out_grad, paddings, pad_value, x_grad)
Z
zyfncg 已提交
502 503
  backward : pad_double_grad

504
- backward_op : pool2d_double_grad
505 506
  forward : pool2d_grad(Tensor x, Tensor out, Tensor grad_out, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_x_grad, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
Z
zyfncg 已提交
507 508
  output : Tensor(grad_out_grad)
  infer_meta :
509
    func : Pool2DInferMeta
510
    param : [grad_x_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
Z
zyfncg 已提交
511 512
  kernel :
    func : pool2d_double_grad
513
    param : [grad_x_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
514
  no_need_buffer : x
Z
zyfncg 已提交
515

516
- backward_op : pool2d_grad
517 518
  forward : pool2d(Tensor x, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
Z
zyfncg 已提交
519 520
  output : Tensor(x_grad)
  infer_meta :
521 522
    func : UnchangedInferMeta
    param: [x]
Z
zyfncg 已提交
523 524
  kernel :
    func : pool2d_grad
525
    param : [x, out, out_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
Z
zyfncg 已提交
526 527
  backward : pool2d_double_grad

528
- backward_op : pool3d_grad
529 530
  forward : pool3d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
Z
zyfncg 已提交
531 532
  output : Tensor(x_grad)
  infer_meta :
533 534
    func : UnchangedInferMeta
    param: [x]
Z
zyfncg 已提交
535 536
  kernel :
    func : pool3d_grad
537
    param : [x, out, out_grad, kernel_size, strides, paddings, ceil_mode, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm]
Z
zyfncg 已提交
538

539 540 541 542 543 544 545 546 547
- backward_op : prod_grad
  forward : prod (Tensor x, IntArray dims, bool keep_dim, bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, IntArray dims,  bool keep_dim, bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : prod_grad
548
  composite: prod_grad(x, out, out_grad, dims, keep_dim, reduce_all, x_grad)
549

550
- backward_op : psroi_pool_grad
Z
zyfncg 已提交
551 552 553 554 555 556 557 558 559 560 561
  forward : psroi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, int output_channels, float spatial_scale) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, int output_channels, float spatial_scale)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : psroi_pool_grad
    data_type : x
  optional : boxes_num

562
- backward_op : relu6_grad
563
  forward : relu6 (Tensor x) -> Tensor(out)
564
  args : (Tensor out, Tensor out_grad)
565 566 567 568 569 570 571 572
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : relu6_grad
  inplace : (out_grad -> x_grad)

573
- backward_op : repeat_interleave_grad
574 575
  forward : repeat_interleave(Tensor x, int repeats, int axis) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int repeats, int axis)
S
seemingwang 已提交
576 577 578 579 580 581 582
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : repeat_interleave_grad

583
- backward_op : repeat_interleave_with_tensor_index_grad
584 585
  forward : repeat_interleave_with_tensor_index(Tensor x, Tensor repeats, int axis) -> Tensor(out)
  args : (Tensor x, Tensor repeats, Tensor out_grad, int axis)
S
seemingwang 已提交
586 587 588 589 590 591 592 593
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : repeat_interleave_with_tensor_index_grad
    data_type : x

594
- backward_op : reshape_double_grad
Z
zyfncg 已提交
595 596 597 598 599 600 601 602 603 604 605
  forward : reshape_grad (Tensor xshape, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor grad_out, Tensor grad_x_grad)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : reshape_double_grad
  no_need_buffer : grad_out
  inplace : (grad_x_grad -> grad_out_grad)

606
- backward_op : reshape_grad
Z
zyfncg 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
  forward : reshape (Tensor x, IntArray shape) -> Tensor(out), Tensor(xshape)
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param : [xshape]
  kernel :
    func : reshape_grad
    param : [out_grad]
    data_type: out_grad
    backend: out_grad
    layout: out_grad
  backward : reshape_double_grad
  inplace : (out_grad -> x_grad)

Y
YuanRisheng 已提交
622 623 624 625 626 627 628 629 630 631 632 633
- backward_op : rnn_grad
  forward : rnn (Tensor x, Tensor[] pre_state, Tensor[] weight_list, Tensor sequence_length, Tensor dropout_state_in, float dropout_prob, bool is_bidirec, int input_size, int hidden_size, int num_layers, str mode, int seed, bool is_test) -> Tensor(out), Tensor(dropout_state_out), Tensor[](state), Tensor(reserve)
  args : (Tensor x, Tensor[] pre_state, Tensor[] weight_list, Tensor sequence_length, Tensor out, Tensor dropout_state_out, Tensor reserve, Tensor out_grad, Tensor[] state_grad, float dropout_prob, bool is_bidirec, int input_size, int hidden_size, int num_layers, str mode, int seed, bool is_test)
  output : Tensor(x_grad), Tensor[](pre_state_grad){pre_state.size()}, Tensor[](weight_list_grad){weight_list.size()}
  infer_meta :
    func : RnnGradInferMeta
    param : [x, pre_state, weight_list]
  kernel :
    func : rnn_grad
    data_type: out_grad
  optional : sequence_length

634
- backward_op : roi_align_grad
Z
zyfncg 已提交
635 636 637 638 639 640 641 642 643 644 645 646
  forward : roi_align (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_align_grad
    data_type : boxes
  no_need_buffer : x
  optional : boxes_num

647
- backward_op : roi_pool_grad
Z
zyfncg 已提交
648 649 650 651 652 653 654 655 656 657 658
  forward : roi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale) -> Tensor(out), Tensor(arg_max)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor arg_max, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_pool_grad
    data_type : x
  optional : boxes_num

W
Weilong Wu 已提交
659 660 661 662 663 664 665 666 667 668 669
- backward_op : rrelu_grad
  forward : rrelu (Tensor x, float lower, float upper, bool is_test) -> Tensor(out), Tensor(noise)
  args : (Tensor x, Tensor noise, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : RReluGradInferMeta
    param : [out_grad, noise]
  kernel :
    func : rrelu_grad
    data_type : x

670
- backward_op : slice_double_grad
671 672 673
  forward : slice_grad (Tensor input, Tensor grad_out, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(grad_input)
  args : (Tensor grad_input_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis)
  output : Tensor(grad_out_grad)
674
  invoke : slice(grad_input_grad, axes, starts, ends, infer_flags, decrease_axis)
675

676
- backward_op : slice_grad
Z
zyfncg 已提交
677 678 679 680 681 682 683 684
  forward : slice (Tensor input, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(out)
  args : (Tensor input, Tensor out_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : slice_grad
685
  composite: slice_grad(input, out_grad, axes, starts, ends, infer_flags, decrease_axis, input_grad)
686
  backward : slice_double_grad
Z
zyfncg 已提交
687 688
  no_need_buffer : input

689
- backward_op : softmax_grad
Z
zyfncg 已提交
690 691 692 693 694 695 696 697
  forward : softmax (Tensor x, int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : softmax_grad
698
  composite : softmax_grad(out, out_grad, axis, x_grad)
Z
zyfncg 已提交
699

700
- backward_op : split_grad
Z
zyfncg 已提交
701 702 703 704
  forward : split (Tensor x, IntArray num_or_sections, Scalar axis) -> Tensor[](out)
  args : (Tensor[] out_grad, Scalar axis = -1)
  output : Tensor(x_grad)
  invoke : concat( out_grad, axis)
705
  composite : split_grad(out_grad, axis, x_grad)
C
Charles-hit 已提交
706

707
- backward_op : split_with_num_grad
C
Charles-hit 已提交
708 709 710 711
  forward : split_with_num (Tensor x, int num, Scalar axis) -> Tensor[](out)
  args : (Tensor[] out_grad, Scalar axis = -1)
  output : Tensor(x_grad)
  invoke : concat( out_grad, axis)
712
  composite : split_grad(out_grad, axis, x_grad)
Z
zyfncg 已提交
713

714
- backward_op : strided_slice_grad
Z
zyfncg 已提交
715 716 717 718 719 720 721 722 723 724
  forward : strided_slice (Tensor x, int[] axes, IntArray starts, IntArray ends, IntArray strides) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] axes, IntArray starts, IntArray ends, IntArray strides)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : strided_slice_grad
  no_need_buffer : x

725
- backward_op : subtract_double_grad
Z
zyfncg 已提交
726 727 728 729 730 731 732 733 734 735 736
  forward : subtract_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : subtract_double_grad
  optional : grad_x_grad, grad_y_grad
  no_need_buffer : y, grad_out
  inplace : (grad_x_grad -> grad_out_grad)
737
  composite : subtract_double_grad(y, grad_out, grad_x_grad, grad_y_grad, axis, grad_out_grad)
Z
zyfncg 已提交
738

739
- backward_op : subtract_grad
Z
zyfncg 已提交
740 741 742 743 744 745 746 747 748
  forward : subtract (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : subtract_grad
  no_need_buffer : x, y
749
  composite : subtract_grad(x, y, out_grad, axis, x_grad, y_grad)
Z
zyfncg 已提交
750 751 752
  backward : subtract_double_grad
  inplace : (out_grad -> x_grad)

753
- backward_op : sum_double_grad
754 755
  forward : sum_grad (Tensor x, Tensor grad_out, IntArray axis, bool keepdim, bool reduce_all=false) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray axis={}, bool keepdim=false)
Z
zyfncg 已提交
756
  output : Tensor(grad_out_grad)
757
  invoke : sum(grad_x_grad, axis, grad_x_grad.dtype(), keepdim)
Z
zyfncg 已提交
758

759
- backward_op : sum_grad
760 761
  forward : sum (Tensor x, IntArray axis={}, DataType dtype=DataType::UNDEFINED, bool keepdim=false) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray axis, bool keepdim, bool reduce_all=false)
Z
zyfncg 已提交
762 763 764 765 766 767
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : sum_grad
768
  composite : sum_grad(x, out_grad, axis, keepdim, reduce_all, x_grad)
Z
zyfncg 已提交
769 770 771
  no_need_buffer : x
  backward : sum_double_grad

772
- backward_op : swish_grad
773
  forward : swish (Tensor x) -> Tensor(out)
774
  args : (Tensor x, Tensor out_grad)
Z
zyfncg 已提交
775 776 777 778 779 780 781 782
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : swish_grad
  inplace : (out_grad -> x_grad)

783
- backward_op : sync_batch_norm_grad
784 785
  forward : sync_batch_norm_ (Tensor x, Tensor mean, Tensor variance, Tensor scale, Tensor bias, bool is_test, float momentum, float epsilon, str data_layout, bool use_global_stats, bool trainable_statistics) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
  args : (Tensor x, Tensor scale, Tensor bias, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics)
786 787 788 789 790 791 792
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : sync_batch_norm_grad
    data_type : out_grad
793
  optional : reserve_space
794

795
- backward_op : tile_double_grad
Z
zyfncg 已提交
796 797 798
  forward : tile_grad (Tensor x, Tensor grad_out, IntArray repeat_times) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray repeat_times)
  output : Tensor(grad_out_grad)
799
  invoke : tile(grad_x_grad, repeat_times)
Z
zyfncg 已提交
800

801
- backward_op : tile_grad
Z
zyfncg 已提交
802 803 804 805 806 807 808 809 810
  forward : tile (Tensor x, IntArray repeat_times) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray repeat_times)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : tile_grad
  no_need_buffer : x
C
ccrrong 已提交
811
  composite : tile_grad(x, outgrad, repeat_times, x_grad)
Z
zyfncg 已提交
812 813
  backward : tile_double_grad

N
niuliling123 已提交
814 815 816 817 818 819 820 821 822
- backward_op : trans_layout_grad
  forward : trans_layout (Tensor x, int[] perm) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] perm)
  output : Tensor(x_grad)
  infer_meta :
    func : TransLayoutGradInferMeta
  kernel :
    func : trans_layout_grad

823
- backward_op : transpose_double_grad
824 825
  forward : transpose_grad (Tensor grad_out, int[] perm) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int[] perm)
Z
zyfncg 已提交
826
  output : Tensor(grad_out_grad)
827
  invoke : transpose(grad_x_grad, perm)
Z
zyfncg 已提交
828

829
- backward_op : transpose_grad
830 831
  forward : transpose (Tensor x, int[] perm) -> Tensor(out)
  args : (Tensor out_grad, int[] perm)
Z
zyfncg 已提交
832 833 834
  output : Tensor(x_grad)
  infer_meta :
    func : TransposeGradInferMeta
835
    param : [out_grad, perm]
Z
zyfncg 已提交
836 837 838
  kernel :
    func : transpose_grad
  backward : transpose_double_grad
839
  composite: transpose_grad(out_grad, perm, x_grad)
Z
zyfncg 已提交
840

841
- backward_op : tril_grad
842 843
  forward : tril(Tensor x,  int diagonal) -> Tensor(out)
  args : (Tensor out_grad,  int diagonal)
Z
zyfncg 已提交
844 845 846 847 848
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
849
    func : tril_grad
Z
zyfncg 已提交
850

851 852 853 854 855 856 857 858 859
- backward_op : triu_grad
  forward : triu(Tensor x,  int diagonal) -> Tensor(out)
  args : (Tensor out_grad,  int diagonal)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : triu_grad
860 861 862 863 864 865 866 867 868 869 870

- backward_op: unpool_grad
  forward: unpool (Tensor x, Tensor indices, int[] ksize, int[] strides, int[] padding,  IntArray output_size, str data_format) -> Tensor(out)
  args: (Tensor x, Tensor indices, Tensor out, Tensor out_grad, int[] ksize, int[] strides, int[] padding, IntArray output_size, str data_format)
  output: Tensor(x_grad)
  infer_meta:
    func: UnchangedInferMeta
    param : [x]
  kernel:
    func: unpool_grad
    data_type: x