op_teller.cc 54.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/op_teller.h"
16
#include <bitset>
17
#include "paddle/fluid/framework/block_desc.h"
18
#include "paddle/fluid/framework/data_layout.h"
19

W
wanghuancoder 已提交
20 21 22 23 24 25
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
}  // namespace paddle

26 27 28 29 30 31
namespace paddle {
namespace inference {
namespace tensorrt {

// Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller {
32 33 34
  SimpleOpTypeSetTeller() {
#if IS_TRT_VERSION_GE(5130)
    teller_set.insert("relu6");
35
    teller_set.insert("hard_sigmoid");
P
Pei Yang 已提交
36
    teller_set.insert("clip");
37 38
    int8_teller_set.insert("relu6");
    int8_teller_set.insert("hard_sigmoid");
P
Pei Yang 已提交
39
    int8_teller_set.insert("clip");
40 41 42 43 44
#endif
#if IS_TRT_VERSION_GE(6000)
    teller_set.insert("fused_embedding_eltwise_layernorm");
    teller_set.insert("multihead_matmul");
    teller_set.insert("skip_layernorm");
45
    teller_set.insert("slice");
C
ceci3 已提交
46
    int8_teller_set.insert("fused_embedding_eltwise_layernorm");
47 48 49
    int8_teller_set.insert("multihead_matmul");
    int8_teller_set.insert("skip_layernorm");
    int8_teller_set.insert("slice");
C
ceci3 已提交
50
#endif
51 52 53 54 55
// TODO(baoachun) The group_norm trt plugin will check input's dim
// not -1 failed when dynamic shape mode.
// #if IS_TRT_VERSION_GE(7130)
//     teller_set.insert("group_norm");
// #endif
W
wenbin 已提交
56 57 58
#if IS_TRT_VERSION_GE(7000)
    teller_set.insert("tile");
#endif
W
wenbin 已提交
59
#if CUDA_VERSION >= 10020
W
Wangzheee 已提交
60 61
    teller_set.insert("reshape");
    teller_set.insert("reshape2");
W
Wangzheee 已提交
62 63
    int8_teller_set.insert("reshape");
    int8_teller_set.insert("reshape2");
64 65
#endif
  }
66

67 68 69 70 71 72 73
  bool operator()(const std::string& op_type, const framework::OpDesc& desc,
                  bool use_no_calib_int8) override {
    if (use_no_calib_int8) {
      return int8_teller_set.count(op_type);
    } else {
      return teller_set.count(op_type);
    }
74 75 76
  }

 private:
77
  // use this set for no calib int8.
78
  std::unordered_set<std::string> int8_teller_set{"mul",
C
ceci3 已提交
79
                                                  "matmul",
W
Wangzheee 已提交
80
                                                  "conv2d",
81
                                                  "conv2d_fusion",
82 83 84
                                                  "pool2d",
                                                  "relu",
                                                  "softmax",
85
                                                  "sigmoid",
W
Wangzheee 已提交
86 87
                                                  "hard_swish",
                                                  "depthwise_conv2d",
88
                                                  "batch_norm",
W
Wangzheee 已提交
89 90 91
                                                  "concat",
                                                  "tanh",
                                                  "pad",
92
                                                  "elementwise_add",
W
Wangzheee 已提交
93 94 95 96 97
                                                  "elementwise_mul",
                                                  "dropout",
                                                  "prelu",
                                                  "conv2d_transpose",
                                                  "depthwise_conv2d_transpose",
98 99
                                                  "leaky_relu",
                                                  "fc",
W
Wangzheee 已提交
100 101 102 103 104 105
                                                  "shuffle_channel",
                                                  "swish",
                                                  "split",
                                                  "instance_norm",
                                                  "gelu",
                                                  "layer_norm",
106
                                                  "scale",
W
Wangzheee 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
                                                  "stack",
                                                  "transpose2",
                                                  "transpose",
                                                  "flatten2",
                                                  "flatten",
                                                  "gather",
                                                  "gather_nd",
                                                  "yolo_box",
                                                  "roi_align",
                                                  "affine_channel",
                                                  "nearest_interp",
                                                  "anchor_generator",
                                                  "reduce_sum",
                                                  "reduce_mean",
                                                  "conv3d",
                                                  "conv3d_transpose",
                                                  "mish",
                                                  "nearest_interp_v2",
                                                  "pool3d",
                                                  "deformable_conv"};
W
wenbin 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
  std::unordered_set<std::string> teller_set{"mul",
                                             "matmul",
                                             "conv2d",
                                             "conv2d_fusion",
                                             "pool2d",
                                             "relu",
                                             "softmax",
                                             "sigmoid",
                                             "hard_swish",
                                             "depthwise_conv2d",
                                             "batch_norm",
                                             "concat",
                                             "tanh",
                                             "pad",
                                             "elementwise_add",
                                             "elementwise_mul",
                                             "dropout",
                                             "prelu",
                                             "conv2d_transpose",
                                             "depthwise_conv2d_transpose",
                                             "leaky_relu",
                                             "fc",
                                             "shuffle_channel",
                                             "swish",
                                             "split",
                                             "instance_norm",
                                             "gelu",
                                             "layer_norm",
                                             "scale",
                                             "stack",
                                             "transpose2",
                                             "transpose",
                                             "flatten2",
                                             "flatten",
                                             "gather",
                                             "gather_nd",
                                             "yolo_box",
                                             "roi_align",
                                             "affine_channel",
                                             "nearest_interp",
                                             "anchor_generator",
                                             "reduce_sum",
                                             "reduce_mean",
                                             "conv3d",
F
feng_shuai 已提交
171
                                             "conv3d_transpose",
172 173
                                             "pool3d",
                                             "mish"};
174 175
};

176 177 178 179
bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
                    bool with_dynamic_shape) {
  const std::string op_type = node->Op()->Type();
  const framework::OpDesc desc = *node->Op();
180
  // do not support the op which is labeled the `skip_quant`
181
  if ((desc.HasAttr("namescope") &&
182
       BOOST_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
183 184
           "/skip_quant_2/") ||
      desc.HasAttr("skip_quant"))
185
    return false;
186

187
  for (auto& teller : tellers_) {
J
JingZhuangzhuang 已提交
188 189 190
    if (op_type == "relu" || op_type == "relu6" || op_type == "tanh" ||
        op_type == "sigmoid") {
      auto* block = desc.Block();
191 192 193 194 195 196
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
J
JingZhuangzhuang 已提交
197 198 199 200 201 202 203 204 205 206
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << op_type
                << " op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

207 208 209
    if (op_type == "pool2d") {
      std::vector<int> paddings =
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
210 211
      if (paddings.size() > 2) {
        return false;
212
      }
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "TRT Pool2d expect 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "TRT Pool2d has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
      if (!desc.HasAttr("pooling_type")) {
        return false;
      } else {
        std::string pool_type =
            BOOST_GET_CONST(std::string, desc.GetAttr("pooling_type"));
        if (pool_type != "max" && pool_type != "avg") {
          VLOG(3) << "Wrong pool op type, the trt do not support the "
                  << pool_type << " pool type.";
          return false;
        }
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
        if (pool_type == "avg") {
          if (desc.HasAttr("global_pooling")) {
            if (!BOOST_GET_CONST(bool, desc.GetAttr("global_pooling"))) {
              if (desc.HasAttr("exclusive")) {
                if (BOOST_GET_CONST(bool, desc.GetAttr("exclusive"))) {
                  std::vector<int> ksize =
                      BOOST_GET_CONST(std::vector<int>, desc.GetAttr("ksize"));
                  for (size_t i = 0; i < ksize.size(); i++) {
                    if (ksize[i] <= paddings[i]) {
                      VLOG(3) << "the padding size should be less than the "
                                 "filter size "
                                 "for exclusive-counting pooling.";
                      return false;
                    }
                  }
                }
              }
            }
          }
        }
253 254 255 256
      }
    }

    if (op_type == "conv2d" || op_type == "conv2d_transpose" ||
257 258
        op_type == "conv2d_fusion" || op_type == "depthwise_conv2d" ||
        op_type == "depthwise_conv2d_transpose") {
259 260 261 262 263 264 265 266 267 268 269 270
      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
      if (desc.HasAttr("padding_algorithm")) {
        auto padding_algorithm =
            BOOST_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
        if (padding_algorithm == "VALID") {
          return false;
        }
        if (padding_algorithm == "SAME") {
          if (desc.HasAttr("dilations")) {
            const std::vector<int> dilations =
                BOOST_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
            if (dilations[0] != 1 || dilations[1] != 1) {
              VLOG(3) << "In Same mode, Dilations must be (1, 1) for "
                         "tensorRT, but given ("
                      << dilations[0] << ", " << dilations[1] << ")";
              return false;
            }
          }
        }
      }

      if (use_no_calib_int8) {
        if (desc.HasAttr("padding_algorithm")) {
          auto padding_algorithm =
              BOOST_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
          if (padding_algorithm == "SAME") {
            return false;
          }
        }
      }

301 302 303 304 305 306 307 308 309 310 311
      if (desc.HasAttr("enable_int8")) {
        if (op_type == "conv2d" || op_type == "conv2d_fusion") {
          if (!desc.HasAttr("Input_scale")) {
            VLOG(3) << "Input scale not found. TRT int8"
                       " requires conv/deconv to have "
                       "input quantization scales.";
            return false;
          }
        }
      }

312 313
      if (op_type == "conv2d_transpose" ||
          op_type == "depthwise_conv2d_transpose") {
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
              BOOST_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
          if (dilations[0] != 1 || dilations[1] != 1) {
            VLOG(3) << "In conv2d_transpose, Dilations must be (1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
333

W
wenbin 已提交
334
// strides > 1 and 'SAME' is only supported by trt7.0 above
335
#if !IS_TRT_VERSION_GE(7000)
W
wenbin 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349
      if (op_type == "conv2d" || op_type == "conv2d_fusion" ||
          op_type == "depthwise_conv2d") {
        if (desc.HasAttr("padding_algorithm") && with_dynamic_shape) {
          auto padding_algorithm =
              BOOST_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
          if (padding_algorithm == "SAME" && desc.HasAttr("strides")) {
            const std::vector<int> strides =
                BOOST_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
            // there is no issue if strides.size() less than 2
            if (strides.size() > 1) {
              for (size_t i = 0; i < strides.size(); i++) {
                if (strides[i] > 1) return false;
              }
            }
350 351 352 353
          }
        }
      }
#endif
354 355
    }

356 357
    if (op_type == "matmul") {
      auto* block = desc.Block();
358 359 360 361 362 363
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

      // not support broadcast
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
      if (x_shape.size() != y_shape.size()) {
        VLOG(3)
            << "matmul op not support broadcast, please check inputs'shape. ";
        return false;
      }
      uint64_t dims = 2;
      for (size_t i = 0; i < x_shape.size() - dims; ++i) {
        if (x_shape[i] != y_shape[i] && (x_shape[i] == 1 || y_shape[i] == 1)) {
          VLOG(3) << "matmul op not support broadcast, please check "
                     "inputs'shape[i]. ";
          return false;
        }
      }

384 385 386 387 388
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() < 3) {
389
            VLOG(3)
P
Pei Yang 已提交
390 391
                << "matmul op dims < 3 not supported in tensorrt, but got dims "
                << shape.size() << ", so jump it.";
392 393 394 395 396
            return false;
          }
        }
      }
    }
397 398 399 400 401 402 403 404 405 406 407 408
    if (op_type == "softmax") {
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
    }
409
    if (op_type == "group_norm") {
410
      if (!with_dynamic_shape) return false;
411 412 413 414 415 416 417 418 419
      bool has_attrs = (desc.HasAttr("epsilon") && desc.HasAttr("groups"));
      if (has_attrs == false) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }
    if (op_type == "concat") {
      if (!desc.HasAttr("axis")) {
        return false;
420 421 422 423
      }
      int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));
      if (with_dynamic_shape) {
        if (axis < 0) return false;
424
      } else {
425 426 427 428 429 430
        if (axis <= 0) return false;
      }
      auto concat_inputs = desc.Inputs();
      if (concat_inputs.find("AxisTensor") != concat_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
431
        }
432 433
      }
    }
434 435 436
    if (op_type == "transpose2" || op_type == "transpose") {
      if (!desc.HasAttr("axis")) {
        return false;
437 438 439 440 441 442 443 444
      }
      std::vector<int> axis =
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("axis"));
      if (!with_dynamic_shape && axis[0] != 0) return false;
      if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false;
      if (axis[0] == 0 && axis.size() == 2) return false;

      auto* block = desc.Block();
445 446 447 448 449 450
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      int dims = x_shape.size();
      std::vector<int> perm(nvinfer1::Dims::MAX_DIMS);
      for (int i = 0; i < dims; i++) {
        perm[i] = axis[i];
      }
      auto is_valid_permutation = [&](int dims,
                                      const std::vector<int>& permutation) {
        std::bitset<nvinfer1::Dims::MAX_DIMS> found;
        for (int i = 0; i < dims; ++i) {
          const int x = permutation[i];
          if ((x < 0) || (x >= dims) || found[x])
            return false;  // Out of bounds or duplicate
          found.set(x);
        }
        return true;
      };
      if (!is_valid_permutation(dims, perm)) {
        VLOG(3) << "Invalid permutation dimensions for trt transpose op "
                   "converter: duplicate or out of bound.";
473 474
      }
    }
475
    if (op_type == "flatten2" || op_type == "flatten") {
476 477 478
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
479 480
#if IS_TRT_VERSION_GE(7130)
#else
481
        if (with_dynamic_shape) return false;
482
#endif
483 484 485 486
        int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));
        if (axis != 1) return false;
      }
    }
487

488
    if (op_type == "gather") {
489 490 491 492 493 494 495 496 497
      auto gather_inputs = desc.Inputs();
      if (gather_inputs.find("Axis") != gather_inputs.end()) {
        if (desc.Input("Axis").size() >= 1) {
          return false;
        }
      }
      if (!with_dynamic_shape) {
        return false;
      } else {
498
        auto* block = desc.Block();
499 500 501 502 503 504
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
505 506 507 508 509 510 511
        auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
        const auto x_shape = x_var_desc->GetShape();
        if (x_shape.size() == 1) {
          VLOG(3) << "Gather does not support 1-dimensional input in tensorrt";
          return false;
        }
      }
512
    }
Z
zlsh80826 已提交
513

514
    if (op_type == "gather_nd") {
515 516
      if (!with_dynamic_shape) return false;

517
      auto* block = desc.Block();
518 519 520 521 522 523
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
524 525 526 527 528 529 530 531 532 533 534 535 536 537
      auto x_var_name = desc.Input("X")[0];
      auto index_var_name = desc.Input("Index")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto* index_var_desc = block->FindVar(index_var_name);

      // The index input must be int32 datatype.
      if (index_var_desc->GetDataType() !=
          paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
        VLOG(3) << "gather_nd op Index input data type must be int32";
        return false;
      }

      const auto index_shape = index_var_desc->GetShape();
      const auto x_shape = x_var_desc->GetShape();
538 539 540 541 542 543
      if (x_shape.size() <= 2) {
        VLOG(3) << "gather_nd op requires the input's dimension to be greater "
                   "than 2";
        return false;
      }

544 545 546 547 548 549 550
      if (x_shape.size() != index_shape.size()) {
        VLOG(3) << "gather_nd op Index input dims size [" << index_shape.size()
                << " ] not equal to x dims size [" << x_shape.size() << "]";
        return false;
      }
    }

551 552 553 554
    if (op_type == "anchor_generator") {
      if (!with_dynamic_shape) return false;
    }

Z
zlsh80826 已提交
555 556 557 558 559 560
    if (op_type == "yolo_box") {
      if (with_dynamic_shape) return false;
      bool has_attrs =
          (desc.HasAttr("class_num") && desc.HasAttr("anchors") &&
           desc.HasAttr("downsample_ratio") && desc.HasAttr("conf_thresh") &&
           desc.HasAttr("clip_bbox") && desc.HasAttr("scale_x_y"));
Z
zlsh80826 已提交
561
      if (!has_attrs) return false;
Z
zlsh80826 已提交
562 563
    }

564 565 566 567 568
    if (op_type == "affine_channel") {
      if (!desc.HasAttr("data_layout")) return false;
      auto data_layout = framework::StringToDataLayout(
          BOOST_GET_CONST(std::string, desc.GetAttr("data_layout")));
      if (data_layout != framework::DataLayout::kNCHW) return false;
569 570

      auto* block = desc.Block();
571 572 573 574 575 576
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
577 578 579 580 581 582
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 2) {
        return false;
      }
583 584
    }

Z
zlsh80826 已提交
585 586 587
    if (op_type == "multiclass_nms") {
      if (with_dynamic_shape) return false;
      auto* block = desc.Block();
588 589 590 591 592 593
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
Z
zlsh80826 已提交
594 595 596 597 598
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() != 3) {
599
            VLOG(3) << "multiclass_nms op dims != 3 not supported in tensorrt, "
Z
zlsh80826 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
                       "but got dims "
                    << shape.size() << ", so jump it.";
            return false;
          }
        }
      }
      bool has_attrs =
          (desc.HasAttr("background_label") &&
           desc.HasAttr("score_threshold") && desc.HasAttr("nms_top_k") &&
           desc.HasAttr("keep_top_k") && desc.HasAttr("normalized"));
      if (has_attrs == false) return false;

      auto nms_top_k = BOOST_GET_CONST(int, desc.GetAttr("nms_top_k"));
      if (nms_top_k < 0) return false;

      auto keep_top_k = BOOST_GET_CONST(int, desc.GetAttr("keep_top_k"));
      if (keep_top_k < 0) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
    if (op_type == "nearest_interp") {
      std::vector<std::string> attrs{"data_layout",   "interp_method",
                                     "align_corners", "scale",
                                     "out_h",         "out_w"};
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }
      auto data_layout = framework::StringToDataLayout(
          BOOST_GET_CONST(std::string, desc.GetAttr("data_layout")));
      if (data_layout != framework::DataLayout::kNCHW &&
          data_layout != framework::DataLayout::kNHWC)
        return false;
      auto interp_method =
          BOOST_GET_CONST(std::string, desc.GetAttr("interp_method"));
      if (interp_method != "nearest") return false;
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

      if (!desc.HasAttr("scale") || !desc.HasAttr("out_h") ||
          !desc.HasAttr("out_w")) {
        return false;
      } else {
        auto scale = BOOST_GET_CONST(float, desc.GetAttr("scale"));
        auto out_h = BOOST_GET_CONST(int, desc.GetAttr("out_h"));
        auto out_w = BOOST_GET_CONST(int, desc.GetAttr("out_w"));
        if (!(scale > 0.f && (out_h <= 0 && out_w <= 0))) {
          if (out_h <= 0) {
            VLOG(3) << "out_h must be greater than 0 if scale is not set.";
            return false;
          }
          if (out_w <= 0) {
            VLOG(3) << "out_w must be greater than 0 if scale is not set.";
            return false;
          }
        }
已提交
655 656 657 658
        if ((scale <= 0.f) && with_dynamic_shape) {
          VLOG(3) << "dynamic shape not support scale not set.";
          return false;
        }
659
      }
660
    }
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683

    if (op_type == "roi_align") {
      if (!with_dynamic_shape) return false;

      std::vector<std::string> attrs{"pooled_height", "pooled_width",
                                     "spatial_scale", "sampling_ratio"};
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }

      const auto pooled_height =
          BOOST_GET_CONST(int, desc.GetAttr("pooled_height"));
      if (pooled_height <= 0) return false;

      const auto pooled_width =
          BOOST_GET_CONST(int, desc.GetAttr("pooled_width"));
      if (pooled_width <= 0) return false;

      const auto spatial_scale =
          BOOST_GET_CONST(float, desc.GetAttr("spatial_scale"));
      if (spatial_scale <= 0.f) return false;
    }

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
    if (op_type == "hard_swish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }

      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
    }

    if (op_type == "batch_norm") {
      const std::vector<std::string> bn_inputs = {"X", "Bias", "Mean", "Scale",
                                                  "Variance"};
      for (unsigned int i = 0; i < bn_inputs.size(); i++) {
        if (desc.Input(bn_inputs[i]).size() != 1) {
          VLOG(3) << "Invalid " << bn_inputs[i]
                  << "'s size of batch_norm TRT "
                     "converter. Expected 1, received "
                  << desc.Input(bn_inputs[i]).size() << ".";
          return false;
        }
      }
710 711 712 713 714 715
      auto batch_norm_inputs = desc.Inputs();
      if (batch_norm_inputs.find("MomentumTensor") != batch_norm_inputs.end()) {
        if (desc.Input("MomentumTensor").size() >= 1) {
          return false;
        }
      }
716 717 718 719 720 721
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "Invalid output Y's size of batch_norm TRT "
                   "converter. Expected 1, received "
                << desc.Output("Y").size() << ".";
        return false;
      }
722 723 724 725 726 727 728 729 730 731
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
732 733 734 735 736 737 738 739 740
    }

    if (op_type == "split") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of split TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
741 742 743 744 745 746 747 748 749 750 751
      auto split_inputs = desc.Inputs();
      if (split_inputs.find("AxisTensor") != split_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
        }
      }
      if (split_inputs.find("SectionsTensorList") != split_inputs.end()) {
        if (desc.Input("SectionsTensorList").size() >= 1) {
          return false;
        }
      }
752 753
      if (!desc.HasAttr("axis")) {
        return false;
754 755 756 757 758 759 760 761 762
      }
      int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));

      if (axis == 0) {
        VLOG(3) << "Invalid split axis. Split on batch is not supported in "
                   "TensorRT";
        return false;
      }
      auto* block = desc.Block();
763 764 765 766 767 768
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      size_t output_num = desc.Output("Out").size();
      std::vector<int> output_lengths;
      int num = 0;
      if (desc.HasAttr("num")) {
        num = BOOST_GET_CONST(int, desc.GetAttr("num"));
      }
      if (desc.HasAttr("sections")) {
        output_lengths =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("sections"));
      }
      if (output_lengths.size() == 0 && num == 0) {
        VLOG(3) << "sections and num cannot be equal to 0 at the same time";
        return false;
      }
      if (with_dynamic_shape) {
#if IS_TRT_VERSION_GE(6000)
#else
        VLOG(3) << "You are running the TRT Dynamic Shape mode, need to "
                   "confirm that "
                   "your TRT version is no less than 6.0";
        return false;
#endif
      }
      axis += (axis < 0) ? x_shape.size() : 0;
      if (x_shape[axis] == -1) {
        VLOG(3) << "The (" << axis << ") dim of input should not be -1";
        return false;
      }
      if (output_lengths.size() == 0) {
        if (num > 0) {
          int64_t in_axis_dim = x_shape[axis];
          if (in_axis_dim % num != 0) {
            VLOG(3) << "Invalid number to split. Tensor split does not result"
                       " in an equal division of dimensions. Axis dim = "
                    << in_axis_dim << " num = " << num << "!= 0";
            return false;
          }
          size_t out_axis_dim = in_axis_dim / num;
          for (int i = 0; i < num; ++i) {
            output_lengths.push_back(out_axis_dim);
          }
813 814
        }
      }
815 816 817 818
      if (output_lengths.size() != output_num) {
        VLOG(3) << "The output_length should be equal to the output size.";
        return false;
      }
819
    }
820

821 822 823 824 825 826 827 828
    if (op_type == "scale") {
      auto scale_inputs = desc.Inputs();
      if (scale_inputs.find("ScaleTensor") != scale_inputs.end()) {
        if (desc.Input("ScaleTensor").size() >= 1) {
          return false;
        }
      }
      auto* block = desc.Block();
829 830 831 832 833 834
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
835 836 837
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
838 839 840 841
      if (!with_dynamic_shape && x_shape.size() == 1) {
        VLOG(3) << "Scale op does not support 1-dimensional input in tensorrt";
        return false;
      }
842
    }
843

844
    if (op_type == "slice") {
845 846 847 848 849 850 851 852 853 854
      if (desc.HasAttr("decrease_axis")) {
        std::vector<int> decrease_axis =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("decrease_axis"));
        if (decrease_axis.size() > 0) {
          VLOG(3) << "Invalid slice decrease_axis. decrease_axis.size() > 0"
                     "is not supported in TensorRT";
          return false;
        }
      }

855
      if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
856 857 858
          !desc.HasAttr("ends")) {
        VLOG(3) << "The necessary attributes of the slice operator axes "
                   "or starts or ends are missing.";
859 860 861 862 863 864 865 866
        return false;
      } else {
        std::vector<int> axes =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
        std::vector<int> starts =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("starts"));
        std::vector<int> ends =
            BOOST_GET_CONST(std::vector<int>, desc.GetAttr("ends"));
867

868
        if (axes.size() != starts.size() || axes.size() != ends.size()) {
869 870
          VLOG(3) << "The shape of attributes of the slice operator axes "
                     "or starts or ends are not equal.";
已提交
871 872
          return false;
        }
873 874 875 876 877 878 879 880
        if (!with_dynamic_shape) {
          for (size_t i = 0; i < axes.size(); i++) {
            if (axes[i] == 0) {
              VLOG(3) << "Invalid slice axis. Slice on batch axis is not "
                         "supported in TensorRT";
              return false;
            }
          }
S
Shang Zhizhou 已提交
881 882 883 884 885 886 887 888 889
        } else {
          for (size_t i = 0; i < axes.size(); i++) {
            if (starts[i] < 0 || ends[i] < 0) {
              VLOG(3) << "Invalid slice attribute 'starts' or 'ends'. "
                         "Negative starts or ends not supported in TensorRT "
                         "when running in dynamic shape mode.";
              return false;
            }
          }
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
        }
      }
    }

    if (op_type == "elementwise_add" || op_type == "elementwise_mul") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "The input op's Input(\"X\").size() "
                   "should equal to 1, but received Input(\"X\").size() = "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Input("Y").size() != 1) {
        VLOG(3) << "The input op's Input(\"Y\").size() "
                   "should equal to 1, but received Input(\"Y\").size() = "
                << desc.Input("Y").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "The input op's Output(\"Out\").size() "
                   "should equal to 1, but reveceid Output(\"Out\").size() = "
                << desc.Output("Out").size() << ".";
        return false;
      }
913
      auto* block = desc.Block();
914 915 916 917 918 919
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
920 921 922 923 924 925 926 927
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
      if (x_shape.size() == 1 && y_shape.size() == 1) {
        VLOG(3) << "Now trt may not support two 1d tensor elementwise op.";
        return false;
      }
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
    }

    if (op_type == "stack") {
      if (!with_dynamic_shape) {
        VLOG(3)
            << "static shape mode is not supported for TRT stack.\n"
               "You can use the config.SetTRTDynamicShapeInfo(...) interface"
               " to set the shape information to run the dynamic shape "
               "mode.";
        return false;
      }
    }

    if (op_type == "fused_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_embedding_eltwise_layernorm should run on dynamic "
                   "shape mode.";
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        VLOG(3) << "The id and emb size of fused EmbEltwiseLayerNormOp "
                   "should be same ";
        return false;
      }
    }

    if (op_type == "gelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "gelu op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "gelu op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
965 966 967 968 969 970

      if (desc.HasAttr("approximate")) {
        if (BOOST_GET_CONST(bool, desc.GetAttr("approximate"))) return false;
      }

      auto* block = desc.Block();
971 972 973 974 975 976
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
977 978 979 980 981 982 983
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "gelu op does not support input's dim is 1 in tensorrt.";
        return false;
      }
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
    }

    if (op_type == "layer_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of layer_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of layer_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of layer_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
    }

已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
    if (op_type == "instance_norm") {
      if (with_dynamic_shape) {
        VLOG(3) << "trt instance_norm op does not support dynamic shape ";
        return false;
      }
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of instance_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of instance_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of instance_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() != 4) {
        VLOG(3) << "The instance_norm op only support 4-dimensional input in "
                   "tensorrt.";
        return false;
      }
已提交
1050 1051
    }

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
    if (op_type == "leaky_relu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid number of TRT leaky_relu op converter "
                   "inputs. Expected 1, but received "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "output of leaky_relu op converter should be 1, got "
                << desc.Output("Out").size();
        return false;
      }
    }

    if (op_type == "pad") {
      const float pad_value = BOOST_GET_CONST(float, desc.GetAttr("pad_value"));
      if (pad_value != 0.0f) {
        VLOG(3) << "The pad layer of TRT only support zero.";
        return false;
      }
已提交
1072 1073
      std::vector<int64_t> shape;
      auto* block = desc.Block();
1074 1075 1076 1077 1078 1079
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          shape = var_desc->GetShape();
        }
      }
      int nbDims = shape.size();
      std::vector<int> paddings =
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
      int pad_size = paddings.size();
      if (nbDims < 2) {
        return false;
      }
      if (nbDims * 2 != pad_size) {
        return false;
      }
      for (int i = 0; i < pad_size - 4; i++) {
        if (paddings[i] != 0) {
          return false;
        }
      }
1101 1102
    }

1103 1104
    if (op_type == "swish") {
      auto* block = desc.Block();
1105 1106 1107 1108 1109 1110
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1111 1112 1113 1114 1115 1116 1117 1118 1119
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "swish op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
    if (op_type == "prelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }
1133 1134

      auto* block = desc.Block();
1135 1136 1137 1138 1139 1140
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
      auto* var_desc = block->FindVar(desc.Input("Alpha")[0]);
      if (!var_desc) {
        VLOG(3) << "Variable Alpha of prelu TRT converter not found.";
        return false;
      }

      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "prelu op does not support input's dim is 1 in tensorrt.";
        return false;
      }

1155 1156 1157 1158 1159 1160 1161
#if IS_TRT_VERSION_LT(7000)
      if (!with_dynamic_shape) {
        // TODO(inference): fix trt6 static plugin error.
        VLOG(3) << "prelu static plugin in trt6 has bug.";
        return false;
      }
#endif
1162 1163
    }

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    if (op_type == "mish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "mish op does not support input's dim is 1 in tensorrt.";
        return false;
      }

      if (!with_dynamic_shape) {
        if (x_shape.size() == 2) {
          VLOG(3) << "mish op does not support input's dim is 2 in tensorrt.";
          return false;
        }
      }
    }

1202 1203 1204 1205 1206 1207 1208
    if (op_type == "roi_align") {
      if (!with_dynamic_shape) {
        VLOG(3) << "TRT roi align plugin only accept the dynamic shape, "
                   "because that "
                   "the roi_align will change the batch size.";
        return false;
      }
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
      std::vector<std::string> attrs{"pooled_height", "pooled_width",
                                     "spatial_scale", "sampling_ratio"};
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }

      const auto pooled_height =
          BOOST_GET_CONST(int, desc.GetAttr("pooled_height"));
      if (pooled_height <= 0) return false;

      const auto pooled_width =
          BOOST_GET_CONST(int, desc.GetAttr("pooled_width"));
      if (pooled_width <= 0) return false;

      const auto spatial_scale =
          BOOST_GET_CONST(float, desc.GetAttr("spatial_scale"));
      if (spatial_scale <= 0.f) return false;

      const auto sampling_ratio =
          BOOST_GET_CONST(int, desc.GetAttr("sampling_ratio"));
      const auto aligned = BOOST_GET_CONST(bool, desc.GetAttr("aligned"));

      if (sampling_ratio == -1 && aligned == true) return false;

      auto roi_align_inputs = desc.Inputs();
      if (roi_align_inputs.find("RoisNum") != roi_align_inputs.end()) {
        if (desc.Input("RoisNum").size() >= 1) {
          return false;
        }
      }
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
    }

    if (op_type == "shuffle_channel") {
      if (with_dynamic_shape) {
        VLOG(3) << "You are running the TRT Dynamic Shape mode, "
                   "the shuffle_channel op does not support dynamic shape yet";
        return false;
      }
    }

    if (op_type == "skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the skip_layernorm does not support static shape yet";
        return false;
      }
    }

    if (op_type == "multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul does not support static shape yet";
        return false;
      }
    }

1263
    if (op_type == "fc") {
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      // y'shapes == 2
      auto fc_inputs = desc.Inputs();
      std::string fc_y = "";
      if (fc_inputs.find("Y") != fc_inputs.end()) {
        fc_y = "Y";
      } else if (fc_inputs.find("W") != fc_inputs.end()) {
        fc_y = "W";
      } else {
        VLOG(3) << " input_y(fc_op) must be Y or W ";
        return false;
      }

      //  There is currently no input: Y(weight) more than two dimensions
      /*
      auto* y_var_desc = block->FindVar(desc.Input(fc_y)[0]);
      const auto y_shape = y_var_desc->GetShape();
      if (y_shape.size() != 2) {
        VLOG(3)
            << " input_y(fc_op)'shapes must be 2, but input_y(fc_op)'shapes = "
            << y_shape.size();
        return false;
      }
      // y_num_col_dims ==1
      if (desc.HasAttr("y_num_col_dims")) {
        int y_num_col_dims =
            BOOST_GET_CONST(int, desc.GetAttr("y_num_col_dims"));
        if (y_num_col_dims != 1) {
          VLOG(3) << " fc_op'y_num_col_dims must be 1, but y_num_col_dims = "
                  << y_num_col_dims;
          return false;
        }
      }
      */
1305 1306 1307 1308 1309 1310 1311
      int x_num_col_dims =
          desc.HasAttr("x_num_col_dims")
              ? BOOST_GET_CONST(int, desc.GetAttr("x_num_col_dims"))
              : (desc.HasAttr("in_num_col_dims")
                     ? BOOST_GET_CONST(int, desc.GetAttr("in_num_col_dims"))
                     : 1);
      if (x_num_col_dims < 1) {
1312 1313 1314
        VLOG(3) << "fc_op expects x_num_col_dims >= 1, "
                   "but x_num_col_dims = "
                << x_num_col_dims;
1315 1316 1317
        return false;
      }
    }
1318

W
Wangzheee 已提交
1319 1320 1321
    if (op_type == "reshape" || op_type == "reshape2") {
      if (!desc.HasAttr("shape")) {
        return false;
W
Wilber 已提交
1322 1323
      }
      // Paddle-TRT does not support the input tensors: Shape and ShapeTensor
1324
      auto reshape_inputs = desc.Inputs();
1325 1326 1327 1328 1329 1330 1331 1332 1333
      if (reshape_inputs.find("Shape") != reshape_inputs.end()) {
        if (desc.Input("Shape").size() >= 1) {
          return false;
        }
      }
      if (reshape_inputs.find("ShapeTensor") != reshape_inputs.end()) {
        if (desc.Input("ShapeTensor").size() >= 1) {
          return false;
        }
W
Wangzheee 已提交
1334
      }
W
Wilber 已提交
1335 1336 1337
      std::vector<int> shape =
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("shape"));
      if (shape.size() >= nvinfer1::Dims::MAX_DIMS) return false;
1338 1339
      if (!with_dynamic_shape && (shape[0] == -1 || shape.size() == 1))
        return false;
W
Wangzheee 已提交
1340
    }
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
    if (op_type == "clip") {
      // Paddle-TRT does not support the input tensors: Min and Max
      auto clip_inputs = desc.Inputs();
      if (clip_inputs.find("Min") != clip_inputs.end()) {
        if (desc.Input("Min").size() >= 1) {
          return false;
        }
      }
      if (clip_inputs.find("Max") != clip_inputs.end()) {
        if (desc.Input("Max").size() >= 1) {
          return false;
        }
      }

      auto* block = desc.Block();
1357 1358 1359 1360 1361 1362
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1363 1364 1365 1366 1367 1368 1369 1370 1371
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "clip op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

W
wenbin 已提交
1372
    if (op_type == "reduce_sum" || op_type == "reduce_mean") {
1373 1374
      if (!(desc.HasAttr("keep_dim") && desc.HasAttr("dim") &&
            desc.HasAttr("reduce_all"))) {
W
wenbin 已提交
1375 1376
        VLOG(3) << "the " << op_type
                << " does not have attr (keep_dim or dim or "
1377
                   "reduce_all)";
W
wenbin 已提交
1378 1379
        std::cout << "attr " << desc.HasAttr("keep_dim") << " "
                  << desc.HasAttr("dim") << " " << desc.HasAttr("reduce_all");
1380 1381
        return false;
      }
W
wenbin 已提交
1382 1383 1384

      // The batch size dimension cannot be reduced if it's not dynamic shape.
      if (!with_dynamic_shape) {
W
wenbin 已提交
1385
        if (BOOST_GET_CONST(bool, desc.GetAttr("reduce_all"))) return false;
W
wenbin 已提交
1386 1387 1388 1389 1390
        std::vector<int32_t> dim =
            BOOST_GET_CONST(std::vector<int32_t>, desc.GetAttr("dim"));
        for (auto x : dim) {
          if (!x) return false;
        }
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
      } else {
        if (BOOST_GET_CONST(bool, desc.GetAttr("reduce_all")) &&
            !BOOST_GET_CONST(bool, desc.GetAttr("keep_dim")))
          return false;
      }
      if (desc.HasAttr("reduce_all")) {
        int out_dtype = BOOST_GET_CONST(int32_t, desc.GetAttr("out_dtype"));
        if (out_dtype != -1) {
          return false;
        }
W
wenbin 已提交
1401
      }
1402
    }
W
wenbin 已提交
1403 1404 1405
#if IS_TRT_VERSION_GE(7000)
    if (op_type == "tile") {
      // Paddle-TRT does not support the input tensors.
1406 1407 1408
      auto tile_inputs = desc.Inputs();
      if (tile_inputs.find("repeat_times_tensor") != tile_inputs.end()) {
        if (desc.Input("repeat_times_tensor").size() >= 1) {
W
wenbin 已提交
1409
          return false;
1410 1411 1412 1413
        }
      }
      if (tile_inputs.find("RepeatTimes") != tile_inputs.end()) {
        if (desc.Input("RepeatTimes").size() >= 1) {
W
wenbin 已提交
1414
          return false;
1415
        }
W
wenbin 已提交
1416 1417 1418 1419 1420
      }
      if (with_dynamic_shape) return false;
      if (!with_dynamic_shape && !desc.HasAttr("repeat_times")) return false;
    }
#endif
1421

W
wenbin 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
    if (op_type == "conv3d" || op_type == "conv3d_transpose") {
      if (desc.HasAttr("padding_algorithm")) {
        std::string padding_algorithm =
            BOOST_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));

        // trt error is arised if conv3d_transpose and SAME
        if (op_type == "conv3d_transpose" && padding_algorithm == "SAME" &&
            !with_dynamic_shape) {
          return false;
        }
      }

#if !IS_TRT_VERSION_GE(7000)
      // looks like some issues with trt6.0
      if (with_dynamic_shape) {
        return false;
      }
#endif
      std::vector<int> paddings =
          BOOST_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));

      // conv3d and conv3d_transpose need padding check
      if (paddings.size() > 3) return false;

      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (op_type == "conv3d_transpose") {
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
              BOOST_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
          if (dilations[0] != 1 || dilations[1] != 1 || dilations[2] != 1) {
            VLOG(3) << "In conv3d_transpose, Dilations must be (1, 1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ", "
                    << dilations[2] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
    }

1481 1482 1483 1484
    if (op_type == "hard_sigmoid") {
      if (!with_dynamic_shape) {
        auto* block = desc.Block();
        if (block == nullptr) {
1485 1486 1487
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
1488 1489 1490 1491 1492
          return false;
        }
        auto x_var_name = desc.Input("X")[0];
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
1493 1494 1495
        if (x_shape.size() == 1) {
          VLOG(3) << "Hard sigmoid does not support 1-dimensional input in "
                     "tensorrt";
1496 1497 1498 1499 1500
          return false;
        }
      }
    }

1501
    if ((*teller)(op_type, desc, use_no_calib_int8)) return true;
1502
  }
W
wenbin 已提交
1503 1504

  VLOG(3) << "trt unsupported op " << op_type;
1505 1506 1507 1508 1509 1510 1511 1512
  return false;
}

OpTeller::OpTeller() { tellers_.emplace_back(new SimpleOpTypeSetTeller); }

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle