nn.py 28.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16
"""
P
peizhilin 已提交
17
import os
S
sneaxiy 已提交
18
import inspect
19 20 21 22 23
import warnings

import numpy as np

import paddle
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25 26 27 28 29 30 31 32 33 34 35
from ..framework import (
    Variable,
    OpProtoHolder,
    dygraph_only,
    _dygraph_tracer,
    default_main_program,
    _varbase_creator,
    static_only,
    _global_flags,
    in_dygraph_mode,
)
36
from ..framework import _current_expected_place
37
from .. import dygraph_utils
Y
yangyaming 已提交
38
from ..param_attr import ParamAttr
39 40 41 42 43
from .layer_function_generator import (
    autodoc,
    templatedoc,
    _generate_doc_string_,
)
44
from .tensor import zeros
F
fengjiayi 已提交
45
from .. import unique_name
46
from .. import core
47
from ...utils import deprecated
48 49 50 51 52 53
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
54
from paddle.utils import deprecated
55
from paddle import _C_ops, _legacy_C_ops
56 57
from collections.abc import Iterable

Y
Yu Yang 已提交
58 59

__all__ = [
X
Xin Pan 已提交
60 61
    'embedding',
    'autoincreased_step_counter',
Y
Yu Yang 已提交
62 63
]

64
OP_NAMEMAPPING = {
65 66 67 68 69 70 71 72
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
73
    'elementwise_mod': 'remainder',
74 75
}

Y
Yu Yang 已提交
76

77 78
def _get_reduce_dim(dim, input):
    """
79
    Internal function for reduce_sum, reduce_mean, reduce_prod.
80 81 82 83 84 85 86 87 88
    It computes the attribute reduce_all value based on axis.
    """
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, (tuple, range)):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
89
                "The type of dim must be int, list, tuple or range, but received {}".format(
90
                    type(dim)
91 92
                )
            )
93 94 95 96 97 98 99 100 101 102
    if dim is None:
        dim = []
    if dim == [] or len(dim) == len(input.shape):
        reduce_all = True
    else:
        reduce_all = False

    return reduce_all, dim


T
tangwei12 已提交
103
@deprecated(since="2.0.0", update_to="paddle.nn.functional.embedding")
104 105 106 107 108 109 110 111 112
def embedding(
    input,
    size,
    is_sparse=False,
    is_distributed=False,
    padding_idx=None,
    param_attr=None,
    dtype='float32',
):
113
    r"""
114
    :api_attr: Static Graph
115

116 117 118 119 120 121 122 123 124 125 126 127
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

128
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
146

147 148 149 150
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
151

152
        Case 2:
153

154 155 156 157 158 159 160 161 162 163 164 165 166 167
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
168 169

    Args:
170 171 172 173 174 175
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
176
            affects the performance of the backwards gradient update. It is recommended to set
177
            True because sparse update is faster. But some optimizer does not support sparse update,
178
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
179 180 181 182 183
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
184
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
185 186 187 188 189 190
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
191
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
192
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
193
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
194 195 196
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
197

198
    Returns:
199
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
200

201 202
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
203

B
bdzhuxiaoning 已提交
204
          import paddle.fluid as fluid
205
          import numpy as np
206 207
          import paddle
          paddle.enable_static()
208

209 210
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
211
          # example 1
212
          emb_1 = paddle.static.nn.embedding(input=data, size=[128, 64])
213 214 215 216 217 218

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
219
              initializer=paddle.nn.initializer.Assign(weight_data),
220
              trainable=True)
221
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
Y
Yu Yang 已提交
222 223 224
    """

    helper = LayerHelper('embedding', **locals())
225 226 227 228 229 230 231 232 233
    check_variable_and_dtype(
        input, 'input', ['int64'], 'fluid.layers.embedding'
    )
    check_dtype(
        dtype,
        'dtype',
        ['uint16', 'float16', 'float32', 'float64'],
        'fluid.layers.embedding',
    )
234 235 236 237 238 239 240 241 242

    if is_distributed:
        is_distributed = False
        warnings.warn(
            "is_distributed is go out of use, `fluid.contrib.layers.sparse_embedding` is your needed"
        )

    remote_prefetch = True if is_sparse else False

243 244 245
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False
    )
X
Xin Pan 已提交
246
    tmp = helper.create_variable_for_type_inference(dtype)
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': tmp},
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'remote_prefetch': remote_prefetch,
            'padding_idx': padding_idx,
        },
    )
Y
Yu Yang 已提交
265 266 267
    return tmp


268 269 270 271 272 273 274 275 276 277 278
def _pull_sparse(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
279
    r"""
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
G
GGBond8488 已提交
308
          data = paddle.static.data(name='sequence', shape=[-1, 1], dtype='int64', lod_level=1)
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
325
        'is_distributed': True,
326 327
    }
    # this is only for compatible with embedding op
328 329 330 331 332 333 334 335 336
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
337 338 339 340 341
    if len(outs) == 1:
        return outs[0]
    return outs


342 343 344 345 346 347 348 349 350 351 352
def _pull_sparse_v2(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
353
    r"""
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
G
GGBond8488 已提交
382
          data = paddle.static.data(name='sequence', shape=[-1, 1], dtype='int64', lod_level=1)
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
399
        'is_distributed': True,
400 401
    }
    # this is only for compatible with embedding op
402 403 404 405 406 407 408 409 410
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
411
    if len(outs) == 1:
Y
yaoxuefeng 已提交
412 413 414 415
        return outs[0]
    return outs


416 417 418
def _pull_gpups_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
Y
yaoxuefeng 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431
    r"""
    **Pull GpuPS Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    GpuPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int|list of int): The embedding size parameter of each input, which indicates the size of
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
432
        float32 now.
Y
yaoxuefeng 已提交
433 434 435 436 437 438 439 440 441 442

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs, whose size are indicated by size respectively.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          slots = []
G
GGBond8488 已提交
443
          data_1 = paddle.static.data(name='sequence', shape=[-1,1], dtype='int64', lod_level=1)
Y
yaoxuefeng 已提交
444
          slots.append(data_1)
G
GGBond8488 已提交
445
          data_2 = paddle.static.data(name='sequence', shape=[-1,1], dtype='int64', lod_level=1)
Y
yaoxuefeng 已提交
446 447 448 449 450 451
          slots.append(data_2)
          embs = fluid.layers.pull_gpups_sparse(input=slots, size=[11, 35])
    """
    helper = LayerHelper('pull_gpups_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
452 453 454
            "GpuPS only support float type embedding now, and your type is: "
            + dtype
        )
Y
yaoxuefeng 已提交
455 456 457 458 459 460
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
461 462 463 464 465 466 467 468 469 470 471 472 473
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size[0]], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_gpups_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
Y
yaoxuefeng 已提交
474
    if len(outs) == 1:
475 476 477 478
        return outs[0]
    return outs


479 480 481
def _pull_box_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
482
    r"""
H
hutuxian 已提交
483 484 485 486 487 488 489
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
490
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
H
hutuxian 已提交
491
            contains the IDs information.
492
        size(int): The embedding size parameter, which indicates the size of
H
hutuxian 已提交
493
            each embedding vector respectively.
494
        dtype(str): The dtype refers to the data type of output tensor. Only supports
495
        float32 now.
H
hutuxian 已提交
496 497 498 499 500 501 502 503 504

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
G
GGBond8488 已提交
505
          data = paddle.static.data(name='sequence', shape=[-1,1], dtype='int64', lod_level=1)
506
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])
H
hutuxian 已提交
507 508 509 510
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
511 512 513
            "BoxPS only support float type embedding now, and your type is: "
            + dtype
        )
H
hutuxian 已提交
514 515 516 517 518 519
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
520 521 522 523 524 525 526 527 528 529 530 531 532
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
H
hutuxian 已提交
533 534 535 536 537
    if len(outs) == 1:
        return outs[0]
    return outs


C
caoying03 已提交
538
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
539
    """
540

Y
yangyaming 已提交
541
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
542 543

    Args:
544 545 546
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
547 548
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
549 550
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
551
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
552
            output Tensor. The result tensor will have one fewer dimension
553 554 555 556
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
557 558

    Returns:
559 560
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
561

562 563
    Raises:
        TypeError, if out data type is different with the input data type.
564

G
guosheng 已提交
565 566 567
    Examples:
        .. code-block:: python

568
            import paddle.fluid as fluid
569 570
            import paddle
            paddle.enable_static()
G
guosheng 已提交
571 572 573
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
574
            # Each example is followed by the corresponding output tensor.
575
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
Z
zqw_1997 已提交
576 577 578 579
            fluid.layers.nn.reduce_sum(x)  # [3.5]
            fluid.layers.nn.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.nn.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.nn.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
580

581
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
582 583
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
584
            # Each example is followed by the corresponding output tensor.
585
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
Z
zqw_1997 已提交
586 587
            fluid.layers.nn.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.nn.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
588

G
guosheng 已提交
589
    """
590 591
    reduce_all, dim = _get_reduce_dim(dim, input)

592
    if in_dygraph_mode():
593
        return _C_ops.sum(input, dim, None, keep_dim)
姜永久 已提交
594 595 596 597 598 599 600
    else:
        attrs = {'dim': dim, 'keep_dim': keep_dim, 'reduce_all': reduce_all}
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'reduce_sum',
601
        )
姜永久 已提交
602 603 604 605 606 607 608 609 610 611 612
        helper = LayerHelper('reduce_sum', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='reduce_sum',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
G
guosheng 已提交
613 614


Y
Yu Yang 已提交
615
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
616
    """
617 618
    :api_attr: Static Graph

619 620
    Create an auto-increase variable. which will be automatically increased
    by 1 in every iteration. By default, the first return of this counter is 1,
Y
Yibing Liu 已提交
621
    and the step size is 1.
Y
Yu Yang 已提交
622 623

    Args:
Y
Yibing Liu 已提交
624 625 626
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
627

628
    Returns:
Y
Yibing Liu 已提交
629
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
630 631 632 633

    Examples:
        .. code-block:: python

634
           import paddle.fluid as fluid
635 636
           import paddle
           paddle.enable_static()
Y
yi.wu 已提交
637
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
638
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
639 640
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
641 642
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
643
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
644 645 646 647
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
648 649
        belong_to_optimizer=True,
    )
Y
Yu Yang 已提交
650
    if is_new_var:
651
        helper.set_variable_initializer(
652 653 654 655
            counter,
            initializer=paddle.nn.initializer.ConstantInitializer(
                value=begin - 1, force_cpu=True
            ),
656
        )
W
Wu Yi 已提交
657
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
658 659
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
660
            outputs={'Out': [counter]},
661 662
            attrs={'step': float(step)},
        )
Y
Yu Yang 已提交
663 664 665
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
666 667


668
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
669
    """
670
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
671 672
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
673

M
minqiyang 已提交
674
    For example:
H
haowang101779990 已提交
675 676 677

    .. code-block:: text

M
minqiyang 已提交
678
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
679
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
680

Y
Yibing Liu 已提交
681
    Args:
682
        input (Variable): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
683
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
684
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
685 686

    Returns:
687
        Variable: Unsqueezed Tensor, with the same data type as input.
Y
Yibing Liu 已提交
688 689 690 691

    Examples:
        .. code-block:: python

692
            import paddle.fluid as fluid
G
GGBond8488 已提交
693
            x = paddle.static.data(name='x', shape=[-1, 5, 10], dtype="float32")
694
            y = fluid.layers.unsqueeze(input=x, axes=[1])
695

Y
Yibing Liu 已提交
696
    """
姜永久 已提交
697
    if in_dygraph_mode():
L
Leo Chen 已提交
698 699 700
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
701
            axes = axes.tolist()
L
Leo Chen 已提交
702 703
        elif isinstance(axes, (list, tuple)):
            axes = [
704
                item.item(0) if isinstance(item, Variable) else item
L
Leo Chen 已提交
705 706
                for item in axes
            ]
707
        return _C_ops.unsqueeze(input, axes)
姜永久 已提交
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
    else:
        check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
        check_variable_and_dtype(
            input,
            'input',
            [
                'float16',
                'float32',
                'float64',
                'bool',
                'int8',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'unsqueeze',
        )
        helper = LayerHelper("unsqueeze2", **locals())
        inputs = {"X": input}
        attrs = {}
730

姜永久 已提交
731 732 733 734 735 736
        if isinstance(axes, int):
            axes = [axes]
        if isinstance(axes, Variable):
            axes.stop_gradient = True
            inputs["AxesTensor"] = axes
        elif isinstance(axes, (list, tuple)):
737 738 739 740
            if paddle.utils._contain_var(axes):
                inputs["AxesTensorList"] = paddle.utils._convert_to_tensor_list(
                    axes
                )
姜永久 已提交
741 742
            else:
                attrs["axes"] = axes
743

姜永久 已提交
744 745 746 747 748 749 750 751
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type="unsqueeze2",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
        )
Y
Yibing Liu 已提交
752

姜永久 已提交
753
        return out
754

755

756
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
姜永久 已提交
757
    if in_dygraph_mode():
758
        op = getattr(_legacy_C_ops, op_name)
759 760 761 762
        if binary_op:
            return op(x, y)
        else:
            return op(x)
姜永久 已提交
763
    else:
764
        check_variable_and_dtype(
姜永久 已提交
765 766
            x,
            "x",
767
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
768 769
            op_name,
        )
姜永久 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
        if y is not None:
            check_variable_and_dtype(
                y,
                "y",
                [
                    "bool",
                    "int8",
                    "int16",
                    "int32",
                    "int64",
                    "float32",
                    "float64",
                ],
                op_name,
            )
        if out is not None:
            check_type(out, "out", Variable, op_name)
787

姜永久 已提交
788
        helper = LayerHelper(op_name, **locals())
M
minqiyang 已提交
789

姜永久 已提交
790 791 792 793 794
        if binary_op and x.dtype != y.dtype:
            raise ValueError(
                "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
                % (op_name, x.dtype, y.dtype)
            )
M
minqiyang 已提交
795

姜永久 已提交
796 797
        if out is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
798

姜永久 已提交
799 800 801 802 803 804 805 806
        if binary_op:
            helper.append_op(
                type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
            )
        else:
            helper.append_op(
                type=op_name, inputs={"X": x}, outputs={"Out": out}
            )
M
minqiyang 已提交
807

姜永久 已提交
808
        return out