logic.py 37.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define logic functions of a tensor

17
import paddle
18

19
from ..common_ops_import import Variable
20
from ..fluid.data_feeder import check_type, check_variable_and_dtype
21
from ..fluid.framework import global_var
22
from .layer_function_generator import templatedoc
23

24
if global_var._in_eager_mode_:
25
    Tensor = paddle.fluid.framework.core.eager.Tensor
W
Weilong Wu 已提交
26 27
else:
    from ..framework import VarBase as Tensor
28

29
from paddle import _C_ops
30
from paddle.tensor.creation import full
31

32 33
from ..framework import LayerHelper, in_dygraph_mode

34 35
__all__ = []

36

37
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
38
    if in_dygraph_mode():
39 40 41 42 43
        op = getattr(_C_ops, op_name)
        if binary_op:
            return op(x, y)
        else:
            return op(x)
44
    else:
45
        check_variable_and_dtype(
46 47
            x,
            "x",
48 49 50 51 52 53 54 55 56 57
            [
                "bool",
                "int8",
                "int16",
                "int32",
                "int64",
                "float16",
                "float32",
                "float64",
            ],
58 59
            op_name,
        )
60 61 62 63 64 65 66 67 68 69
        if y is not None:
            check_variable_and_dtype(
                y,
                "y",
                [
                    "bool",
                    "int8",
                    "int16",
                    "int32",
                    "int64",
70
                    "float16",
71 72 73 74 75 76 77
                    "float32",
                    "float64",
                ],
                op_name,
            )
        if out is not None:
            check_type(out, "out", Variable, op_name)
78

79
        helper = LayerHelper(op_name, **locals())
80

81 82 83 84 85
        if binary_op and x.dtype != y.dtype:
            raise ValueError(
                "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
                % (op_name, x.dtype, y.dtype)
            )
86

87 88
        if out is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
89

90 91 92 93 94 95 96 97
        if binary_op:
            helper.append_op(
                type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
            )
        else:
            helper.append_op(
                type=op_name, inputs={"X": x}, outputs={"Out": out}
            )
98

99
        return out
100 101 102 103 104


def logical_and(x, y, out=None, name=None):
    r"""

105
    Compute element-wise logical AND on ``x`` and ``y``, and return ``out``. ``out`` is N-dim boolean ``Tensor``.
106 107 108 109 110 111
    Each element of ``out`` is calculated by

    .. math::

        out = x \&\& y

112
    Note:
I
Infinity_lee 已提交
113 114 115
        ``paddle.logical_and`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
116 117

    Args:
118 119
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float16, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float16, float32, float64.
120
        out(Tensor, optional): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True])
            y = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_and(x, y)
            print(res) # [True False True False]
    """
    if in_dygraph_mode():
137
        return _C_ops.logical_and(x, y)
138

139 140 141
    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True
    )
142 143 144 145 146 147 148 149 150 151 152 153


def logical_or(x, y, out=None, name=None):
    """

    ``logical_or`` operator computes element-wise logical OR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = x || y

154
    Note:
I
Infinity_lee 已提交
155 156 157
        ``paddle.logical_or`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
158

159
    Args:
160 161
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float16, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float16, float32, float64.
162 163 164 165 166 167 168 169 170 171 172
        out(Tensor): The ``Variable`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

173 174
            x = paddle.to_tensor([True, False], dtype="bool").reshape([2, 1])
            y = paddle.to_tensor([True, False, True, False], dtype="bool").reshape([2, 2])
175
            res = paddle.logical_or(x, y)
176 177 178 179
            print(res)
            # Tensor(shape=[2, 2], dtype=bool, place=Place(cpu), stop_gradient=True,
            #        [[True , True ],
            #         [True , False]])
180 181
    """
    if in_dygraph_mode():
182
        return _C_ops.logical_or(x, y)
183 184 185
    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True
    )
186 187 188 189 190 191 192 193 194 195 196 197


def logical_xor(x, y, out=None, name=None):
    r"""

    ``logical_xor`` operator computes element-wise logical XOR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = (x || y) \&\& !(x \&\& y)

198
    Note:
I
Infinity_lee 已提交
199 200 201
        ``paddle.logical_xor`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
202 203

    Args:
204 205
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float16, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float16, float32, float64.
206 207 208 209 210 211 212 213 214 215 216
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

217 218
            x = paddle.to_tensor([True, False], dtype="bool").reshape([2, 1])
            y = paddle.to_tensor([True, False, True, False], dtype="bool").reshape([2, 2])
219
            res = paddle.logical_xor(x, y)
220 221 222 223
            print(res)
            # Tensor(shape=[2, 2], dtype=bool, place=Place(cpu), stop_gradient=True,
            #        [[False, True ],
            #         [True , False]])
224 225
    """
    if in_dygraph_mode():
226
        return _C_ops.logical_xor(x, y)
227

228 229 230
    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True
    )
231 232 233 234 235 236 237 238 239 240 241 242 243


@templatedoc()
def logical_not(x, out=None, name=None):
    """

    ``logical_not`` operator computes element-wise logical NOT on ``x``, and returns ``out``. ``out`` is N-dim boolean ``Variable``.
    Each element of ``out`` is calculated by

    .. math::

        out = !x

I
Infinity_lee 已提交
244 245 246 247 248
    Note:
        ``paddle.logical_not`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

249
    Args:
250
        x(Tensor):  Operand of logical_not operator. Must be a Tensor of type bool, int8, int16, in32, in64, float16, float32, or float64.
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor` will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for users to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_not(x)
            print(res) # [False  True False  True]
    """
    if in_dygraph_mode():
267
        return _C_ops.logical_not(x)
268 269 270
    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False
    )
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304


def is_empty(x, name=None):
    """

    Test whether a Tensor is empty.

    Args:
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])

    """
    if in_dygraph_mode():
        return _C_ops.is_empty(x)
305 306 307 308 309
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'is_empty'
        )
        check_type(name, "name", (str, type(None)), "is_empty")
310

311 312 313 314 315 316 317
        helper = LayerHelper("is_empty", **locals())
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True
        helper.append_op(
            type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]}
        )
        return cond
318 319


W
wawltor 已提交
320
def equal_all(x, y, name=None):
321
    """
322
    Returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.
323

324
    Note:
325
        The output has no gradient.
326 327

    Args:
328 329
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
W
wawltor 已提交
330 331
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
332 333

    Returns:
W
wawltor 已提交
334
        Tensor: output Tensor, data type is bool, value is [False] or [True].
335 336 337 338 339

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
340

341 342 343
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
344
          result1 = paddle.equal_all(x, y)
N
Noel 已提交
345
          print(result1) # result1 = [True ]
W
wawltor 已提交
346
          result2 = paddle.equal_all(x, z)
N
Noel 已提交
347
          print(result2) # result2 = [False ]
348
    """
H
hong 已提交
349
    if in_dygraph_mode():
350
        return _C_ops.equal_all(x, y)
351 352 353 354 355 356 357 358 359
    else:
        helper = LayerHelper("equal_all", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(
            type='equal_all',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
Z
Zhen Wang 已提交
360 361 362


@templatedoc()
363
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
364 365 366 367 368 369
    r"""
    Check if all :math:`x` and :math:`y` satisfy the condition:

    .. math::
        \left| x - y \right| \leq atol + rtol \times \left| y \right|

H
hg-1099255210 已提交
370
    elementwise, for all elements of :math:`x` and :math:`y`. This is analogous to :math:`numpy.allclose`, namely that it returns :math:`True` if
371
    two tensors are elementwise equal within a tolerance.
Z
Zhen Wang 已提交
372 373

    Args:
374 375
        x(Tensor): The input tensor, it's data type should be float16, float32, float64..
        y(Tensor): The input tensor, it's data type should be float16, float32, float64..
H
huangxu96 已提交
376 377
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
378 379 380
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
381 382

    Returns:
383
        Tensor: The output tensor, it's data type is bool.
384

Z
Zhen Wang 已提交
385 386 387 388 389
    Examples:
        .. code-block:: python

          import paddle

390 391
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
392
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
393
                                  equal_nan=False, name="ignore_nan")
394
          # [False]
395

396
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
397
                                      equal_nan=True, name="equal_nan")
398 399
          # [False]

400 401
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
402 403 404
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [False]
405

406 407 408
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True]
Z
Zhen Wang 已提交
409 410
    """

411
    if in_dygraph_mode():
412
        return _C_ops.allclose(x, y, rtol, atol, equal_nan)
413
    else:
414 415 416 417 418 419
        check_variable_and_dtype(
            x, "input", ['float16', 'float32', 'float64'], 'allclose'
        )
        check_variable_and_dtype(
            y, "input", ['float16', 'float32', 'float64'], 'allclose'
        )
420 421 422 423 424 425 426 427 428 429 430 431
        check_type(rtol, 'rtol', float, 'allclose')
        check_type(atol, 'atol', float, 'allclose')
        check_type(equal_nan, 'equal_nan', bool, 'allclose')

        helper = LayerHelper("allclose", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')

        inputs = {'Input': x, 'Other': y}
        outputs = {'Out': out}
        attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
        helper.append_op(
            type='allclose', inputs=inputs, outputs=outputs, attrs=attrs
432
        )
Z
Zhen Wang 已提交
433

434
        return out
435 436


W
wawltor 已提交
437 438
@templatedoc()
def equal(x, y, name=None):
439
    """
S
swtkiwi 已提交
440

441
    This layer returns the truth value of :math:`x == y` elementwise.
N
Noel 已提交
442

443
    Note:
444
        The output has no gradient.
445 446

    Args:
陈沧夜 已提交
447 448
        x(Tensor): Tensor, data type is bool, float16, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float16, float32, float64, int32, int64.
449 450 451 452
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
453
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
454
        and the data type is bool. The result of this op is stop_gradient.
455 456 457 458

    Examples:
        .. code-block:: python

W
wawltor 已提交
459 460
          import paddle

461 462
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
463
          result1 = paddle.equal(x, y)
N
Noel 已提交
464
          print(result1)  # result1 = [True False False]
465
    """
466 467
    if not isinstance(y, (int, bool, float, Variable)):
        raise TypeError(
468 469 470 471
            "Type of input args must be float, bool, int or Tensor, but received type {}".format(
                type(y)
            )
        )
472
    if not isinstance(y, Variable):
473
        y = full(shape=[], dtype=x.dtype, fill_value=y)
474

J
Jiabin Yang 已提交
475
    if in_dygraph_mode():
476
        return _C_ops.equal(x, y)
J
Jiabin Yang 已提交
477
    else:
478 479 480
        check_variable_and_dtype(
            x,
            "x",
481 482 483 484 485 486 487 488 489
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
490 491 492 493 494
            "equal",
        )
        check_variable_and_dtype(
            y,
            "y",
495 496 497 498 499 500 501 502 503
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
504 505 506 507 508
            "equal",
        )
        helper = LayerHelper("equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
509

510 511 512 513 514 515
        helper.append_op(
            type='equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
516

W
wawltor 已提交
517 518 519 520

@templatedoc()
def greater_equal(x, y, name=None):
    """
521
    Returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
N
Noel 已提交
522

523
    Note:
524
        The output has no gradient.
W
wawltor 已提交
525 526

    Args:
527 528
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
W
wawltor 已提交
529 530 531
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
532
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
533 534 535

    Examples:
        .. code-block:: python
N
Noel 已提交
536

W
wawltor 已提交
537 538
            import paddle

539 540
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
541
            result1 = paddle.greater_equal(x, y)
N
Noel 已提交
542
            print(result1)  # result1 = [True False True]
W
wawltor 已提交
543
    """
J
Jiabin Yang 已提交
544
    if in_dygraph_mode():
545
        return _C_ops.greater_equal(x, y)
J
Jiabin Yang 已提交
546
    else:
547 548 549
        check_variable_and_dtype(
            x,
            "x",
550 551 552 553 554 555 556 557 558
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
559 560 561 562 563
            "greater_equal",
        )
        check_variable_and_dtype(
            y,
            "y",
564 565 566 567 568 569 570 571 572
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
573 574 575 576 577
            "greater_equal",
        )
        helper = LayerHelper("greater_equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
578

579 580 581 582 583 584
        helper.append_op(
            type='greater_equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
585 586 587 588 589


@templatedoc()
def greater_than(x, y, name=None):
    """
590
    Returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
N
Noel 已提交
591

592
    Note:
593
        The output has no gradient.
W
wawltor 已提交
594 595

    Args:
J
Jx-qi 已提交
596 597
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
W
wawltor 已提交
598 599 600
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
601
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
602 603 604

    Examples:
        .. code-block:: python
N
Noel 已提交
605

W
wawltor 已提交
606 607
            import paddle

608 609
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
610
            result1 = paddle.greater_than(x, y)
N
Noel 已提交
611
            print(result1)  # result1 = [False False True]
W
wawltor 已提交
612
    """
J
Jiabin Yang 已提交
613
    if in_dygraph_mode():
614
        return _C_ops.greater_than(x, y)
J
Jiabin Yang 已提交
615
    else:
616 617 618
        check_variable_and_dtype(
            x,
            "x",
619 620 621 622 623 624 625 626 627
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
628 629 630 631 632
            "greater_than",
        )
        check_variable_and_dtype(
            y,
            "y",
633 634 635 636 637 638 639 640 641
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
642 643 644 645 646
            "greater_than",
        )
        helper = LayerHelper("greater_than", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
647

648 649 650 651 652 653
        helper.append_op(
            type='greater_than',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
654 655 656 657 658


@templatedoc()
def less_equal(x, y, name=None):
    """
659
    Returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
N
Noel 已提交
660

661
    Note:
662
        The output has no gradient.
W
wawltor 已提交
663 664

    Args:
B
BellaZYL 已提交
665 666
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
W
wawltor 已提交
667 668 669 670
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
671
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
672 673 674

    Examples:
        .. code-block:: python
N
Noel 已提交
675

W
wawltor 已提交
676 677
            import paddle

678 679
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
680
            result1 = paddle.less_equal(x, y)
N
Noel 已提交
681
            print(result1)  # result1 = [True True False]
W
wawltor 已提交
682
    """
J
Jiabin Yang 已提交
683
    if in_dygraph_mode():
684
        return _C_ops.less_equal(x, y)
J
Jiabin Yang 已提交
685
    else:
686 687 688
        check_variable_and_dtype(
            x,
            "x",
689 690 691 692 693 694 695 696 697
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
698 699 700 701 702
            "less_equal",
        )
        check_variable_and_dtype(
            y,
            "y",
703 704 705 706 707 708 709 710 711
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
712 713 714 715 716
            "less_equal",
        )
        helper = LayerHelper("less_equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
717

718 719 720 721 722 723
        helper.append_op(
            type='less_equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
724 725 726 727 728


@templatedoc()
def less_than(x, y, name=None):
    """
729
    Returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
N
Noel 已提交
730

731
    Note:
732
        The output has no gradient.
W
wawltor 已提交
733 734

    Args:
H
hh-qiao 已提交
735 736
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
W
wawltor 已提交
737 738 739 740
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
741
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
742 743 744

    Examples:
        .. code-block:: python
N
Noel 已提交
745

W
wawltor 已提交
746 747
            import paddle

748 749
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
750
            result1 = paddle.less_than(x, y)
N
Noel 已提交
751
            print(result1)  # result1 = [False True False]
W
wawltor 已提交
752
    """
J
Jiabin Yang 已提交
753
    if in_dygraph_mode():
754
        return _C_ops.less_than(x, y)
J
Jiabin Yang 已提交
755
    else:
756 757 758
        check_variable_and_dtype(
            x,
            "x",
759 760 761 762 763 764 765 766 767
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
768 769 770 771 772
            "less_than",
        )
        check_variable_and_dtype(
            y,
            "y",
773 774 775 776 777 778 779 780 781
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
782 783 784 785 786
            "less_than",
        )
        helper = LayerHelper("less_than", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
787

788 789 790 791 792 793
        helper.append_op(
            type='less_than',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
794 795 796 797 798


@templatedoc()
def not_equal(x, y, name=None):
    """
799
    Returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
800 801

    Note:
802
        The output has no gradient.
W
wawltor 已提交
803 804

    Args:
805 806
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
807 808 809 810
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
811
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
812 813 814

    Examples:
        .. code-block:: python
815

W
wawltor 已提交
816 817
            import paddle

818 819
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
820
            result1 = paddle.not_equal(x, y)
N
Noel 已提交
821
            print(result1)  # result1 = [False True True]
W
wawltor 已提交
822
    """
J
Jiabin Yang 已提交
823
    if in_dygraph_mode():
824
        return _C_ops.not_equal(x, y)
J
Jiabin Yang 已提交
825
    else:
826 827 828
        check_variable_and_dtype(
            x,
            "x",
829 830 831 832 833 834 835 836 837
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
838 839 840 841 842
            "not_equal",
        )
        check_variable_and_dtype(
            y,
            "y",
843 844 845 846 847 848 849 850 851
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
852 853 854 855 856
            "not_equal",
        )
        helper = LayerHelper("not_equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
857

858 859 860 861 862 863
        helper.append_op(
            type='not_equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
Z
zhulei 已提交
864 865 866 867 868


def is_tensor(x):
    """

C
Chen Long 已提交
869
    Tests whether input object is a paddle.Tensor.
Z
zhulei 已提交
870 871 872 873 874

    Args:
        x (object): Object to test.

    Returns:
C
Chen Long 已提交
875
        A boolean value. True if ``x`` is a paddle.Tensor, otherwise False.
Z
zhulei 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
889

Z
zhulei 已提交
890
    """
891 892 893 894
    if in_dygraph_mode():
        return isinstance(x, (Tensor, paddle.fluid.core.eager.Tensor))
    else:
        return isinstance(x, Variable)
895 896 897


def _bitwise_op(op_name, x, y, out=None, name=None, binary_op=True):
898
    if in_dygraph_mode():
W
wanghuancoder 已提交
899
        op = getattr(_C_ops, op_name)
900 901 902 903
        if binary_op:
            return op(x, y)
        else:
            return op(x)
904
    else:
905
        check_variable_and_dtype(
906 907
            x,
            "x",
908 909 910
            ["bool", "uint8", "int8", "int16", "int32", "int64"],
            op_name,
        )
911 912 913 914 915 916 917 918 919
        if y is not None:
            check_variable_and_dtype(
                y,
                "y",
                ["bool", "uint8", "int8", "int16", "int32", "int64"],
                op_name,
            )
        if out is not None:
            check_type(out, "out", Variable, op_name)
920

921 922 923
        helper = LayerHelper(op_name, **locals())
        if binary_op:
            assert x.dtype == y.dtype
924

925 926
        if out is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
927

928 929 930 931 932 933 934 935
        if binary_op:
            helper.append_op(
                type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
            )
        else:
            helper.append_op(
                type=op_name, inputs={"X": x}, outputs={"Out": out}
            )
936

937
        return out
938 939 940


def bitwise_and(x, y, out=None, name=None):
941 942 943 944 945 946 947 948 949 950 951
    r"""

    Apply ``bitwise_and`` on Tensor ``X`` and ``Y`` .

    .. math::
        Out = X \& Y

    .. note::
        ``paddle.bitwise_and`` supports broadcasting. If you want know more about broadcasting, please refer to please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor.
952

953
    Args:
954 955 956
        x (Tensor): Input Tensor of ``bitwise_and`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        y (Tensor): Input Tensor of ``bitwise_and`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        out(Tensor): Result of ``bitwise_and`` . It is a N-D Tensor with the same data type of input Tensor.
957 958

    Returns:
959
        Tensor: Result of ``bitwise_and`` . It is a N-D Tensor with the same data type of input Tensor.
960

961 962 963 964 965 966 967 968 969
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_and(x, y)
            print(res)  # [0, 2, 1]
    """
0
0x45f 已提交
970
    if in_dygraph_mode() and out is None:
971
        return _C_ops.bitwise_and(x, y)
972 973 974
    return _bitwise_op(
        op_name="bitwise_and", x=x, y=y, name=name, out=out, binary_op=True
    )
975 976 977


def bitwise_or(x, y, out=None, name=None):
978 979 980 981 982 983 984 985 986 987 988
    r"""

    Apply ``bitwise_or`` on Tensor ``X`` and ``Y`` .

    .. math::
        Out = X | Y

    .. note::
        ``paddle.bitwise_or`` supports broadcasting. If you want know more about broadcasting, please refer to please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor.
989

990
    Args:
991 992 993
        x (Tensor): Input Tensor of ``bitwise_or`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        y (Tensor): Input Tensor of ``bitwise_or`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        out(Tensor): Result of ``bitwise_or`` . It is a N-D Tensor with the same data type of input Tensor.
994 995

    Returns:
996
        Tensor: Result of ``bitwise_or`` . It is a N-D Tensor with the same data type of input Tensor.
997 998 999 1000 1001 1002 1003 1004 1005 1006

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_or(x, y)
            print(res)  # [-1, -1, -3]
    """
0
0x45f 已提交
1007
    if in_dygraph_mode() and out is None:
1008
        return _C_ops.bitwise_or(x, y)
H
hong 已提交
1009

1010 1011 1012
    return _bitwise_op(
        op_name="bitwise_or", x=x, y=y, name=name, out=out, binary_op=True
    )
1013 1014 1015


def bitwise_xor(x, y, out=None, name=None):
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
    r"""

    Apply ``bitwise_xor`` on Tensor ``X`` and ``Y`` .

    .. math::
        Out = X ^\wedge Y

    .. note::
        ``paddle.bitwise_xor`` supports broadcasting. If you want know more about broadcasting, please refer to please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor.
1027 1028

    Args:
1029 1030 1031
        x (Tensor): Input Tensor of ``bitwise_xor`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        y (Tensor): Input Tensor of ``bitwise_xor`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        out(Tensor): Result of ``bitwise_xor`` . It is a N-D Tensor with the same data type of input Tensor.
1032 1033

    Returns:
1034
        Tensor: Result of ``bitwise_xor`` . It is a N-D Tensor with the same data type of input Tensor.
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_xor(x, y)
            print(res) # [-1, -3, -4]
    """
0
0x45f 已提交
1045
    if in_dygraph_mode() and out is None:
1046
        return _C_ops.bitwise_xor(x, y)
1047 1048 1049
    return _bitwise_op(
        op_name="bitwise_xor", x=x, y=y, name=name, out=out, binary_op=True
    )
1050 1051 1052


def bitwise_not(x, out=None, name=None):
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
    r"""

    Apply ``bitwise_not`` on Tensor ``X``.

    .. math::
        Out = \sim X

    .. note::
        ``paddle.bitwise_not`` supports broadcasting. If you want know more about broadcasting, please refer to please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor.
1064 1065

    Args:
1066 1067
        x (Tensor): Input Tensor of ``bitwise_not`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        out(Tensor): Result of ``bitwise_not`` . It is a N-D Tensor with the same data type of input Tensor.
1068

1069
    Returns:
1070
        Tensor: Result of ``bitwise_not`` . It is a N-D Tensor with the same data type of input Tensor.
1071 1072 1073 1074 1075 1076 1077 1078 1079

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            res = paddle.bitwise_not(x)
            print(res) # [4, 0, -2]
    """
0
0x45f 已提交
1080
    if in_dygraph_mode() and out is None:
1081
        return _C_ops.bitwise_not(x)
1082

1083 1084 1085
    return _bitwise_op(
        op_name="bitwise_not", x=x, y=None, name=name, out=out, binary_op=False
    )
A
andyjpaddle 已提交
1086 1087 1088 1089


@templatedoc()
def isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
1090
    r"""
1091
    Check if all :math:`x` and :math:`y` satisfy the condition:
1092 1093 1094 1095 1096 1097 1098 1099

    .. math::

        \left| x - y \right| \leq atol + rtol \times \left| y \right|

    elementwise, for all elements of :math:`x` and :math:`y`. The behaviour of this
    operator is analogous to :math:`numpy.isclose`, namely that it returns :math:`True` if
    two tensors are elementwise equal within a tolerance.
A
andyjpaddle 已提交
1100 1101

    Args:
1102 1103
        x(Tensor): The input tensor, it's data type should be float16, float32, float64.
        y(Tensor): The input tensor, it's data type should be float16, float32, float64.
A
andyjpaddle 已提交
1104 1105
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
1106
        equal_nan(equalnantype, optional): If :math:`True` , then two :math:`NaNs` will be compared as equal. Default: :math:`False` .
A
andyjpaddle 已提交
1107 1108 1109 1110
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1111
        Tensor: The output tensor, it's data type is bool.
A
andyjpaddle 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True, False]

          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True, True]
    """

1137
    if in_dygraph_mode():
1138
        return _C_ops.isclose(x, y, rtol, atol, equal_nan)
1139
    else:
1140 1141 1142 1143 1144 1145
        check_variable_and_dtype(
            x, "input", ['float16', 'float32', 'float64'], 'isclose'
        )
        check_variable_and_dtype(
            y, "input", ['float16', 'float32', 'float64'], 'isclose'
        )
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
        check_type(rtol, 'rtol', float, 'isclose')
        check_type(atol, 'atol', float, 'isclose')
        check_type(equal_nan, 'equal_nan', bool, 'isclose')

        helper = LayerHelper("isclose", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')

        inputs = {'Input': x, 'Other': y}
        outputs = {'Out': out}
        attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
        helper.append_op(
            type='isclose', inputs=inputs, outputs=outputs, attrs=attrs
1158
        )
1159
        return out