hierarchical_sigmoid_op.cc 10.5 KB
Newer Older
Y
Yancey1989 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <string>
W
weixing02 已提交
16
#include <vector>
17 18 19 20 21

#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/infermeta/multiary.h"

Y
Yancey1989 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
namespace paddle {
namespace operators {

/**
 * Organize the classes into a binary tree. At each node, a sigmoid function
 * is used to calculate the probability of belonging to the right branch.
 * This idea is from "F. Morin, Y. Bengio (AISTATS 05):
 * Hierarchical Probabilistic Neural Network Language Model."
 *
 * Here we uses a simple way of making the binary tree.
 * Assuming the number of classes C = 6,
 * The classes are organized as a binary tree in the following way:
 *
 * @code{.py}
 * *-*-*- 2
 * | | |- 3
 * | |
 * | |-*- 4
 * |   |- 5
 * |
 * |-*- 0
 *   |- 1
 * @endcode
 *
 * where * indicates an internal node, and each leaf node represents a class.
 * - Node 0 ... C-2 are internal nodes.
 * - Node C-1 ... 2C-2 are leaf nodes.
 * - Class c is represented by leaf node \f$c+C-1\f$.
 *
 * We assign an id for each node:
 * - the id of root be 0.
 * - the left child of a node i is 2*i+1.
 * - the right child of a node i is 2*i+2.
 *
 * It's easy to see that:
 * - the parent of node i is \f$\left\lfloor(i-1)/2\right\rfloor\f$.
 * - the j-th level ancestor of node i is
 * \f$\left\lfloor(i+1)/2^{j+1}\right\rfloor - 1\f$.
 * - A node i is a left child of its parent if \f$(i-1)\%2==0\f$.
 *
 */

class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yancey1989 已提交
67 68

 protected:
69
  phi::KernelKey GetExpectedKernelType(
Y
Yancey1989 已提交
70
      const framework::ExecutionContext& ctx) const override {
71 72
    return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
                          ctx.GetPlace());
Y
Yancey1989 已提交
73
  }
Y
Yancey1989 已提交
74 75
};

76 77 78 79
/*
 * Inputs: X, W, Label, PathTable, PathCode, Bias
 * Outputs: Out, PreOut, W_out
 */
W
weixing02 已提交
80
template <typename AttrType>
Y
Yancey1989 已提交
81 82
class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
W
weixing02 已提交
83
  void Make() override {
Y
Yancey1989 已提交
84
    AddInput("X",
85
             "(phi::DenseTensor, required) The input tensor with shape [N, D], "
G
guosheng 已提交
86
             "where N is the size of mini-batch, and D is the feature size.");
Y
Yancey1989 已提交
87
    AddInput("W",
88
             "(phi::DenseTensor, required), The parameters of hierarchical "
G
guosheng 已提交
89
             "sigmoid operator, each of them is a 2-D tensor, the shape is"
90
             "[K, D]. Which K is the num of non-leaf node in Path Tree");
W
weixing02 已提交
91
    AddInput("Label",
92
             "(phi::DenseTensor, required), The labels of training data. It's a"
G
guosheng 已提交
93
             "tensor with shape [N, 1].");
J
JiabinYang 已提交
94
    AddInput(
95 96
        "PathTable",
        "(phi::DenseTensor, optional), The Path Table from root to current word"
J
JiabinYang 已提交
97
        "it should have shape like [N, L], L is the length of the Path")
98
        .AsDispensable();
99 100 101 102 103 104
    AddInput("PathCode",
             "(phi::DenseTensor, optional), The Code on each Node of the Path "
             "from root "
             "to current word"
             "it should have shape like [N, L], L is the length of the Path")
        .AsDispensable();
Y
Yancey1989 已提交
105
    AddInput("Bias",
106
             "(phi::DenseTensor, optional), The bias is a tensor with shape or "
107
             "[num_classes, 1]"
108 109
             "[num_classes - 1, 1].")
        .AsDispensable();
110 111 112 113
    AddOutput("Out",
              "(phi::DenseTensor, required) The output of hierarchical sigmoid "
              "operator."
              "The shape is [N, 1].");
W
weixing02 已提交
114
    AddOutput("PreOut",
115
              "(phi::DenseTensor, required) A intermedia 2-D tensor with shape "
G
guosheng 已提交
116 117
              "[batch_size, code_length], where code_length represents the "
              "maximum path length from root to leaf nodes.")
W
weixing02 已提交
118
        .AsIntermediate();
119 120 121 122
    AddOutput("W_Out",
              "(phi::DenseTensor, optional) using input 'W' as Output to make "
              "it mutable"
              "When we are using prefetch")
123
        .AsIntermediate();
J
JiabinYang 已提交
124
    AddAttr<AttrType>("num_classes", "(int, optional), The number of classes")
Y
Yancey1989 已提交
125
        .SetDefault(2);
126 127
    // for parameter prefetch
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
Q
Qiao Longfei 已提交
128 129 130
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
        .SetDefault(std::vector<int64_t>({}));
131 132 133 134 135 136 137
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
        .SetDefault({});
    AddAttr<std::vector<std::string>>(
        "table_names",
T
tianshuo78520a 已提交
138
        "(string vector, the split table names that will be fetched from "
139 140 141
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});
Y
Yancey1989 已提交
142 143
    AddComment(R"DOC(
The hierarchical sigmoid operator organize the classes into a binary tree.
W
weixing02 已提交
144
At each node, a sigmoid function is used to calculate the probability of
W
weixing02 已提交
145 146
belonging to the right branch. This idea is from
"F. Morin, Y. Bengio (AISTATS 05):
Y
Yancey1989 已提交
147 148
Hierarchical Probabilistic Neural Network Language Model."
      )DOC");
J
JiabinYang 已提交
149 150 151 152
    AddAttr<bool>("is_sparse",
                  "(boolean, default false) "
                  "Sparse update.")
        .SetDefault(false);
Y
Yancey1989 已提交
153 154 155
  }
};

156 157 158 159
/*
 * Inputs: X, W, Label, PathTable, PathCode, PreOut, Out@GRAD
 * Outputs: X@GRAD, W@GRAD, Bias@GRAD
 */
H
hong 已提交
160 161
template <typename T>
class HierarchicalSigmoidGradMaker : public framework::SingleGradOpMaker<T> {
162
 public:
H
hong 已提交
163
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
164

165
  void Apply(GradOpPtr<T> op) const override {
166 167
    op->SetType(this->ForwardOpType() + "_grad");
    // Inputs: X, W, Label, PathTable, PathCode, PreOut, Out@GRAD
H
hong 已提交
168 169 170 171 172 173 174 175
    op->SetInput("X", this->Input("X"));
    op->SetInput("W", this->Input("W"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput("Label", this->Input("Label"));
    op->SetInput("PathTable", this->Input("PathTable"));
    op->SetInput("PathCode", this->Input("PathCode"));
    op->SetInput("PreOut", this->Output("PreOut"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
176 177

    // Outputs: X@GRAD, W@GRAD, Bias@GRAD
H
hong 已提交
178 179 180 181
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetAttrMap(this->Attrs());
182 183 184
  }
};

W
weixing02 已提交
185 186 187 188
class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
189 190
    OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "hsigmoid_grad");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "hsigmoid_grad");
191 192 193 194
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   "Out@Grad",
                   "hsigmoid_grad");
195
    OP_INOUT_CHECK(ctx->HasInput("PreOut"), "Input", "PreOut", "hsigmoid_grad");
196 197 198 199 200 201 202 203
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("W")),
                   "Output",
                   "W@Grad",
                   "hsigmoid_grad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")),
                   "Output",
                   "X@Grad",
                   "hsigmoid_grad");
204 205 206 207

    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
      ctx->SetOutputDim(framework::GradVarName("Bias"),
                        ctx->GetInputDim("Bias"));
J
JiabinYang 已提交
208
    }
209
    ctx->SetOutputDim(framework::GradVarName("W"), ctx->GetInputDim("W"));
W
weixing02 已提交
210
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
J
JiabinYang 已提交
211
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
W
weixing02 已提交
212 213 214
  }

 protected:
215
  phi::KernelKey GetExpectedKernelType(
W
weixing02 已提交
216
      const framework::ExecutionContext& ctx) const override {
217 218
    return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
                          ctx.GetPlace());
W
weixing02 已提交
219 220 221
  }
};

J
JiabinYang 已提交
222 223 224
class HierarchicalSigmoidGradOpGradVarTypeInference
    : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
225
  void operator()(framework::InferVarTypeContext* ctx) const override {
226 227 228 229
    auto w_grad_var_name = framework::GradVarName("W");
    auto bias_grad_var_name = framework::GradVarName("Bias");
    if (ctx->HasOutput(bias_grad_var_name)) {
      VLOG(3) << "hierarchical_sigmoid_grad op "
230 231
              << framework::GradVarName("Bias")
              << " is set to phi::DenseTensor";
232 233
      ctx->SetOutputType(bias_grad_var_name,
                         framework::proto::VarType::LOD_TENSOR);
234
    }
235

M
minqiyang 已提交
236
    auto attr = ctx->GetAttr("is_sparse");
R
Ruibiao Chen 已提交
237
    bool is_sparse = PADDLE_GET(bool, attr);
J
JiabinYang 已提交
238
    if (is_sparse) {
239 240
      VLOG(3) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
241 242
      ctx->SetOutputType(w_grad_var_name,
                         framework::proto::VarType::SELECTED_ROWS);
J
JiabinYang 已提交
243
    } else {
244
      VLOG(3) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
245
              << " is set to phi::DenseTensor";
246 247
      ctx->SetOutputType(w_grad_var_name,
                         framework::proto::VarType::LOD_TENSOR);
248
    }
249 250

    ctx->SetOutputDataType(w_grad_var_name, ctx->GetInputDataType("W"));
J
JiabinYang 已提交
251 252 253
  }
};

254
DECLARE_NO_NEED_BUFFER_VARS_INFERER(
255
    HierarchicalSigmoidGradOpNoNeedBufferVarInferer, "Bias");
256

Y
Yancey1989 已提交
257 258 259 260
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
261 262
DECLARE_INFER_SHAPE_FUNCTOR(hierarchical_sigmoid,
                            HierarchicalSigmoidInferShapeFunctor,
263
                            PD_INFER_META(phi::HSigmoidLossInferMeta));
264 265
REGISTER_OPERATOR(hierarchical_sigmoid,
                  ops::HierarchicalSigmoidOp,
266 267 268 269
                  ops::HierarchicalSigmoidOpMaker<int>,
                  ops::HierarchicalSigmoidGradMaker<paddle::framework::OpDesc>,
                  ops::HierarchicalSigmoidGradMaker<paddle::imperative::OpBase>,
                  HierarchicalSigmoidInferShapeFunctor);
270 271
REGISTER_OPERATOR(hierarchical_sigmoid_grad,
                  ops::HierarchicalSigmoidGradOp,
272
                  ops::HierarchicalSigmoidGradOpGradVarTypeInference,
273
                  ops::HierarchicalSigmoidGradOpNoNeedBufferVarInferer);