hierarchical_sigmoid_op.cc 11.7 KB
Newer Older
Y
Yancey1989 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
weixing02 已提交
15
#include "paddle/fluid/operators/hierarchical_sigmoid_op.h"
16
#include <string>
W
weixing02 已提交
17
#include <vector>
Y
Yancey1989 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
namespace paddle {
namespace operators {

/**
 * Organize the classes into a binary tree. At each node, a sigmoid function
 * is used to calculate the probability of belonging to the right branch.
 * This idea is from "F. Morin, Y. Bengio (AISTATS 05):
 * Hierarchical Probabilistic Neural Network Language Model."
 *
 * Here we uses a simple way of making the binary tree.
 * Assuming the number of classes C = 6,
 * The classes are organized as a binary tree in the following way:
 *
 * @code{.py}
 * *-*-*- 2
 * | | |- 3
 * | |
 * | |-*- 4
 * |   |- 5
 * |
 * |-*- 0
 *   |- 1
 * @endcode
 *
 * where * indicates an internal node, and each leaf node represents a class.
 * - Node 0 ... C-2 are internal nodes.
 * - Node C-1 ... 2C-2 are leaf nodes.
 * - Class c is represented by leaf node \f$c+C-1\f$.
 *
 * We assign an id for each node:
 * - the id of root be 0.
 * - the left child of a node i is 2*i+1.
 * - the right child of a node i is 2*i+2.
 *
 * It's easy to see that:
 * - the parent of node i is \f$\left\lfloor(i-1)/2\right\rfloor\f$.
 * - the j-th level ancestor of node i is
 * \f$\left\lfloor(i+1)/2^{j+1}\right\rfloor - 1\f$.
 * - A node i is a left child of its parent if \f$(i-1)\%2==0\f$.
 *
 */

class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
64 65 66 67 68 69
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "hsigmoid");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "hsigmoid");
    OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "hsigmoid");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "hsigmoid");
    OP_INOUT_CHECK(ctx->HasOutput("PreOut"), "Output", "PreOut", "hsigmoid");

70 71
    auto with_prefetch = ctx->Attrs().Get<bool>("remote_prefetch");
    if (with_prefetch) {
72
      OP_INOUT_CHECK(ctx->HasOutput("W_Out"), "Output", "W_Out", "hsigmoid");
73
    }
L
Linjie Chen 已提交
74 75 76 77 78 79 80 81 82 83 84
    const int64_t input_dims = ctx->GetInputDim("X")[0];
    const int64_t label_dims = ctx->GetInputDim("Label")[0];
    PADDLE_ENFORCE_EQ(input_dims, label_dims,
                      platform::errors::InvalidArgument(
                          "The first dimension of "
                          "input and label is expected to be the same. "
                          "But received input's first dimension is %d; "
                          "label's first dimension is %d.",
                          input_dims, label_dims));

    std::vector<int64_t> output_shape({input_dims, 1});
85
    ctx->SetOutputDim("Out", phi::make_ddim(output_shape));
J
JiabinYang 已提交
86
    ctx->ShareLoD("X", /*->*/ "Out");
Y
Yancey1989 已提交
87
  }
Y
Yancey1989 已提交
88 89

 protected:
W
weixing02 已提交
90
  framework::OpKernelType GetExpectedKernelType(
Y
Yancey1989 已提交
91
      const framework::ExecutionContext& ctx) const override {
92 93
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
Y
Yancey1989 已提交
94
  }
Y
Yancey1989 已提交
95 96
};

97 98 99 100
/*
 * Inputs: X, W, Label, PathTable, PathCode, Bias
 * Outputs: Out, PreOut, W_out
 */
W
weixing02 已提交
101
template <typename AttrType>
Y
Yancey1989 已提交
102 103
class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
W
weixing02 已提交
104
  void Make() override {
Y
Yancey1989 已提交
105
    AddInput("X",
J
JiabinYang 已提交
106
             "(LoDTensor, required) The input tensor with shape [N, D], "
G
guosheng 已提交
107
             "where N is the size of mini-batch, and D is the feature size.");
Y
Yancey1989 已提交
108
    AddInput("W",
J
JiabinYang 已提交
109
             "(LoDTensor, required), The parameters of hierarchical "
G
guosheng 已提交
110
             "sigmoid operator, each of them is a 2-D tensor, the shape is"
111
             "[K, D]. Which K is the num of non-leaf node in Path Tree");
W
weixing02 已提交
112
    AddInput("Label",
J
JiabinYang 已提交
113
             "(LoDTensor, required), The labels of training data. It's a"
G
guosheng 已提交
114
             "tensor with shape [N, 1].");
115
    AddInput("PathTable",
J
JiabinYang 已提交
116
             "(LoDTensor, optional), The Path Table from root to current word"
117 118
             "it should have shape like [N, L], L is the length of the Path")
        .AsDispensable();
J
JiabinYang 已提交
119
    AddInput(
J
JiabinYang 已提交
120
        "PathCode",
J
JiabinYang 已提交
121 122 123
        "(LoDTensor, optional), The Code on each Node of the Path from root "
        "to current word"
        "it should have shape like [N, L], L is the length of the Path")
124
        .AsDispensable();
Y
Yancey1989 已提交
125
    AddInput("Bias",
J
JiabinYang 已提交
126
             "(LoDTensor, optional), The bias is a tensor with shape or "
127
             "[num_classes, 1]"
128 129
             "[num_classes - 1, 1].")
        .AsDispensable();
J
JiabinYang 已提交
130 131 132 133
    AddOutput(
        "Out",
        "(LoDTensor, required) The output of hierarchical sigmoid operator."
        "The shape is [N, 1].");
W
weixing02 已提交
134
    AddOutput("PreOut",
J
JiabinYang 已提交
135
              "(LoDTensor, required) A intermedia 2-D tensor with shape "
G
guosheng 已提交
136 137
              "[batch_size, code_length], where code_length represents the "
              "maximum path length from root to leaf nodes.")
W
weixing02 已提交
138
        .AsIntermediate();
139 140
    AddOutput(
        "W_Out",
T
tianshuo78520a 已提交
141
        "(LoDTensor, optional) using input 'W' as Output to make it mutable"
142 143
        "When we are using prefetch")
        .AsIntermediate();
J
JiabinYang 已提交
144
    AddAttr<AttrType>("num_classes", "(int, optional), The number of classes")
Y
Yancey1989 已提交
145
        .SetDefault(2);
146 147 148
    // for parameter prefetch
    AddAttr<bool>("remote_prefetch", "").SetDefault(false);
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
Q
Qiao Longfei 已提交
149 150 151
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
        .SetDefault(std::vector<int64_t>({}));
152 153 154 155 156 157 158
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
        .SetDefault({});
    AddAttr<std::vector<std::string>>(
        "table_names",
T
tianshuo78520a 已提交
159
        "(string vector, the split table names that will be fetched from "
160 161 162
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});
Y
Yancey1989 已提交
163 164
    AddComment(R"DOC(
The hierarchical sigmoid operator organize the classes into a binary tree.
W
weixing02 已提交
165
At each node, a sigmoid function is used to calculate the probability of
W
weixing02 已提交
166 167
belonging to the right branch. This idea is from
"F. Morin, Y. Bengio (AISTATS 05):
Y
Yancey1989 已提交
168 169
Hierarchical Probabilistic Neural Network Language Model."
      )DOC");
J
JiabinYang 已提交
170 171 172 173
    AddAttr<bool>("is_sparse",
                  "(boolean, default false) "
                  "Sparse update.")
        .SetDefault(false);
Y
Yancey1989 已提交
174 175 176
  }
};

177 178 179 180
/*
 * Inputs: X, W, Label, PathTable, PathCode, PreOut, Out@GRAD
 * Outputs: X@GRAD, W@GRAD, Bias@GRAD
 */
H
hong 已提交
181 182
template <typename T>
class HierarchicalSigmoidGradMaker : public framework::SingleGradOpMaker<T> {
183
 public:
H
hong 已提交
184
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
185

186
  void Apply(GradOpPtr<T> op) const override {
187 188
    op->SetType(this->ForwardOpType() + "_grad");
    // Inputs: X, W, Label, PathTable, PathCode, PreOut, Out@GRAD
H
hong 已提交
189 190 191 192 193 194 195 196
    op->SetInput("X", this->Input("X"));
    op->SetInput("W", this->Input("W"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput("Label", this->Input("Label"));
    op->SetInput("PathTable", this->Input("PathTable"));
    op->SetInput("PathCode", this->Input("PathCode"));
    op->SetInput("PreOut", this->Output("PreOut"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
197 198

    // Outputs: X@GRAD, W@GRAD, Bias@GRAD
H
hong 已提交
199 200 201 202
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetAttrMap(this->Attrs());
203 204 205
  }
};

W
weixing02 已提交
206 207 208 209
class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
210 211 212 213 214 215 216 217 218
    OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "hsigmoid_grad");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "hsigmoid_grad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@Grad", "hsigmoid_grad");
    OP_INOUT_CHECK(ctx->HasInput("PreOut"), "Input", "PreOut", "hsigmoid_grad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("W")), "Output",
                   "W@Grad", "hsigmoid_grad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   "X@Grad", "hsigmoid_grad");
219 220 221 222

    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
      ctx->SetOutputDim(framework::GradVarName("Bias"),
                        ctx->GetInputDim("Bias"));
J
JiabinYang 已提交
223
    }
224
    ctx->SetOutputDim(framework::GradVarName("W"), ctx->GetInputDim("W"));
W
weixing02 已提交
225
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
J
JiabinYang 已提交
226
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
W
weixing02 已提交
227 228 229 230 231
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
232 233
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
W
weixing02 已提交
234 235 236
  }
};

J
JiabinYang 已提交
237 238 239
class HierarchicalSigmoidGradOpGradVarTypeInference
    : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
240
  void operator()(framework::InferVarTypeContext* ctx) const override {
241 242 243 244 245 246 247
    auto w_grad_var_name = framework::GradVarName("W");
    auto bias_grad_var_name = framework::GradVarName("Bias");
    if (ctx->HasOutput(bias_grad_var_name)) {
      VLOG(3) << "hierarchical_sigmoid_grad op "
              << framework::GradVarName("Bias") << " is set to LoDTensor";
      ctx->SetOutputType(bias_grad_var_name,
                         framework::proto::VarType::LOD_TENSOR);
248
    }
249

M
minqiyang 已提交
250
    auto attr = ctx->GetAttr("is_sparse");
251
    bool is_sparse = BOOST_GET(bool, attr);
J
JiabinYang 已提交
252
    if (is_sparse) {
253 254
      VLOG(3) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
255 256
      ctx->SetOutputType(w_grad_var_name,
                         framework::proto::VarType::SELECTED_ROWS);
J
JiabinYang 已提交
257
    } else {
258 259
      VLOG(3) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
260 261
      ctx->SetOutputType(w_grad_var_name,
                         framework::proto::VarType::LOD_TENSOR);
262
    }
263 264

    ctx->SetOutputDataType(w_grad_var_name, ctx->GetInputDataType("W"));
J
JiabinYang 已提交
265 266 267
  }
};

268
DECLARE_NO_NEED_BUFFER_VARS_INFERER(
269
    HierarchicalSigmoidGradOpNoNeedBufferVarInferer, "Bias");
270

Y
Yancey1989 已提交
271 272 273 274
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
275 276 277 278 279
REGISTER_OPERATOR(
    hierarchical_sigmoid, ops::HierarchicalSigmoidOp,
    ops::HierarchicalSigmoidOpMaker<int>,
    ops::HierarchicalSigmoidGradMaker<paddle::framework::OpDesc>,
    ops::HierarchicalSigmoidGradMaker<paddle::imperative::OpBase>);
J
JiabinYang 已提交
280
REGISTER_OPERATOR(hierarchical_sigmoid_grad, ops::HierarchicalSigmoidGradOp,
281
                  ops::HierarchicalSigmoidGradOpGradVarTypeInference,
282
                  ops::HierarchicalSigmoidGradOpNoNeedBufferVarInferer);
W
weixing02 已提交
283 284 285 286 287 288 289 290 291 292 293
REGISTER_OP_CPU_KERNEL(
    hierarchical_sigmoid,
    ops::HierarchicalSigmoidOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::HierarchicalSigmoidOpKernel<paddle::platform::CPUDeviceContext,
                                     double>);
REGISTER_OP_CPU_KERNEL(
    hierarchical_sigmoid_grad,
    ops::HierarchicalSigmoidGradOpKernel<paddle::platform::CPUDeviceContext,
                                         float>,
    ops::HierarchicalSigmoidGradOpKernel<paddle::platform::CPUDeviceContext,
                                         double>);