hierarchical_sigmoid_op.cc 12.5 KB
Newer Older
Y
Yancey1989 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
weixing02 已提交
15
#include "paddle/fluid/operators/hierarchical_sigmoid_op.h"
16
#include <string>
W
weixing02 已提交
17
#include <vector>
Y
Yancey1989 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
namespace paddle {
namespace operators {

/**
 * Organize the classes into a binary tree. At each node, a sigmoid function
 * is used to calculate the probability of belonging to the right branch.
 * This idea is from "F. Morin, Y. Bengio (AISTATS 05):
 * Hierarchical Probabilistic Neural Network Language Model."
 *
 * Here we uses a simple way of making the binary tree.
 * Assuming the number of classes C = 6,
 * The classes are organized as a binary tree in the following way:
 *
 * @code{.py}
 * *-*-*- 2
 * | | |- 3
 * | |
 * | |-*- 4
 * |   |- 5
 * |
 * |-*- 0
 *   |- 1
 * @endcode
 *
 * where * indicates an internal node, and each leaf node represents a class.
 * - Node 0 ... C-2 are internal nodes.
 * - Node C-1 ... 2C-2 are leaf nodes.
 * - Class c is represented by leaf node \f$c+C-1\f$.
 *
 * We assign an id for each node:
 * - the id of root be 0.
 * - the left child of a node i is 2*i+1.
 * - the right child of a node i is 2*i+2.
 *
 * It's easy to see that:
 * - the parent of node i is \f$\left\lfloor(i-1)/2\right\rfloor\f$.
 * - the j-th level ancestor of node i is
 * \f$\left\lfloor(i+1)/2^{j+1}\right\rfloor - 1\f$.
 * - A node i is a left child of its parent if \f$(i-1)\%2==0\f$.
 *
 */

class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::NotFound(
                          "Input(X) of HierarchicalSigmoidOp is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Label"), true,
        platform::errors::NotFound(
            "Input(Label) of HierarchicalSigmoidOp is not found."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true,
                      platform::errors::NotFound(
                          "Input(W) of HierarchicalSigmoidOp is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Out"), true,
        platform::errors::NotFound(
            "Output(Out) of HierarchicalSigmoidOp is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("PreOut"), true,
        platform::errors::NotFound(
            "Output(PreOut) of HierarchicalSigmoidOp is not found."));
82 83
    auto with_prefetch = ctx->Attrs().Get<bool>("remote_prefetch");
    if (with_prefetch) {
84 85 86 87
      PADDLE_ENFORCE_EQ(
          ctx->HasOutput("W_Out"), true,
          platform::errors::NotFound(
              "Output(W_Out) of HierarchicalSigmoidOp is not found."));
88
    }
Y
Yancey1989 已提交
89
    const int64_t batch_size = ctx->GetInputDim("X")[0];
Y
Yancey1989 已提交
90
    std::vector<int64_t> output_shape({batch_size, 1});
Y
Yancey1989 已提交
91
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
J
JiabinYang 已提交
92
    ctx->ShareLoD("X", /*->*/ "Out");
Y
Yancey1989 已提交
93
  }
Y
Yancey1989 已提交
94 95

 protected:
W
weixing02 已提交
96
  framework::OpKernelType GetExpectedKernelType(
Y
Yancey1989 已提交
97
      const framework::ExecutionContext& ctx) const override {
98 99
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
Y
Yancey1989 已提交
100
  }
Y
Yancey1989 已提交
101 102
};

103 104 105 106
/*
 * Inputs: X, W, Label, PathTable, PathCode, Bias
 * Outputs: Out, PreOut, W_out
 */
W
weixing02 已提交
107
template <typename AttrType>
Y
Yancey1989 已提交
108 109
class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
W
weixing02 已提交
110
  void Make() override {
Y
Yancey1989 已提交
111
    AddInput("X",
J
JiabinYang 已提交
112
             "(LoDTensor, required) The input tensor with shape [N, D], "
G
guosheng 已提交
113
             "where N is the size of mini-batch, and D is the feature size.");
Y
Yancey1989 已提交
114
    AddInput("W",
J
JiabinYang 已提交
115
             "(LoDTensor, required), The parameters of hierarchical "
G
guosheng 已提交
116
             "sigmoid operator, each of them is a 2-D tensor, the shape is"
117
             "[K, D]. Which K is the num of non-leaf node in Path Tree");
W
weixing02 已提交
118
    AddInput("Label",
J
JiabinYang 已提交
119
             "(LoDTensor, required), The labels of training data. It's a"
G
guosheng 已提交
120
             "tensor with shape [N, 1].");
121
    AddInput("PathTable",
J
JiabinYang 已提交
122
             "(LoDTensor, optional), The Path Table from root to current word"
123 124
             "it should have shape like [N, L], L is the length of the Path")
        .AsDispensable();
J
JiabinYang 已提交
125
    AddInput(
J
JiabinYang 已提交
126
        "PathCode",
J
JiabinYang 已提交
127 128 129
        "(LoDTensor, optional), The Code on each Node of the Path from root "
        "to current word"
        "it should have shape like [N, L], L is the length of the Path")
130
        .AsDispensable();
Y
Yancey1989 已提交
131
    AddInput("Bias",
J
JiabinYang 已提交
132
             "(LoDTensor, optional), The bias is a tensor with shape or "
133
             "[num_classes, 1]"
134 135
             "[num_classes - 1, 1].")
        .AsDispensable();
J
JiabinYang 已提交
136 137 138 139
    AddOutput(
        "Out",
        "(LoDTensor, required) The output of hierarchical sigmoid operator."
        "The shape is [N, 1].");
W
weixing02 已提交
140
    AddOutput("PreOut",
J
JiabinYang 已提交
141
              "(LoDTensor, required) A intermedia 2-D tensor with shape "
G
guosheng 已提交
142 143
              "[batch_size, code_length], where code_length represents the "
              "maximum path length from root to leaf nodes.")
W
weixing02 已提交
144
        .AsIntermediate();
145 146
    AddOutput(
        "W_Out",
T
tianshuo78520a 已提交
147
        "(LoDTensor, optional) using input 'W' as Output to make it mutable"
148 149
        "When we are using prefetch")
        .AsIntermediate();
J
JiabinYang 已提交
150
    AddAttr<AttrType>("num_classes", "(int, optional), The number of classes")
Y
Yancey1989 已提交
151
        .SetDefault(2);
152 153 154
    // for parameter prefetch
    AddAttr<bool>("remote_prefetch", "").SetDefault(false);
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
Q
Qiao Longfei 已提交
155 156 157
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
        .SetDefault(std::vector<int64_t>({}));
158 159 160 161 162 163 164
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
        .SetDefault({});
    AddAttr<std::vector<std::string>>(
        "table_names",
T
tianshuo78520a 已提交
165
        "(string vector, the split table names that will be fetched from "
166 167 168
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});
Y
Yancey1989 已提交
169 170
    AddComment(R"DOC(
The hierarchical sigmoid operator organize the classes into a binary tree.
W
weixing02 已提交
171
At each node, a sigmoid function is used to calculate the probability of
W
weixing02 已提交
172 173
belonging to the right branch. This idea is from
"F. Morin, Y. Bengio (AISTATS 05):
Y
Yancey1989 已提交
174 175
Hierarchical Probabilistic Neural Network Language Model."
      )DOC");
J
JiabinYang 已提交
176 177 178 179
    AddAttr<bool>("is_sparse",
                  "(boolean, default false) "
                  "Sparse update.")
        .SetDefault(false);
Y
Yancey1989 已提交
180 181 182
  }
};

183 184 185 186
/*
 * Inputs: X, W, Label, PathTable, PathCode, PreOut, Out@GRAD
 * Outputs: X@GRAD, W@GRAD, Bias@GRAD
 */
H
hong 已提交
187 188
template <typename T>
class HierarchicalSigmoidGradMaker : public framework::SingleGradOpMaker<T> {
189
 public:
H
hong 已提交
190
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
191

H
hong 已提交
192 193
  std::unique_ptr<T> Apply() const override {
    auto* op = new T();
194 195
    op->SetType(this->ForwardOpType() + "_grad");
    // Inputs: X, W, Label, PathTable, PathCode, PreOut, Out@GRAD
H
hong 已提交
196 197 198 199 200 201 202 203
    op->SetInput("X", this->Input("X"));
    op->SetInput("W", this->Input("W"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput("Label", this->Input("Label"));
    op->SetInput("PathTable", this->Input("PathTable"));
    op->SetInput("PathCode", this->Input("PathCode"));
    op->SetInput("PreOut", this->Output("PreOut"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
204 205

    // Outputs: X@GRAD, W@GRAD, Bias@GRAD
H
hong 已提交
206 207 208 209
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetAttrMap(this->Attrs());
210

H
hong 已提交
211
    return std::unique_ptr<T>(op);
212 213 214
  }
};

W
weixing02 已提交
215 216 217 218
class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("W"), true,
        platform::errors::NotFound(
            "Input(W) of HierarchicalSigmoidGradOp is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Label"), true,
        platform::errors::NotFound(
            "Input(Label) of HierarchicalSigmoidGradOp is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        platform::errors::NotFound(
            "Input(Out@Grad) of HierarchicalSigmoidGradOp is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("PreOut"), true,
        platform::errors::NotFound(
            "Input(Preout) of HierarchicalSigmoidGradOp is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput(framework::GradVarName("W")), true,
        platform::errors::NotFound(
            "Output(W@Grad of HierarchicalSigmoidGradOp is not found."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput(framework::GradVarName("X")), true,
        platform::errors::NotFound(
            "Output(X@Grad of HierarchicalSigmoidGradOp is not found."));
243 244 245 246

    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
      ctx->SetOutputDim(framework::GradVarName("Bias"),
                        ctx->GetInputDim("Bias"));
J
JiabinYang 已提交
247
    }
248
    ctx->SetOutputDim(framework::GradVarName("W"), ctx->GetInputDim("W"));
W
weixing02 已提交
249
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
J
JiabinYang 已提交
250
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
W
weixing02 已提交
251 252 253 254 255
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
256 257
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
W
weixing02 已提交
258 259 260
  }
};

J
JiabinYang 已提交
261 262 263
class HierarchicalSigmoidGradOpGradVarTypeInference
    : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
264 265
  void operator()(framework::InferVarTypeContext* ctx) const override {
    auto w_grad_var_name = ctx->Output(framework::GradVarName("W")).front();
266
    auto has_bias_grad_var = ctx->HasOutput(framework::GradVarName("Bias"));
267 268
    std::string bias_grad_var_name;
    bool hasBias = false;
269
    if (has_bias_grad_var) {
270
      hasBias = true;
M
minqiyang 已提交
271
      bias_grad_var_name = ctx->Output(framework::GradVarName("Bias")).front();
272
    }
M
minqiyang 已提交
273
    auto attr = ctx->GetAttr("is_sparse");
J
JiabinYang 已提交
274 275
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
276 277
      VLOG(3) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
M
minqiyang 已提交
278
      ctx->SetType(w_grad_var_name, framework::proto::VarType::SELECTED_ROWS);
J
JiabinYang 已提交
279
    } else {
280 281
      VLOG(3) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
M
minqiyang 已提交
282
      ctx->SetType(w_grad_var_name, framework::proto::VarType::LOD_TENSOR);
283 284
    }
    if (hasBias) {
285 286
      VLOG(3) << "hierarchical_sigmoid_grad op "
              << framework::GradVarName("Bias") << " is set to LoDTensor";
M
minqiyang 已提交
287
      ctx->SetType(bias_grad_var_name, framework::proto::VarType::LOD_TENSOR);
J
JiabinYang 已提交
288
    }
M
minqiyang 已提交
289
    ctx->SetDataType(w_grad_var_name, ctx->GetDataType(ctx->Input("W")[0]));
J
JiabinYang 已提交
290 291 292
  }
};

293 294 295
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
    HierarchicalSigmoidGradOpNoNeedBufferVarInference, "Bias");

Y
Yancey1989 已提交
296 297 298 299
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
300 301 302 303 304
REGISTER_OPERATOR(
    hierarchical_sigmoid, ops::HierarchicalSigmoidOp,
    ops::HierarchicalSigmoidOpMaker<int>,
    ops::HierarchicalSigmoidGradMaker<paddle::framework::OpDesc>,
    ops::HierarchicalSigmoidGradMaker<paddle::imperative::OpBase>);
J
JiabinYang 已提交
305
REGISTER_OPERATOR(hierarchical_sigmoid_grad, ops::HierarchicalSigmoidGradOp,
306 307
                  ops::HierarchicalSigmoidGradOpGradVarTypeInference,
                  ops::HierarchicalSigmoidGradOpNoNeedBufferVarInference);
W
weixing02 已提交
308 309 310 311 312 313 314 315 316 317 318
REGISTER_OP_CPU_KERNEL(
    hierarchical_sigmoid,
    ops::HierarchicalSigmoidOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::HierarchicalSigmoidOpKernel<paddle::platform::CPUDeviceContext,
                                     double>);
REGISTER_OP_CPU_KERNEL(
    hierarchical_sigmoid_grad,
    ops::HierarchicalSigmoidGradOpKernel<paddle::platform::CPUDeviceContext,
                                         float>,
    ops::HierarchicalSigmoidGradOpKernel<paddle::platform::CPUDeviceContext,
                                         double>);