hierarchical_sigmoid_op.cc 10.3 KB
Newer Older
Y
Yancey1989 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <string>
W
weixing02 已提交
16
#include <vector>
17 18 19 20 21

#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/infermeta/multiary.h"

Y
Yancey1989 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
namespace paddle {
namespace operators {

/**
 * Organize the classes into a binary tree. At each node, a sigmoid function
 * is used to calculate the probability of belonging to the right branch.
 * This idea is from "F. Morin, Y. Bengio (AISTATS 05):
 * Hierarchical Probabilistic Neural Network Language Model."
 *
 * Here we uses a simple way of making the binary tree.
 * Assuming the number of classes C = 6,
 * The classes are organized as a binary tree in the following way:
 *
 * @code{.py}
 * *-*-*- 2
 * | | |- 3
 * | |
 * | |-*- 4
 * |   |- 5
 * |
 * |-*- 0
 *   |- 1
 * @endcode
 *
 * where * indicates an internal node, and each leaf node represents a class.
 * - Node 0 ... C-2 are internal nodes.
 * - Node C-1 ... 2C-2 are leaf nodes.
 * - Class c is represented by leaf node \f$c+C-1\f$.
 *
 * We assign an id for each node:
 * - the id of root be 0.
 * - the left child of a node i is 2*i+1.
 * - the right child of a node i is 2*i+2.
 *
 * It's easy to see that:
 * - the parent of node i is \f$\left\lfloor(i-1)/2\right\rfloor\f$.
 * - the j-th level ancestor of node i is
 * \f$\left\lfloor(i+1)/2^{j+1}\right\rfloor - 1\f$.
 * - A node i is a left child of its parent if \f$(i-1)\%2==0\f$.
 *
 */

class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yancey1989 已提交
67 68

 protected:
W
weixing02 已提交
69
  framework::OpKernelType GetExpectedKernelType(
Y
Yancey1989 已提交
70
      const framework::ExecutionContext& ctx) const override {
71 72
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
Y
Yancey1989 已提交
73
  }
Y
Yancey1989 已提交
74 75
};

76 77 78 79
/*
 * Inputs: X, W, Label, PathTable, PathCode, Bias
 * Outputs: Out, PreOut, W_out
 */
W
weixing02 已提交
80
template <typename AttrType>
Y
Yancey1989 已提交
81 82
class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
W
weixing02 已提交
83
  void Make() override {
Y
Yancey1989 已提交
84
    AddInput("X",
J
JiabinYang 已提交
85
             "(LoDTensor, required) The input tensor with shape [N, D], "
G
guosheng 已提交
86
             "where N is the size of mini-batch, and D is the feature size.");
Y
Yancey1989 已提交
87
    AddInput("W",
J
JiabinYang 已提交
88
             "(LoDTensor, required), The parameters of hierarchical "
G
guosheng 已提交
89
             "sigmoid operator, each of them is a 2-D tensor, the shape is"
90
             "[K, D]. Which K is the num of non-leaf node in Path Tree");
W
weixing02 已提交
91
    AddInput("Label",
J
JiabinYang 已提交
92
             "(LoDTensor, required), The labels of training data. It's a"
G
guosheng 已提交
93
             "tensor with shape [N, 1].");
94
    AddInput("PathTable",
J
JiabinYang 已提交
95
             "(LoDTensor, optional), The Path Table from root to current word"
96 97
             "it should have shape like [N, L], L is the length of the Path")
        .AsDispensable();
J
JiabinYang 已提交
98
    AddInput(
J
JiabinYang 已提交
99
        "PathCode",
J
JiabinYang 已提交
100 101 102
        "(LoDTensor, optional), The Code on each Node of the Path from root "
        "to current word"
        "it should have shape like [N, L], L is the length of the Path")
103
        .AsDispensable();
Y
Yancey1989 已提交
104
    AddInput("Bias",
J
JiabinYang 已提交
105
             "(LoDTensor, optional), The bias is a tensor with shape or "
106
             "[num_classes, 1]"
107 108
             "[num_classes - 1, 1].")
        .AsDispensable();
J
JiabinYang 已提交
109 110 111 112
    AddOutput(
        "Out",
        "(LoDTensor, required) The output of hierarchical sigmoid operator."
        "The shape is [N, 1].");
W
weixing02 已提交
113
    AddOutput("PreOut",
J
JiabinYang 已提交
114
              "(LoDTensor, required) A intermedia 2-D tensor with shape "
G
guosheng 已提交
115 116
              "[batch_size, code_length], where code_length represents the "
              "maximum path length from root to leaf nodes.")
W
weixing02 已提交
117
        .AsIntermediate();
118 119
    AddOutput(
        "W_Out",
T
tianshuo78520a 已提交
120
        "(LoDTensor, optional) using input 'W' as Output to make it mutable"
121 122
        "When we are using prefetch")
        .AsIntermediate();
J
JiabinYang 已提交
123
    AddAttr<AttrType>("num_classes", "(int, optional), The number of classes")
Y
Yancey1989 已提交
124
        .SetDefault(2);
125 126 127
    // for parameter prefetch
    AddAttr<bool>("remote_prefetch", "").SetDefault(false);
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
Q
Qiao Longfei 已提交
128 129 130
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
        .SetDefault(std::vector<int64_t>({}));
131 132 133 134 135 136 137
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
        .SetDefault({});
    AddAttr<std::vector<std::string>>(
        "table_names",
T
tianshuo78520a 已提交
138
        "(string vector, the split table names that will be fetched from "
139 140 141
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});
Y
Yancey1989 已提交
142 143
    AddComment(R"DOC(
The hierarchical sigmoid operator organize the classes into a binary tree.
W
weixing02 已提交
144
At each node, a sigmoid function is used to calculate the probability of
W
weixing02 已提交
145 146
belonging to the right branch. This idea is from
"F. Morin, Y. Bengio (AISTATS 05):
Y
Yancey1989 已提交
147 148
Hierarchical Probabilistic Neural Network Language Model."
      )DOC");
J
JiabinYang 已提交
149 150 151 152
    AddAttr<bool>("is_sparse",
                  "(boolean, default false) "
                  "Sparse update.")
        .SetDefault(false);
Y
Yancey1989 已提交
153 154 155
  }
};

156 157 158 159
/*
 * Inputs: X, W, Label, PathTable, PathCode, PreOut, Out@GRAD
 * Outputs: X@GRAD, W@GRAD, Bias@GRAD
 */
H
hong 已提交
160 161
template <typename T>
class HierarchicalSigmoidGradMaker : public framework::SingleGradOpMaker<T> {
162
 public:
H
hong 已提交
163
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
164

165
  void Apply(GradOpPtr<T> op) const override {
166 167
    op->SetType(this->ForwardOpType() + "_grad");
    // Inputs: X, W, Label, PathTable, PathCode, PreOut, Out@GRAD
H
hong 已提交
168 169 170 171 172 173 174 175
    op->SetInput("X", this->Input("X"));
    op->SetInput("W", this->Input("W"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput("Label", this->Input("Label"));
    op->SetInput("PathTable", this->Input("PathTable"));
    op->SetInput("PathCode", this->Input("PathCode"));
    op->SetInput("PreOut", this->Output("PreOut"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
176 177

    // Outputs: X@GRAD, W@GRAD, Bias@GRAD
H
hong 已提交
178 179 180 181
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetAttrMap(this->Attrs());
182 183 184
  }
};

W
weixing02 已提交
185 186 187 188
class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
189 190 191 192 193 194 195 196 197
    OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "hsigmoid_grad");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "hsigmoid_grad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@Grad", "hsigmoid_grad");
    OP_INOUT_CHECK(ctx->HasInput("PreOut"), "Input", "PreOut", "hsigmoid_grad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("W")), "Output",
                   "W@Grad", "hsigmoid_grad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   "X@Grad", "hsigmoid_grad");
198 199 200 201

    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
      ctx->SetOutputDim(framework::GradVarName("Bias"),
                        ctx->GetInputDim("Bias"));
J
JiabinYang 已提交
202
    }
203
    ctx->SetOutputDim(framework::GradVarName("W"), ctx->GetInputDim("W"));
W
weixing02 已提交
204
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
J
JiabinYang 已提交
205
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
W
weixing02 已提交
206 207 208 209 210
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
211 212
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
W
weixing02 已提交
213 214 215
  }
};

J
JiabinYang 已提交
216 217 218
class HierarchicalSigmoidGradOpGradVarTypeInference
    : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
219
  void operator()(framework::InferVarTypeContext* ctx) const override {
220 221 222 223 224 225 226
    auto w_grad_var_name = framework::GradVarName("W");
    auto bias_grad_var_name = framework::GradVarName("Bias");
    if (ctx->HasOutput(bias_grad_var_name)) {
      VLOG(3) << "hierarchical_sigmoid_grad op "
              << framework::GradVarName("Bias") << " is set to LoDTensor";
      ctx->SetOutputType(bias_grad_var_name,
                         framework::proto::VarType::LOD_TENSOR);
227
    }
228

M
minqiyang 已提交
229
    auto attr = ctx->GetAttr("is_sparse");
230
    bool is_sparse = BOOST_GET(bool, attr);
J
JiabinYang 已提交
231
    if (is_sparse) {
232 233
      VLOG(3) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
234 235
      ctx->SetOutputType(w_grad_var_name,
                         framework::proto::VarType::SELECTED_ROWS);
J
JiabinYang 已提交
236
    } else {
237 238
      VLOG(3) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
239 240
      ctx->SetOutputType(w_grad_var_name,
                         framework::proto::VarType::LOD_TENSOR);
241
    }
242 243

    ctx->SetOutputDataType(w_grad_var_name, ctx->GetInputDataType("W"));
J
JiabinYang 已提交
244 245 246
  }
};

247
DECLARE_NO_NEED_BUFFER_VARS_INFERER(
248
    HierarchicalSigmoidGradOpNoNeedBufferVarInferer, "Bias");
249

Y
Yancey1989 已提交
250 251 252 253
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
254 255 256 257 258 259 260 261
DECLARE_INFER_SHAPE_FUNCTOR(hierarchical_sigmoid,
                            HierarchicalSigmoidInferShapeFunctor,
                            PD_INFER_META(phi::HierarchicalSigmoidInferMeta));
REGISTER_OPERATOR(hierarchical_sigmoid, ops::HierarchicalSigmoidOp,
                  ops::HierarchicalSigmoidOpMaker<int>,
                  ops::HierarchicalSigmoidGradMaker<paddle::framework::OpDesc>,
                  ops::HierarchicalSigmoidGradMaker<paddle::imperative::OpBase>,
                  HierarchicalSigmoidInferShapeFunctor);
J
JiabinYang 已提交
262
REGISTER_OPERATOR(hierarchical_sigmoid_grad, ops::HierarchicalSigmoidGradOp,
263
                  ops::HierarchicalSigmoidGradOpGradVarTypeInference,
264
                  ops::HierarchicalSigmoidGradOpNoNeedBufferVarInferer);