variable_index.py 28.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import numpy as np
from . import unique_name
from . import core
W
WeiXin 已提交
19
import paddle
20
import warnings
21 22 23 24

MAX_INTEGER = 2**31 - 1


W
WeiXin 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
def is_list_tuple(index, contain_type):
    def _is_list_tuple(item):
        if not (isinstance(item, (list, tuple)) or type(item) == contain_type):
            return False
        if isinstance(item, (tuple, list)):
            for s in item:
                if not _is_list_tuple(s):
                    return False
        return True

    if not isinstance(index, (tuple, list)):
        return False
    for s in index:
        if not _is_list_tuple(s):
            return False
    return True


def is_one_dim_list(index, contain_type):
    if isinstance(index, list):
        for i in index:
            if not isinstance(i, contain_type):
                return False
    else:
        return False
    return True


def get_list_index_shape(var_dims, index_dims):
    var_dims_size = len(var_dims)
    index_dims_size = len(index_dims)

    out_dims_size = var_dims_size - index_dims[0] + index_dims_size - 1

    out_dims_shape = [1] * out_dims_size

61
    out_dims_shape[: index_dims_size - 1] = index_dims[1:]
W
WeiXin 已提交
62

63
    out_dims_shape[index_dims_size - 1 :] = var_dims[index_dims[0] :]
W
WeiXin 已提交
64 65 66 67 68 69 70
    return out_dims_shape


class SliceInfo:
    def __init__(self):
        self.pre_shape = None
        self.indexes = []
W
WeiXin 已提交
71
        self.dtype = None
W
WeiXin 已提交
72 73

    def update(self, index):
74
        if is_list_tuple(index, int) or isinstance(
75 76
            index, (paddle.fluid.Variable, np.ndarray)
        ):
W
WeiXin 已提交
77 78 79 80
            # convert index to Tensor
            if not isinstance(index, paddle.fluid.Variable):
                index = paddle.assign(index)

W
WeiXin 已提交
81 82 83 84 85
            if self.dtype is None:
                self.dtype = index.dtype
            else:
                if index.dtype != self.dtype:
                    raise IndexError(
86 87 88 89
                        "Data type of Tensor/List index should be same. The current data type is {}, but the previous data type is {}.".format(
                            index.dtype, self.dtype
                        )
                    )
W
WeiXin 已提交
90

W
WeiXin 已提交
91 92 93 94 95 96
            self.indexes.append(index)

            if self.pre_shape is None:
                self.pre_shape = index.shape
            else:
                if self.pre_shape != index.shape:
97
                    # broadcast
98 99 100
                    cur_shape = paddle.broadcast_shape(
                        self.pre_shape, index.shape
                    )
W
WeiXin 已提交
101
                    for i in range(len(self.indexes)):
102
                        self.indexes[i] = paddle.broadcast_to(
103 104
                            self.indexes[i], cur_shape
                        )
W
WeiXin 已提交
105 106 107
                self.pre_shape = self.indexes[-1].shape
        else:
            raise ValueError(
108 109 110 111
                "Index should be list/tuple of int or Tensor, but received {}.".format(
                    index
                )
            )
W
WeiXin 已提交
112 113 114 115 116 117 118 119 120

    def shape_stride(self, shape):
        s = [1] * len(shape)
        for i in range(len(shape) - 2, -1, -1):
            s[i] = shape[i + 1] * s[i + 1]

        return s

    def numel(self, shape):
121
        return reduce(lambda x, y: x * y, shape, 1)
W
WeiXin 已提交
122 123 124 125 126 127

    def get_offset_stride(self, tensor_shape):
        for index in self.indexes:
            if not isinstance(index, paddle.fluid.Variable):
                raise ValueError(
                    "only support list/tensor index, but received {}.".format(
128 129 130
                        type(index)
                    )
                )
W
WeiXin 已提交
131 132 133

        if len(self.indexes) <= len(tensor_shape) or len(self.indexes) == 1:
            shape = paddle.stack(self.indexes)
134 135 136
            axes = list(range(1, len(self.pre_shape) + 1)) + [
                0,
            ]
W
WeiXin 已提交
137 138 139

        else:
            raise ValueError(
140 141 142 143
                "too many indices for tensor: tensor is {}-dimensional, but {} were indexed".format(
                    len(tensor_shape), self.pre_shape[0]
                )
            )
W
WeiXin 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

        shape_transpose = paddle.transpose(shape, axes)
        return shape_transpose

    def get_item(self, tensor):
        shape_transpose = self.get_offset_stride(tensor.shape)
        index = paddle.assign(shape_transpose)
        return paddle.gather_nd(tensor, index)

    def set_item(self, tensor_origin, value):

        if not isinstance(value, paddle.fluid.Variable):
            value = paddle.assign(value)
        tensor_type = None

        if tensor_origin.dtype in [
160 161
            core.VarDesc.VarType.FP32,
            core.VarDesc.VarType.FP64,
W
WeiXin 已提交
162 163 164 165 166 167 168 169 170 171 172 173
        ]:
            tensor = tensor_origin
        else:
            tensor_type = tensor_origin.dtype
            tensor = tensor_origin.astype(core.VarDesc.VarType.FP32)

        if value.dtype != tensor.dtype:
            value = value.astype(tensor.dtype)

        shape_transpose = self.get_offset_stride(tensor_origin.shape)
        index = paddle.assign(shape_transpose)

174 175 176 177 178 179 180
        gather_tensor_shape = get_list_index_shape(
            tensor.shape,
            [
                len(self.indexes),
            ]
            + list(self.indexes[-1].shape),
        )
W
WeiXin 已提交
181

182 183 184
        value_dims_bd = [
            1,
        ] * len(gather_tensor_shape)
185
        value_dims_bd[-len(value.shape) :] = list(value.shape)
W
WeiXin 已提交
186 187

        for i in range(len(gather_tensor_shape)):
188
            if not (
189 190
                len(value_dims_bd) == 0
                or value_dims_bd[i] == gather_tensor_shape[i]
191 192 193 194 195 196 197
                or value_dims_bd[i] == 1
            ):
                raise ValueError(
                    "{} can not broadcast into {}".format(
                        value.shape, gather_tensor_shape
                    )
                )
W
WeiXin 已提交
198 199 200

        value_broadcast = paddle.broadcast_to(value, gather_tensor_shape)

201
        value_1d = value_broadcast.reshape(
202 203
            [-1] + gather_tensor_shape[len(index.shape) - 1 :]
        )
W
WeiXin 已提交
204 205 206 207

        index_1d = index.reshape([-1, index.shape[-1]])

        tensor_stride = paddle.assign(
208 209
            self.shape_stride(tensor.shape[: index.shape[-1]])
        )
W
WeiXin 已提交
210 211 212 213 214
        inds = []
        for i in range(index_1d.shape[0]):
            temp = (index_1d[i] * tensor_stride).sum()
            inds.append(temp)
        index_1d = paddle.stack(inds).reshape([-1])
215
        t_reshape = tensor.reshape([-1] + list(tensor.shape[index.shape[-1] :]))
W
WeiXin 已提交
216 217 218 219 220 221 222 223
        out = paddle.scatter(t_reshape, index_1d, value_1d)
        if tensor_type is not None:
            out = out.astype(tensor_type)
        tensor_origin[:] = out.reshape(tensor_origin.shape)

        return tensor_origin


224 225
def replace_ellipsis(var, item):
    from .framework import Variable
226

227 228 229 230 231 232 233 234 235 236
    # Use slice(None) to replace Ellipsis.
    # For var, var.shape = [3,4,5,6]
    #
    #   var[..., 1:2] -> var[:, :, :, 1:2]
    #   var[0, ...] -> var[0]
    #   var[0, ..., 1:2] -> var[0, :, :, 1:2]

    item = list(item)

    # Remove Variable to skip bug when counting Ellipsis
W
WeiXin 已提交
237
    item_remove_var = [
238 239
        ele
        for ele in item
240
        if not isinstance(ele, (Variable, np.ndarray)) and ele is not None
W
WeiXin 已提交
241
    ]
242 243 244 245 246 247 248 249 250 251 252
    ell_count = item_remove_var.count(Ellipsis)
    if ell_count == 0:
        return item
    elif ell_count > 1:
        raise IndexError("An index can only have a single ellipsis ('...')")

    ell_idx = item.index(Ellipsis)

    if ell_idx == len(item) - 1:
        return item[:-1]
    else:
253 254 255
        item[ell_idx : ell_idx + 1] = [slice(None)] * (
            len(var.shape) - len(item) + item.count(None) + 1
        )
256 257 258 259

    return item


W
WeiXin 已提交
260 261 262 263 264 265 266 267 268 269
def replace_ndarray(item):
    new_item = []
    for slice_item in item:
        if isinstance(slice_item, np.ndarray):
            new_item.append(paddle.assign(slice_item))
        else:
            new_item.append(slice_item)
    return new_item


270 271 272 273 274 275 276 277 278 279 280
def replace_none(item):
    new_item = []
    none_axes = []
    for i, slice_item in enumerate(item):
        if slice_item is None:
            none_axes.append(i)
        else:
            new_item.append(slice_item)
    return new_item, none_axes


281 282
def is_integer_or_scalar_tensor(ele):
    from .framework import Variable
283

284 285 286
    if isinstance(ele, int):
        return True
    elif isinstance(ele, Variable):
J
JYChen 已提交
287 288 289 290 291 292 293 294 295
        # NOTE(zoooo0820): For compatibility, if FLAGS_set_to_1d is set to True,
        # 1-D tensor is still treated as a scalar, which means basic indexing.
        # This will be removed in future.
        if paddle.get_flags('FLAGS_set_to_1d')['FLAGS_set_to_1d']:
            if len(ele.shape) == 1 and ele.shape[0] == 1:
                warnings.warn(
                    "1-D Tensor will be treat as advanced indexing in future version. Currently, 1-D Tensor means a scalar, not vector, and please modify it to 0-D Tensor. If advanced indexing is needed, please use `export FLAGS_set_to_1d=False` to set the flag."
                )
                return True
296
        if len(ele.shape) == 0:
297 298 299 300
            return True
    return False


301 302
def is_bool_tensor(ele):
    from .framework import Variable
303

304 305 306 307 308
    if isinstance(ele, Variable) and ele.dtype == paddle.bool:
        return True
    return False


309 310 311
def deal_attrs(attrs, attr, attr_name, tensor_attr_name, inputs, infer_flags):
    from .framework import Variable

312 313
    if paddle.utils._contain_var(attr):
        inputs[tensor_attr_name] = paddle.utils._convert_to_tensor_list(
314 315
            attr, dtype="int64"
        )
316 317 318 319 320 321 322 323 324 325
        for i, dim in enumerate(attr):
            if isinstance(dim, Variable):
                attrs[attr_name].append(-1)
                infer_flags[i] = -1
            else:
                attrs[attr_name].append(dim)
    else:
        attrs[attr_name] = attr


326
# the item is a tensor of bool
327 328
def get_value_for_bool_tensor(var, item):
    if len(item.shape) > len(var.shape):
329 330 331 332 333
        raise IndexError(
            "The dims of bool index doesn't match indexed array, "
            "the dims of bool index except to be equal or less "
            "than {}, but received {}.".format(len(var.shape), len(item.shape))
        )
334 335 336 337 338
    i = 0
    item_shape = item.shape
    while i < len(item.shape):
        dim_len = item_shape[i]
        if dim_len != -1 and var.shape[i] != -1 and dim_len != var.shape[i]:
339
            raise IndexError(
340 341 342 343 344
                "The dimension of bool index doesn't match indexed array along "
                "dimension {}, the target dimension is {}, but received {}.".format(
                    i, var.shape[i], dim_len
                )
            )
345 346
        i += 1
    empty_shape = [0] + list(var.shape[i:])
347 348 349 350

    def idx_not_empty(var, item):
        from ..tensor import gather_nd

351
        bool_2_idx = paddle.nonzero(item == True)
352 353
        return gather_nd(var, bool_2_idx)

354
    from paddle.static.nn import cond
355 356

    return cond(
357 358 359
        item.any(),
        lambda: idx_not_empty(var, item),
        lambda: paddle.empty(empty_shape, var.dtype),
360
    )
361 362


363 364 365 366 367 368 369 370 371 372
def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """
373
    from .framework import default_main_program, Variable
374

W
WeiXin 已提交
375 376 377
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
378 379

    if not isinstance(item, tuple):
380
        item = (item,)
381 382 383 384 385 386

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []
387
    reverse_axes = []
388 389

    use_strided_slice = False
W
WeiXin 已提交
390
    item = replace_ndarray(item)
391
    item = replace_ellipsis(var, item)
392
    item, none_axes = replace_none(item)
W
WeiXin 已提交
393
    slice_info = SliceInfo()
394 395 396 397
    is_tensor_array = (
        hasattr(var, "desc")
        and var.desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY
    )
398 399

    for dim, slice_item in enumerate(item):
400 401 402 403
        if is_integer_or_scalar_tensor(slice_item) and not is_bool_tensor(
            slice_item
        ):
            if (
404 405
                not is_tensor_array
                and isinstance(slice_item, int)
406 407 408 409
                and var.shape[dim] is not None
                and var.shape[dim] >= 0
                and slice_item >= var.shape[dim]
            ):
410 411 412 413 414 415 416 417
                # For python, if users write a, b = var, the __getitem__
                # method will iterate through 0, 1, 2 ... until __getitem__
                # throws an IndexError, then stop. The var[0], var[1] will
                # be given to a, b respectively. If more values are given,
                # the unpack size would cause error.
                # We raises IndexError here to support grammar like `a, b = var`
                raise IndexError(
                    "slice_item %d at dim %d should be >= 0 and < var.shape[%d]: %d"
418 419
                    % (slice_item, dim, dim, var.shape[dim])
                )
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
            decrease_axes.append(dim)
            start = slice_item
            step = 1
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            step = 1 if step is None else step

435 436 437
            if start is None:
                start = 0 if step > 0 else MAX_INTEGER
            if end is None:
438
                if (
439
                    paddle.in_dynamic_mode() or not is_tensor_array
440
                ) and var.shape[dim] != -1:
441 442 443
                    end = var.shape[dim] if step > 0 else -1
                else:
                    end = MAX_INTEGER if step > 0 else -1
444

445
        elif isinstance(slice_item, list):
Z
zyfncg 已提交
446
            all_bool = True
W
WeiXin 已提交
447 448 449 450 451

            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

452
            for i in slice_item:
Z
zyfncg 已提交
453 454 455
                if type(i) is int:
                    all_bool = False
                elif not isinstance(i, bool):
456 457
                    raise TypeError("Only support int or bool in index list.")

458 459
            if len(item) != 1:
                raise IndexError(
460 461 462 463
                    "When index contains a list, its length must be 1, but received {}.".format(
                        len(item)
                    )
                )
Z
zyfncg 已提交
464 465 466 467
            new_slice_item = []
            if all_bool:
                if len(slice_item) != var.shape[0]:
                    raise IndexError(
468 469 470 471 472
                        "The dimension of bool index doesn't match indexed array along "
                        "dimension 0, the target dimension is {}, but received {}.".format(
                            var.shape[0], len(slice_item)
                        )
                    )
473 474 475 476
                for idx, ele in enumerate(slice_item):
                    if ele is True:
                        new_slice_item.append(idx)
                slice_item = new_slice_item
Z
zyfncg 已提交
477 478 479 480 481 482 483 484 485
            else:
                for idx, ele in enumerate(slice_item):
                    if type(ele) is int:
                        new_slice_item.append(ele)
                    elif ele is True:
                        new_slice_item.append(1)
                    else:
                        new_slice_item.append(0)
                slice_item = new_slice_item
486

487 488
            from ..tensor import index_select

489
            idx = paddle.assign(np.array(slice_item).astype("int32"))
490 491
            return index_select(var, index=idx, axis=0)

W
wanghuancoder 已提交
492
        elif isinstance(slice_item, (Variable, core.eager.Tensor)):
W
WeiXin 已提交
493
            if len(item) == 1:
494

495
                from ..tensor import index_select
Z
zyfncg 已提交
496

W
WeiXin 已提交
497
                if slice_item.dtype == paddle.bool:
498
                    return get_value_for_bool_tensor(var, slice_item)
W
WeiXin 已提交
499 500 501 502 503 504 505 506 507
                else:
                    if len(slice_item.shape) == 1:
                        return index_select(var, index=slice_item, axis=0)
                    else:
                        slice_info.update(slice_item)
                        continue
            else:
                slice_info.update(slice_item)
                continue
508

509 510
        else:
            raise IndexError(
511 512 513 514
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    slice_item
                )
            )
515 516 517 518 519 520 521

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)
        use_strided_slice = True if step != 1 else use_strided_slice

W
WeiXin 已提交
522 523 524
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
525 526 527 528
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    item
                )
            )
W
WeiXin 已提交
529 530
        return slice_info.get_item(var)

531 532 533 534 535
    inputs = {'Input': [var]}
    attrs = {
        'axes': axes,
        'starts': [],
        'ends': [],
536
        'decrease_axis': decrease_axes,
537 538 539 540 541 542 543
    }
    if use_strided_slice:
        attrs['strides'] = []

    infer_flags = [1] * len(axes)
    deal_attrs(attrs, starts, "starts", "StartsTensorList", inputs, infer_flags)
    deal_attrs(attrs, ends, "ends", "EndsTensorList", inputs, infer_flags)
544 545 546
    deal_attrs(
        attrs, steps, "strides", "StridesTensorList", inputs, infer_flags
    )
547 548 549 550 551
    attrs['infer_flags'] = infer_flags

    out = var
    if len(axes) > 0:
        op_type = "strided_slice" if use_strided_slice else "slice"
552
        if paddle.in_dynamic_mode() and op_type == "slice":
553 554 555 556 557 558 559 560
            if "StartsTensorList" in inputs.keys():
                st = inputs['StartsTensorList']
            else:
                st = attrs['starts']
            if "EndsTensorList" in inputs.keys():
                end = inputs['EndsTensorList']
            else:
                end = attrs['ends']
561 562 563
            out = paddle._C_ops.slice(
                var, axes, st, end, attrs['infer_flags'], attrs['decrease_axis']
            )
564 565 566 567
        else:
            target_block = default_main_program().current_block()

            slice_out_var = target_block.create_var(
568 569 570 571 572 573 574 575 576 577 578
                name=unique_name.generate_with_ignorable_key(
                    var.name + "_" + op_type
                ),
                dtype=var.dtype,
            )
            target_block.append_op(
                type=op_type,
                inputs=inputs,
                outputs={'Out': [slice_out_var]},
                attrs=attrs,
            )
579
            out = slice_out_var
580

581
    if len(reverse_axes) > 0:
582
        from .layers.tensor import reverse
583

584 585
        out = reverse(out, axis=reverse_axes)

586 587 588 589 590
    # NOTE(zoooo0820): When all axes are decreased, the output will be 1-D
    # with FLAGS_set_to_1d=True. In this case, one `None` should be pop out,
    # otherwise the output shape will be not correct.
    set_to_1d = paddle.get_flags('FLAGS_set_to_1d')['FLAGS_set_to_1d']
    if set_to_1d and len(decrease_axes) == len(var.shape):
591 592 593
        warnings.warn(
            "Warning: In Tensor '__getitem__', if the number of scalar elements in the index is equal to the rank of the Tensor, the output should be 0-D. In order to be consistent with the behavior of previous versions, it will be processed to 1-D. But it is not correct and will be removed in release 2.6. If 1-D is still wanted, please modify the index element from scalar to slice (e.g. 'x[i]' => 'x[i:i+1]')."
        )
594 595
        none_axes = none_axes[1:]

596 597 598 599 600 601 602 603 604 605 606
    if len(none_axes) > 0:
        # Deal with cases that decrease_axes is not empty
        # For example:
        # # x.shape: (2,3,4)
        # out = x[0, 0:2, None] # out.shape : (2, 1, 4)
        for idx, axis in enumerate(none_axes):
            l = len([i for i in decrease_axes if i < axis])
            new_axis = axis - l
            none_axes[idx] = new_axis

        from ..tensor import unsqueeze
607

608
        out = unsqueeze(out, axis=none_axes)
609 610 611 612

    return out


613
def _setitem_for_tensor_array(var, item, value):
614 615 616 617 618 619 620
    """branches for tensor array setitem operation.
    A item can be a:
    (1) int/Variable, which is a simple number/variable such as [1], [-2]
    (2) Slice, which is represented by bounds such as [2:-1]
    (3) Tuple, which includes the above two cases such as [2:-1, 1]
    If item is case (1), we perform paddle.tensor.array_write,
    in other cases, we raise a NotImplementedError.
621
    """
622
    from ..framework import LayerHelper, core
623
    from .framework import Variable
624 625

    assert (
626
        not paddle.in_dynamic_mode()
627 628
    ), "setitem for tensor_array must be called in static graph mode."
    if isinstance(item, (Variable, int)):
629
        from paddle.jit.dy2static.variable_trans_func import (
630 631
            to_static_variable,
        )
632 633
        from paddle import cast
        from paddle.tensor import array_write
634

635 636 637 638 639
        item = paddle.cast(to_static_variable(item), dtype='int64')
        value = to_static_variable(value)
        array_write(x=value, i=item, array=var)
    else:
        raise NotImplementedError(
640 641 642 643
            "Only support __setitem__ by Int/Variable in tensor_array, but gets {}".format(
                type(item)
            )
        )
644 645


646 647
def _setitem_impl_(var, item, value):
    from .framework import default_main_program, Variable
648
    from paddle.fluid import core
649

650 651
    if var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        return _setitem_for_tensor_array(var, item, value)
652 653

    inputs = {'Input': var}
W
WeiXin 已提交
654 655 656
    if isinstance(item, list):
        if not is_one_dim_list(item, int):
            item = tuple(item)
657 658
    # 1. Parse item
    if not isinstance(item, tuple):
659
        item = (item,)
660 661 662 663 664 665 666

    decrease_axes = []
    axes = []
    starts = []
    ends = []
    steps = []

W
WeiXin 已提交
667
    item = replace_ndarray(item)
668
    item = replace_ellipsis(var, item)
669
    item, none_axes = replace_none(item)
W
WeiXin 已提交
670
    slice_info = SliceInfo()
Z
zyfncg 已提交
671 672
    dim = 0
    for _, slice_item in enumerate(item):
673 674 675
        if is_integer_or_scalar_tensor(slice_item) and not is_bool_tensor(
            slice_item
        ):
676 677 678 679 680 681 682 683 684 685 686
            decrease_axes.append(dim)
            start = slice_item
            end = slice_item + 1 if slice_item != -1 else MAX_INTEGER
            step = 1

        elif isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
Z
zyfncg 已提交
687
                dim += 1
688 689 690 691 692 693 694
                continue

            step = 1 if step is None else step

            if not isinstance(step, Variable) and step == 0:
                raise ValueError(
                    "When assign a value to a paddle.Tensor, step can not be 0, "
695 696
                    "but received step is {}.".format(step)
                )
697 698 699 700 701 702 703 704 705 706 707 708

            if isinstance(step, Variable) and (start is None or end is None):
                raise ValueError(
                    "When assign a value to a paddle.Tensor, it's not supported that "
                    "the start or end is None when the type of step is paddle.Tensor."
                )

            if start is None:
                start = 0 if step > 0 else MAX_INTEGER

            if end is None:
                end = MAX_INTEGER if step > 0 else (0 - MAX_INTEGER)
Z
zyfncg 已提交
709 710 711 712 713 714 715
        elif isinstance(slice_item, list):
            if is_list_tuple(slice_item, int):
                slice_info.update(slice_item)
                continue

            for i in slice_item:
                if not isinstance(i, bool):
716 717 718
                    raise TypeError(
                        "Doesn't support {} in index list.".format(type(i))
                    )
Z
zyfncg 已提交
719 720 721

            if len(item) != 1:
                raise IndexError(
722 723 724 725
                    "When index contains a bool list, its length must be 1, but received {}.".format(
                        len(item)
                    )
                )
Z
zyfncg 已提交
726

727
            idx_tensor = paddle.assign(slice_item)
Z
zyfncg 已提交
728 729 730 731 732 733
            return set_value_for_bool_tensor(var, idx_tensor, value)

        elif isinstance(slice_item, Variable):
            if slice_item.dtype == core.VarDesc.VarType.BOOL:
                if len(item) != 1:
                    raise IndexError(
734 735 736 737
                        "When index contains a bool tensor, its length must be 1, but received {}.".format(
                            len(item)
                        )
                    )
Z
zyfncg 已提交
738 739 740 741
                return set_value_for_bool_tensor(var, slice_item, value)
            else:
                slice_info.update(slice_item)
                continue
742 743
        else:
            raise IndexError(
Z
zyfncg 已提交
744
                "Valid index accept int, slice, ellipsis, None, list of bool, Variable, "
745 746
                "but received {}.".format(slice_item)
            )
747 748 749 750 751 752

        axes.append(dim)
        starts.append(start)
        ends.append(end)
        steps.append(step)

Z
zyfncg 已提交
753
        dim += 1
W
WeiXin 已提交
754 755 756
    if slice_info.indexes:
        if len(slice_info.indexes) != len(item):
            raise IndexError(
757 758 759 760
                "Valid index accept int or slice or ellipsis or list, but received {}.".format(
                    item
                )
            )
W
WeiXin 已提交
761
        return slice_info.set_item(var, value)
762 763 764 765 766
    attrs = {
        'axes': axes,
        'starts': starts,
        'ends': ends,
        'steps': steps,
Z
zyfncg 已提交
767
        'decrease_axes': decrease_axes,
768
        'none_axes': none_axes,
769 770
    }

771 772 773 774
    if paddle.utils._contain_var(starts):
        inputs['StartsTensorList'] = paddle.utils._convert_to_tensor_list(
            starts
        )
775
        del attrs['starts']
776 777
    if paddle.utils._contain_var(ends):
        inputs['EndsTensorList'] = paddle.utils._convert_to_tensor_list(ends)
778
        del attrs['ends']
779 780
    if paddle.utils._contain_var(steps):
        inputs['StepsTensorList'] = paddle.utils._convert_to_tensor_list(steps)
781 782 783 784 785 786 787
        del attrs['steps']

    # 2. Parse value
    dtype = var.dtype
    attrs['dtype'] = dtype

    from .data_feeder import convert_dtype
788

789 790
    #  2.1 value is an integer, float or complex
    if isinstance(value, (bool, int, float, complex)):
791 792 793 794 795
        value = np.array([value]).astype(convert_dtype(dtype))

    #  2.2 value is a np.ndarray
    if isinstance(value, np.ndarray):
        shape = list(value.shape)
796 797
        values = value.ravel().tolist()
        attrs["values"] = values
798 799
        attrs["shape"] = shape

W
wanghuancoder 已提交
800
    elif isinstance(value, (Variable, core.eager.Tensor)):
801 802 803 804 805
        inputs["ValueTensor"] = value
    else:
        raise TypeError(
            "Only support to assign an integer, float, numpy.ndarray or "
            "paddle.Tensor to a paddle.Tensor, but received {}".format(
806 807 808
                type(value)
            )
        )
809

810
    if paddle.in_dynamic_mode():
Z
zyfncg 已提交
811 812
        var._bump_inplace_version()

813
    cur_block = default_main_program().current_block()
814 815 816 817 818 819 820
    cur_block.append_op(
        type="set_value",
        inputs=inputs,
        outputs={'Out': var},
        attrs=attrs,
        inplace_map={"Input": "Out"},
    )
821 822

    return var
Z
zyfncg 已提交
823 824


825
# the item is a tensor of bool
Z
zyfncg 已提交
826 827
def set_value_for_bool_tensor(var, item, value):
    if len(item.shape) > len(var.shape):
828 829 830 831 832
        raise IndexError(
            "The dims of bool index doesn't match indexed array, "
            "the dims of bool index except to be equal or less "
            "than {}, but received {}.".format(len(var.shape), len(item.shape))
        )
Z
zyfncg 已提交
833
    for i, dim_len in enumerate(item.shape):
834
        if dim_len != -1 and var.shape[i] != -1 and dim_len != var.shape[i]:
Z
zyfncg 已提交
835 836
            raise IndexError(
                "The dimension of bool index doesn't match indexed array along "
837 838 839 840
                "dimension {}, the target dimension is {}, but received {}.".format(
                    i, var.shape[i], dim_len
                )
            )
Z
zyfncg 已提交
841 842 843 844 845 846

    def idx_not_empty(var, item, value):
        from .framework import Variable
        from ..tensor import gather_nd, scatter_nd_add

        if not isinstance(value, Variable):
847
            value = paddle.assign(value).cast(var.dtype)
Z
zyfncg 已提交
848

849
        idx = paddle.nonzero(item)
Z
zyfncg 已提交
850 851 852 853 854
        gather_val = gather_nd(var, idx)
        gather_val_new = value - gather_val
        out = scatter_nd_add(var, idx, gather_val_new)
        var[:] = out

855
    from paddle.static.nn import cond
856

Z
zyfncg 已提交
857 858 859 860
    # If all the bool index is False, just do nothing
    cond(item.any(), lambda: idx_not_empty(var, item, value))

    return var